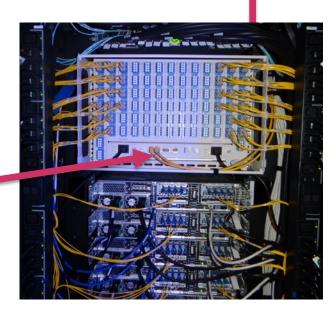


FPGAs in HPC: Algorithm-Hardware Co-design of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture

Tobias Kenter

Christian Plessl, Adesh Shambhu, Sara Faghih-Naini, Vadym Aizinger

Paderborn University, Germany, Paderborn Center for Parallel Computing


Paderborn Center for Parallel Computing (PC²)

- HPC operations and research
- Noctua System since 2018
 - Cray CS500 Cluster System
 - 256 CPU nodes, 2 x Intel Xeon Skylake Gold
 6148, 2 x 20 Cores, 2.4GHz, 192 GB RAM
 - 100 Gbps Intel Omni-Path network
- 16 FPGA nodes
 - 2 x Intel Stratix 10 GX2800 per node (BittWare 520N boards, PCle 3.0 x8)
 - 4 x 8GB DDR4 channels per board
 - 4 QSFP28 ports per board
 - configurable point-to-point topologies

Successor system 2022

FPGA Plattform

- Intel Stratix 10 GX 2800
 - 5760 DSP blocks (1 single precision FMA/cycle each)
 - 11,721 M20K RAM blocks (20Kb each)
 - 933,120 ALMs: control, addresses, all non-FP arithmetic
 - 3,732,480 registers: form pipeline stages

- Bittware 520N card
 - PCIe Gen3 x8 (x16)
 - 4 * 8GB DDR4

- Intel FPGA SDK for OpenCL
- Intel FPGA Add-on for oneAPI Base Toolkit

This work: Discontinuous Galerkin Shallow-Water Model on FPGA

Shallow-Water Code

- Discontinuous Galerkin discretization
- unstructured mesh
- polynomial orders 0, 1, 2 viable

Performance challenges

- not well-suited for vectorization
 - small inner loops, e.g. 3, 6, 9 iterations
- indirect and irregular memory access
- strong scaling, simulation of long time scales

How can FPGAs help?

[T. Kenter, A. Shambhu, S. Faghih-Naini, V. Aizinger. *Algorithm-Hardware Co-design of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture on FPGA.* PASC'21.]

Mapping Code to FPGA Ressources

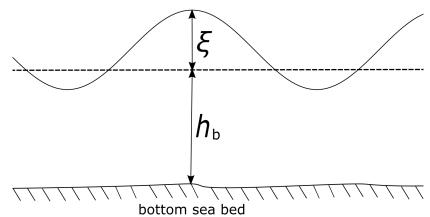
local memory

- Intel Stratix 10 GX 2800
 - 5760 DSP blocks (1 single precision FMA/cycle each)
 - 11,721 M20K RAM blocks (20Kb each)
 - 933,120 ALMs: control, addresses, all non-FP arithmetic
 - 3,732,480 registers: form pipeline stages

FP-arithmetic

unrolling creates small vector units

```
523
              /* Gradient of tidal potential minus athmospheric pressure */
524
             #praama unroll
             for (char i = 0; i \le d_{space}; i++) {
525 -
                float temp = G(*tip2_l[all_el_infd[it])vertex_number[i + 1])(-)
526
                             pr2_llow el_info[it].vertex_number[i + 1]] =
527
                             Grutip2_l[all_el_info[it].vertex_number[0]]
528
529
                             pr2_l[all_el_info[it].vertex_number[0]];
530
                #pragma unroll
531
                for (char j = 0; j < d_space; j++)
                 tip_pr_grad[j] (+=) all_el_info[it].jacob_phys_to_ref([i][j](*) temp;
532
533
```


Shallow Water DG Code

Shallow Water Equations

2D shallow water equations (SWE) (derived from the Navier-Stokes equations)

•
$$\partial_t \xi + \nabla \cdot \mathbf{u} = 0$$

•
$$\partial_t \mathbf{u} + \nabla \cdot \left(\frac{\mathbf{u} \otimes \mathbf{u}}{H}\right) + \tau_{bf} \mathbf{u} + f_c \mathbf{k} \times \mathbf{u} + gH\nabla \xi = \mathbf{F}$$

with unknowns

 ξ : elevation of free water surface, $\mathbf{u} = (U, V)^T$: depth integrated horizontal velocity field and parameters

 h_b : bathymetric depth, $H = h_b + \xi$: total fluid depth, τ_{bf} : bottom friction coefficient

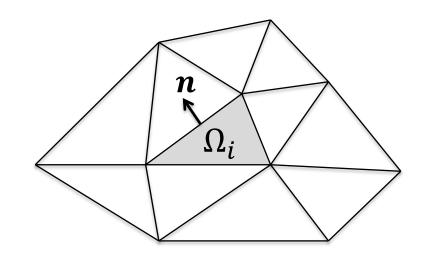
 f_c : Coriolis coefficient, k: unit vertical vector, g: gravitational acceleration

F: forcing term from wind and atmospheric pressure gradient

DG Formulation

Uses Discontinuous Galerkin method on unstructured triangular meshes

$$\int_{\Omega_{i}} \partial_{t} \mathbf{c}_{\Delta} \boldsymbol{\varphi} \, dx + \int_{\partial \Omega_{i}} \widehat{\mathbf{A}}(\boldsymbol{c}_{\Delta}, \boldsymbol{c}_{\Delta}^{+}, \boldsymbol{n}) \, \boldsymbol{\varphi} \, ds - \int_{\Omega_{i}} \mathbf{A}(\boldsymbol{c}_{\Delta}) \cdot \nabla \varphi \, dx = \int_{\Omega_{i}} \boldsymbol{r}(\boldsymbol{c}_{\Delta}) \, \boldsymbol{\varphi} \, dx$$
Edge kernel Element kernel


where

 $\mathbf{c}_{\Delta} = (\xi_{\Delta}, \mathbf{U}_{\Delta}, \mathbf{V}_{\Delta})^{T}$: the discrete vector of unknowns restricted to Ω_{i} ,

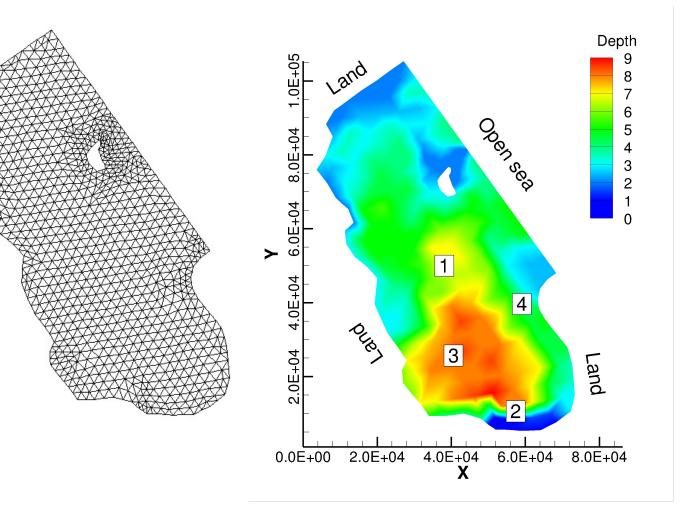
 \mathbf{c}_{Δ}^{+} : the discrete vector of unknowns restricted to the edge-neighbour of Ω_{i} ,

 \boldsymbol{n} : the exterior unit normal to $\partial \Omega_i$, $\boldsymbol{\varphi}$: test function

 \widehat{A} : numerical flux from Riemann solver (Lax-Friedrichs)

UTBEST Overview

- I/O and grid management: FORTRAN
- DG scheme + computationally intensive parts: C
 - works in single precision
- 3 polynomial DG discretizations
 - piecewise constant (PC) (= cell-centered finite volumes)
 - piecewise linear (PL)
 - piecewise quadratic (PQ)
- Integration kernels
 - elements: 1, 4, 9 quadrature points
 - edges: 1, 2, 3 quadrature points
 - Lax-Friedrichs Riemann solver


$$\int_{\Omega_i} \partial_t \mathbf{c}_{\Delta} \boldsymbol{\varphi} \, dx + \int_{\partial \Omega_i} \widehat{\mathbf{A}}(\mathbf{c}_{\Delta}, \mathbf{c}_{\Delta}^+, \boldsymbol{n}) \, \boldsymbol{\varphi} \, ds - \int_{\Omega_i} \mathbf{A}(\mathbf{c}_{\Delta}) \cdot \nabla \varphi \, dx = \int_{\Omega_i} \boldsymbol{r}(\mathbf{c}_{\Delta}) \, \boldsymbol{\varphi} \, dx$$
Edge kernel Element kernel

- Corresponding time discretization
 - Runge-Kutta orders 1, 2, 3

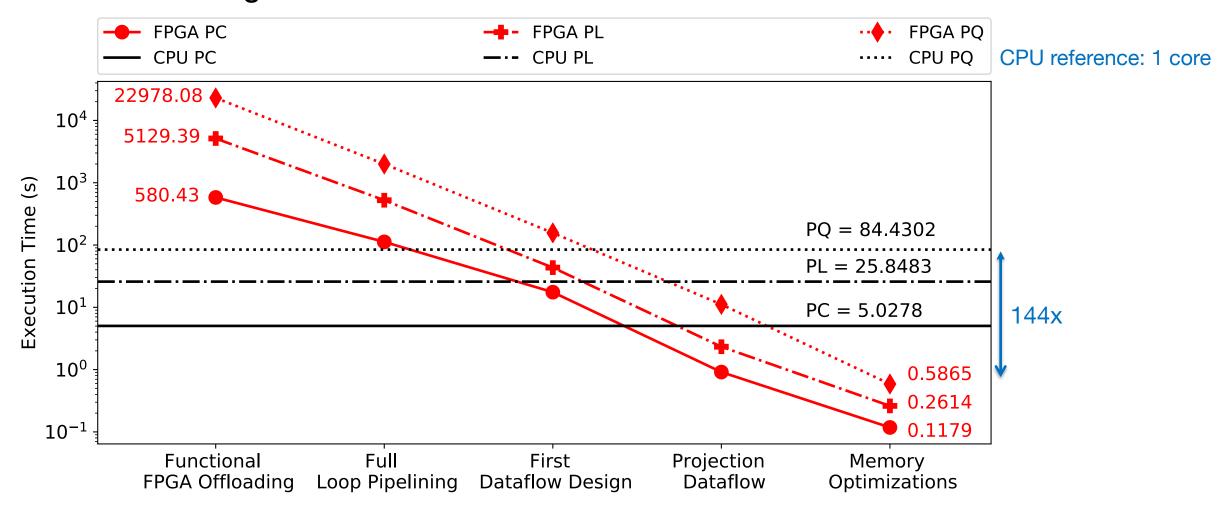
[V. Aizinger and C. Dawson. 2002. Adv. in Water Resources 25, 1]

Benchmark Scenario

- Bahamas (Bight of Abaco)
 - unstructured mesh
 - 1696 elements
 - tidal forcing at open sea boundary,
 - benchmark runs
 - simulated 1 day
 - time step 5s
 - 17280 steps
 - outputs
 - elevation snapshots
 - full time series at observation stations

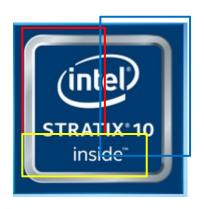
bathymetry + observation stations

UTBEST Structure + Execution


	Kernel	Exe	Execution time			Perf. [GFLOPs]		
nge–Kutta stages: of the Runge–Kutta method do		PC	PL	PQ	PC	PL	PQ	
op: ment indices $e \in \{1,, E\}$ do e element integrals	Element	26.9%	38.0%	47.9%	2.27	3.76	4.97	
	Interior Edge	62.3%	53.2%	44.5%	1.51	2.27	2.97	
	Land Edge	2.4%	1.8%	1.4%	1.65	2.28	2.85	
	Sea Edge	2.2%	1.1%	0.6%	0.67	1.30	2.06	
edges of different types:	Accumulator	2.3%	3.3%	3.9%	2.98	3.92	4.32	
erior edges do e interior edge integrals	Min. Depth	3.8%	2.5%	1.7%	1.40	2.41	3.38	
	Kernel sum, avg	5.02s	25.8s	84.4s	1.73	2.88	3.98	
d edges do e land edge integrals	Profiled on 1	core o	f Skyla	ke Xeo	n Gol	d 614	8	

1: while $t < t_1$ do							
2: Loop over Runge–Kutta stages:							
3: for all stages of the Runge–Kutta method do							
4: Element loop:							
5: for all element indices $e \in \{1,, E\}$ do							
6: calculate element integrals							
7: end for							
8: Loops over edges of different types:							
9: for all interior edges do							
10: calculate interior edge integrals							
11: end for							
12: for all land edges do							
13: calculate land edge integrals							
14: end for							
15: for all open sea edges do							
16: calculate open sea edge integrals							
17: end for							
18: calculate c_{Δ} for the next Runge–Kutta stage							
19: perform minimum depth control on $m{c}_{\Delta}$							
20: end for							
21: $t \leftarrow t + \Delta t$							
22: end while							

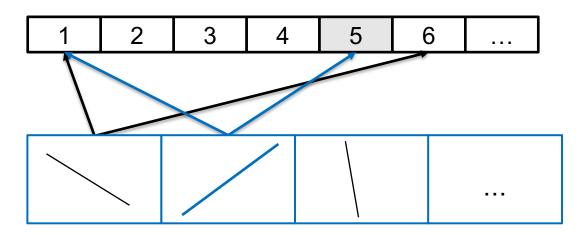
FPGA Design Process

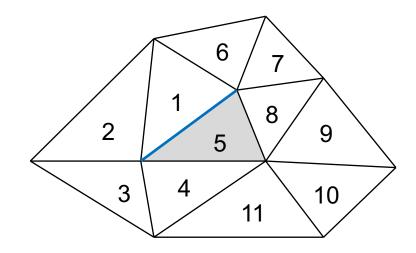

Overview of FPGA Optimization Process

five main design iterations

FPGA Dataflow Idea 1/2

- C → OpenCL → hardware description
 - create block on FPGA for each kernel
 - e.g. process one element per cycle
 - unrolling
 - provide all data from local buffers
- Stream unknowns and updates through kernels
 - task level parallelism


FPGA Dataflow Idea 2/2

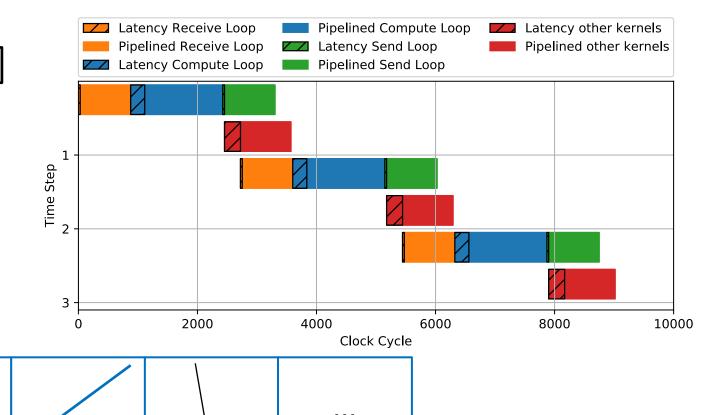

```
1: while t < t_1 do
      Loop over Runge–Kutta stages:
      for all stages of the Runge–Kutta method do
         Element loop:
        for all element indices e \in \{1, ..., E\} do
           calculate element integrals
         end for
      end for
      t \leftarrow t + \Delta t
10: end while
           1: while t < t_1 do
                Loop over Runge–Kutta stages:
                for all stages of the Runge–Kutta method do
                   perform minimum depth control on c_{\Lambda}
           4:
                end for
                               1: while t < t_1 do
                t \leftarrow t + \Lambda t
                                     Loop over Runge–Kutta stages:
           7: end while
                                     for all stages of the Runge–Kutta method do
                                        calculate c_{\Lambda} for the next Runge–Kutta stage
                               4:
                                     end for
                                     t \leftarrow t + \Lambda t
                               7: end while
```

```
1: while t < t_1 do
     Loop over Runge–Kutta stages:
     for all stages of the Runge–Kutta method do
        Loops over edges of different types:
        for all interior edges do
           calculate interior edge integrals
        end for
        for all land edges do
           calculate land edge integrals
        end for
10:
        for all open sea edges do
           calculate open sea edge integrals
        end for
13:
     end for
     t \leftarrow t + \Delta t
16: end while
```

UTBEST Data Layout

- Unknowns c_{Λ} associated to elements
 - 3 * [1, 3, 6] depending on polynomial order

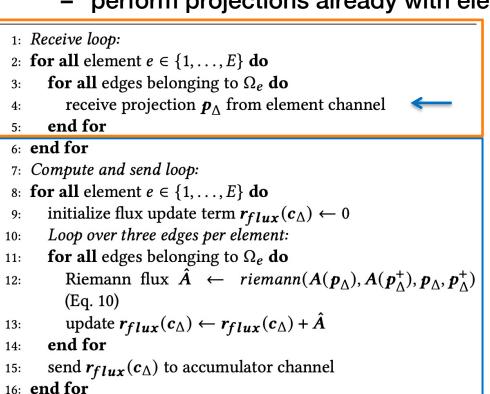
- Further structure by references
 - edges to elements
 - "random" access into element array
 - elements to edges
 - ...
- Geometry, bathymetry

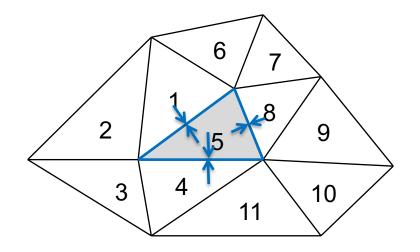

Initial Dataflow around Edge Kernel

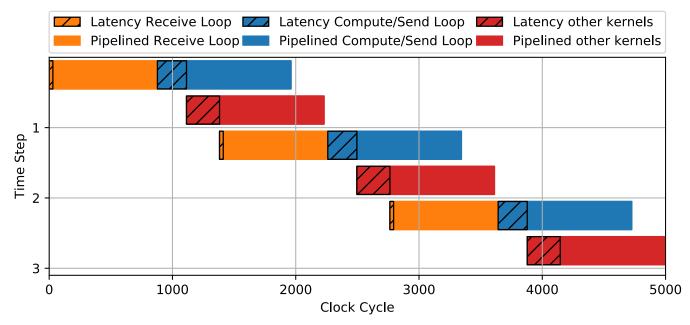
Three phases required

1 2 3 4 5 6 ...

- 1: Receive loop:
- 2: **for all** element indices $e \in \{1, ..., E\}$ **do**
- 3: receive c_{Δ} from minimum depth channel
- 4: initialize element update term $r_{flux}(c_{\Delta}) \leftarrow 0$
- 5: end for
- 6: Compute loop:
- 7: **for all** edge indices $d \in \{1, ..., D\}$ **do**
- 8: flux $A(c_{\Lambda})$ and solution c_{Λ} on local element
- 9: flux $A(c_{\Lambda}^{+})$ and solution c_{Λ}^{+} on remote element
- 10: Riemann flux $\hat{A} \leftarrow riemann(A(c_{\Delta}), A(c_{\Delta}^{+}), c_{\Delta}, c_{\Delta}^{+})$
- 11: update $r_{flux}(c_{\Delta}) \leftarrow r_{flux}(c_{\Delta}) \hat{A}$
- 12: update $r_{flux}(c_{\Lambda}^{+}) \leftarrow r_{flux}(c_{\Lambda}^{+}) + \hat{A}$
- 13: end for
- 14: Send loop:
- 15: **for all** element indices $e \in \{1, ..., E\}$ **do**
- send $r_{flux}(c_{\Delta})$ to accumulator channel
- 17: end for


1 2 3 4 5	6
-----------	---




- poor utilization (either edge or element kernel active)
- more edges than elements

Projection Approach

- Run edge kernel in order of elements
 - 3 edge integrals per element, each
 - 2 projections to edge
 - 1 Riemann flux
 - perform projections already with element kernel

FPGA Results

Parallelism and Synthesis Results

Parallel and pipelined operations

- 1 element integral + projections per cycle
- 3 edge integrals per cycle
- accumulation + min. depth 1 element / cycle

- DSPs and logic for arithmetic
- Fit data into block RAMs (8953 available)
 - edge kernel: multiple copies for projection
 - larger mesh requires more space
 - higher order requires more space

FLOPs per element or edge

Order	elements	pro- jection	edges	accum.	min. depth	sum
PC	106	27	3 · 87	15	3	412
PL	634	162	$3 \cdot 210$	90	9	1525
PQ	2295	486	3 · 396	270	18	4256
PQ CPU	2286	3/2 ·	873	162	54	3811.5

Synthesis Results

max. elements	Logic Slices	Block RAMs	DSPs	Frequency [MHz]
2048	23%	1923	457	354.17
4096	24%	2805	457	341.66
8192	25%	4569	457	312.50
16384	26%	8083	457	284.38
2048	36%	3037	1194	320.00
4096	37%	4694	1194	309.37
8192	39%	7994	1194	285.00
2048	59%	4924	2773	216.67
4096	61%	8063	2773	208.33
	2048 4096 8192 16384 2048 4096 8192 2048	2048 23% 4096 24% 8192 25% 16384 26% 2048 36% 4096 37% 8192 39% 2048 59%	elements Slices RAMs 2048 23% 1923 4096 24% 2805 8192 25% 4569 16384 26% 8083 2048 36% 3037 4096 37% 4694 8192 39% 7994 2048 59% 4924	Elements Slices RAMs DSPs 2048 23% 1923 457 4096 24% 2805 457 8192 25% 4569 457 16384 26% 8083 457 2048 36% 3037 1194 4096 37% 4694 1194 8192 39% 7994 1194 2048 59% 4924 2773

Performance Model + Example

- Cycles per iteration = #elements + Latency + #external edges
 - e.g. 1696 + 562 + 156 = 2414 cycles for Bahamas benchmark
 - 2414 cycles @ 354.17 MHz = 6.8µs
 - 146715 time steps / s
 - @5s time steps = 8.5 simulated days / s

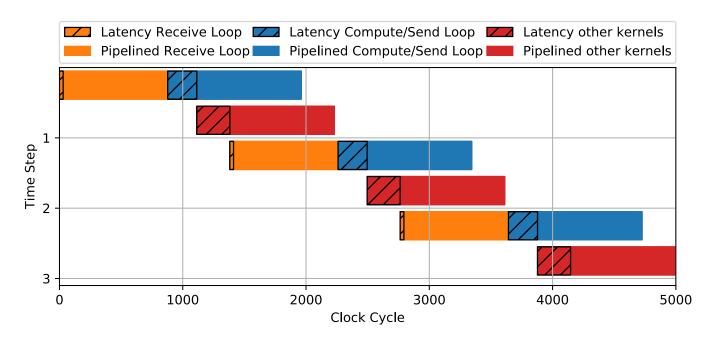
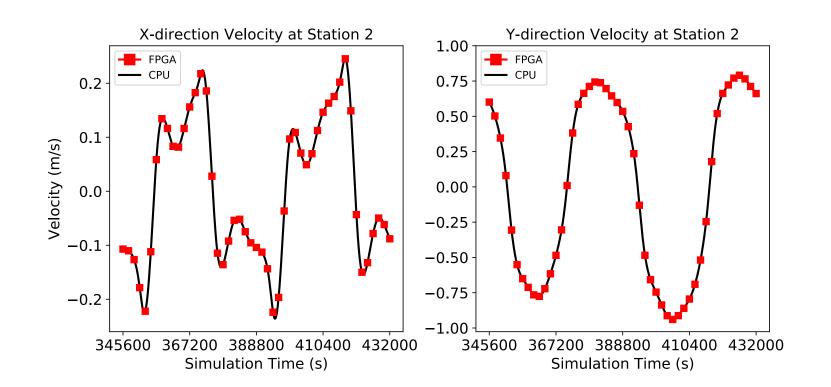
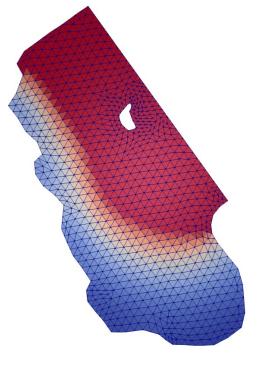
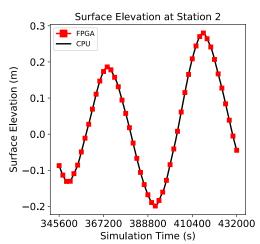


Illustration ~ 1/2 Bahamas, 848 elements

Performance Model vs. Measurements


- cycles per iteration = #elements + Latency + #external edges
- occupancy = #elements / cycles per iteration
- FLOPS = Occupancy * peak FLOPS


Ord.	E	D_{ext}	L	model <i>occ</i> .	model GFLOPs	measured GFLOPs	power [W]
PC	1696	156	562	70.3%	102.5	102.4	74.0
	3392	192	562	81.8%	115.2	114.9	74.5
	6784	312	562	88.6%	114.1	113.9	76.0
	13568	384	562	93.5%	109.5	109.3	77.9
PL	1696	156	569	70.1%	341.9	341.8	76.9
	3392	192	569	81.7%	385.3	384.8	78.5
	6784	312	569	88.5%	384.7	384.1	80.3
PQ	1696	156	592	69.4%	639.9	637.9	77.7
	3392	192	592	81.2%	720.2	717.7	78.9


Validation

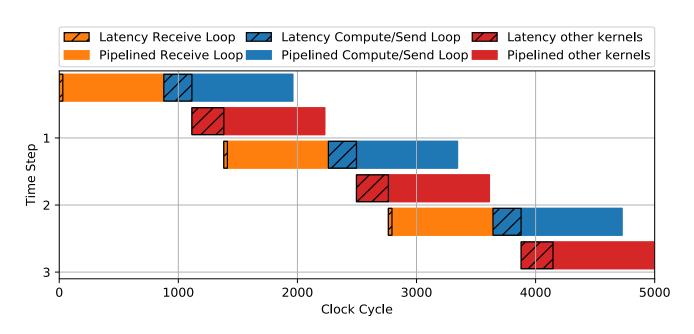
Time series and elevation maps

- only minor numeric differences (due to reordering, rounding)

Ongoing and Future Work

Scaling

- multiple pipelines per FPGA for PC, PL
- multiple FPGAs
- larger meshes with HBM2 and / or temporal blocking
- Abstractions
 - separation between algorithm and architecture?
- Hybrid execution modes
 - coupling with other models


Summary

Dataflow architecture on FPGA

- all kernels in element sequence
- co-design: projection

Performance

- hundreds to thousands operations per cycle
- up to 720 GFLOPs measured
- up to 144x speedup over 1 CPU core
- on small problems

