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CAN DEEP LEARNING REPLACE CURRENT NUMERICAL WEATHER
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A VISION OF NUMERICAL
WEATHER PREDICTION (NWP)

“Imagine a large hall like a theatre... the
walls of this chamber are painted to form a
map of the globe.... A myriad computers
are at work upon the weather of the part ot
the map where each sits, but each
computer attends only to one equation or
part of an equation.”

-Lewis Fry Richardson, Weather Prediction by
Numerical Process, 1922
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“Weather Forecasting Factory” by Stephen Conlin, 1986




MADE PRACTICAL BY ADVANCEMENTS IN COMPUTING AND

NUMERICS

e Jule Charney and John Von Neumann led the
first numerical weather prediction experiment in

1950

« They integrated the barotropic vorticity equation
on 500-hPa surface
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e 24-hour forecast took about 24 hours to
compute on ENIAC computer

DURRAN

UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021




FUNDAMENTAL PHYSICS AND NWP MODELS?

« Dynamical core: equations for conservation of mass, energy and momentum ...
» Inviscid motions and wave propagation
 Its numerical approximation can be evaluated for order of accuracy, stability, ...
» Operational Models Rely on Parameterizations
e Clouds and precipitation
» Influence of the Earth’s surface (surface temperatures)
» Heat transfer by electromagnetic radiation
 Parameterizations
» Have a major impact on forecast skill

e Are tested empirically
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Al AND NWP

» Parameterizations are empirical and major limitations in the accuracy of NWP
« Many groups are trying to improve parameterizations using Al

» State-of-the-art NWP models require enormous computer resources for each
forecast

¢« Completely replacing NWP with Deep Learning Weather Prediction (DLWP) may
e Reduce the time required for each forecast by orders of magnitude
« Address uncertainty by
« Allowing a large number O(1000) of simulations of likely future states (ensembles)
» Giving better probabilistic forecasts

e Capturing extreme events
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OUR DLWP STRATEGY

« Like NWP, we create forecasts by recursively stepping forward in time
« We will use far fewer variables to characterize the atmospheric state

« We use just a few variables and coarse horizontal resolution because

» It's a starting point for DLWP

* Numerical resolution in NWP may be greater than the important degrees of
freedom in a given atmospheric state.

e For convergence: Az < 200 m if Ax < 15 km (Skamarock et al., 2019)
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DLWP BUILDING BLOCKS: CONVOLUTIONAL NEURAL NETWORKS

« Same filter coefficients multiply the
input data at every point

e 3x3 horizontal stencil

« 3rd dimension is number of fields
e Output is single number

« Learn many sets of these filter
coefficients (64/128/256)
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DLWP BUILDING BLOCKS: CUBED SPHERE GRID

stencil

e 4 equatorial-centered

e 2 polarfaces

DURRAN

Train identical filters for

faces

sense of rotation
reversed between polar

faces

Convenient for 3x3 spatial a)
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DLWP BUILDING BLOCKS: U-NET ARCHITECTURE

mmmd 3x3 convolution
=) 2x2 average pooling

mmmd 2 %2 up-sampling
m==> sKkip connection

Preserves fine-scale information
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TIME STEPPING

Observed state at Forecast state at ) Forecast state at
12 hr time step

12 hr time step

two times two times two times
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J= J1 + J2 Loss function is the sum of the MSE over 24 hrs
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DLWP BUILDING BLOCKS: DATA

« ERAS: observations blended with NWP model output
e Retrieved on 1° lat-lon grid
e Re-gridded to cubed sphere (Ullrich & Taylor, 2015)

« Model training: 1979-2012
¢ ~100,000 samples

 Model validation set: 2013-2016

« Test set: final performance evaluation: 2017-2018

« twice weekly: 208 cases
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2D

e 6 or7 prognostic variables
« 1000-hPa height ‘
e 500-hPa height
e 300-700-hPa thickness T
e 2-m temperature H

« 3 prescribed fields
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e 850-hPatemperature S

FIELDS ON SPHERICAL SHELLS
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e Total column water vapor .
+ 250-hPa height S Ll
» 64x64 points on each face of the

« TOA incoming solar radiation Sotesphiss dietre s 20N L

e land-sea mask ¢ ~1.4°x1.4° at the equator

e topographic height
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HURRICANES
IRMA & JOSE

e 4-day single model
forecast

e 1.4°x1.4°
resolution

e / prognostic
variables

e Showing

 1000-hPa height
(black)

e 500-hPa height
(color fill)
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Valid: 2017-09-07 06:00 Z

6-hour DLWP-7var forecast

500 510 520 530 540 550 560

UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021

Verification

570 580



DLWP-NWP COMPARISON

Comparison of Key Attributes of Our DLWP Ensemble and Those of the State-of-the-Art ECMWEF Ensemble for
Extended-Range Forecasting

DLWP ECMWF
Atmospheric fields 6 2-D variables 9 prognostic 3-D variables; 91 vertical levels
Horizontal resolution 150 km 18 km (36 km after day 15)
Atmospheric physics 3 prescribed inputs Many physical parameterizations
Coupled models None Ocean, wave, and sea ice models
Initial condition perturbations 10 (ERAS5 uncertainty) 50 (SVD/4DVAR)
Model perturbations Perturbed CNN weights Stochastic physics
Ensemble members 320 (+control) 50 (+control)
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ENSEMBLE PERFORMANCE: DETERMINISTIC LEAD TIMES
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forecast day forecast day

DLWP grand ensemble: 32 stochastically perturbed models x 10 initial conditions = 320 members
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ENSEMBLE PERFORMANCE: S2S LEAD TIMES

DLWP control A

DLWP ensemble -

ECMWF ensemble -

Persistence -
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Anomaly correlation coefficient of the ensemble mean

Week 3 (days 15-21) Week 4 (days 21-28)

Weeks 5-6 (days 29-42)

* - * *
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Anomaly correlation Anomaly correlation
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Anomaly correlation

Persistence is computed as the 1- or 2-week-averaged anomaly just prior to the initialization

Black bar: 95% confidence interval. Black dots: best and worst forecast.
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PROBABLISTIC SCORES OF ENSEMBLE FORECASTS

Verification

!

« Continuous ranked probability score ,

(CRPS) CRPS(P,x, )=
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CRPS: DLWP vs CURRENT ECMWEF S2S ENSEMBLE
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X
» Global, annual average S0 -
. DLWP & ECMWF tied in e S
week 4 and weeks 5-6 é I 9
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NEAR SURFACE PREDICTIONS WITHOUT PLANETARY BOUNDARY LAYER
PARAMETERIZATION

¢ 2-m temperature
« 2-day forecast

e |nitialized March 11,
2018 at 00 UTC A

e 2 paired sites

e« Amazon & ocean

e Australia & ocean
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2-M TEMPERATURE FORECASTS
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« Little temperature variation over oceans (land-sea mask)

« Larger diurnal variations over Australia than the Amazon (total column water

vapor)
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PARAMETERIZATION OF CLOUD AND PRECIPITATION PROCESSES IN NWP
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6 variables

Water vapor
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Cloud ice

< Praci, Psaci, Psaut
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U-NET DIAGNOSIS OF PRECIPITATION

Valid: 2018-01-04 12:00 Z

. Serived orecioitati
« Same 6 variables as erivec precipitation

prognostically forecast
in DLWP model

e But precipitation is
diagnosed from the
ERAS analysis

e Can be usedto
diagnose precipitation
in DLWP forecasts
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CONCLUSIONS

 DLWP has the potential to revolutionize weather forecasting, echoing of the impact
produced by the introduction of NWP in the 1950’s

e Data-driven Al-based weather prediction has been enabled by advances in
algorithms and hardware.
« Can learn dynamics and physical parameterizations at the same time.
 The speed of DLWP allows use of much larger “ensembles” of near-twin forecasts.
» Large well-calibrated ensemble would
« Better define the probable distribution of future atmospheric states

« Better capture extreme events.

» 1-week forecast stepped forward with 12-hr time step (and 6-hr resolution)
requires just 1/10 of a second on one Nvidia V100 GPU
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CLOUD AND PRECIPITATION PROCESSES: UNDERLYING PHYSICS
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Narrow cloud spectra
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from Dudhia, Overview of WRF Physics
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