

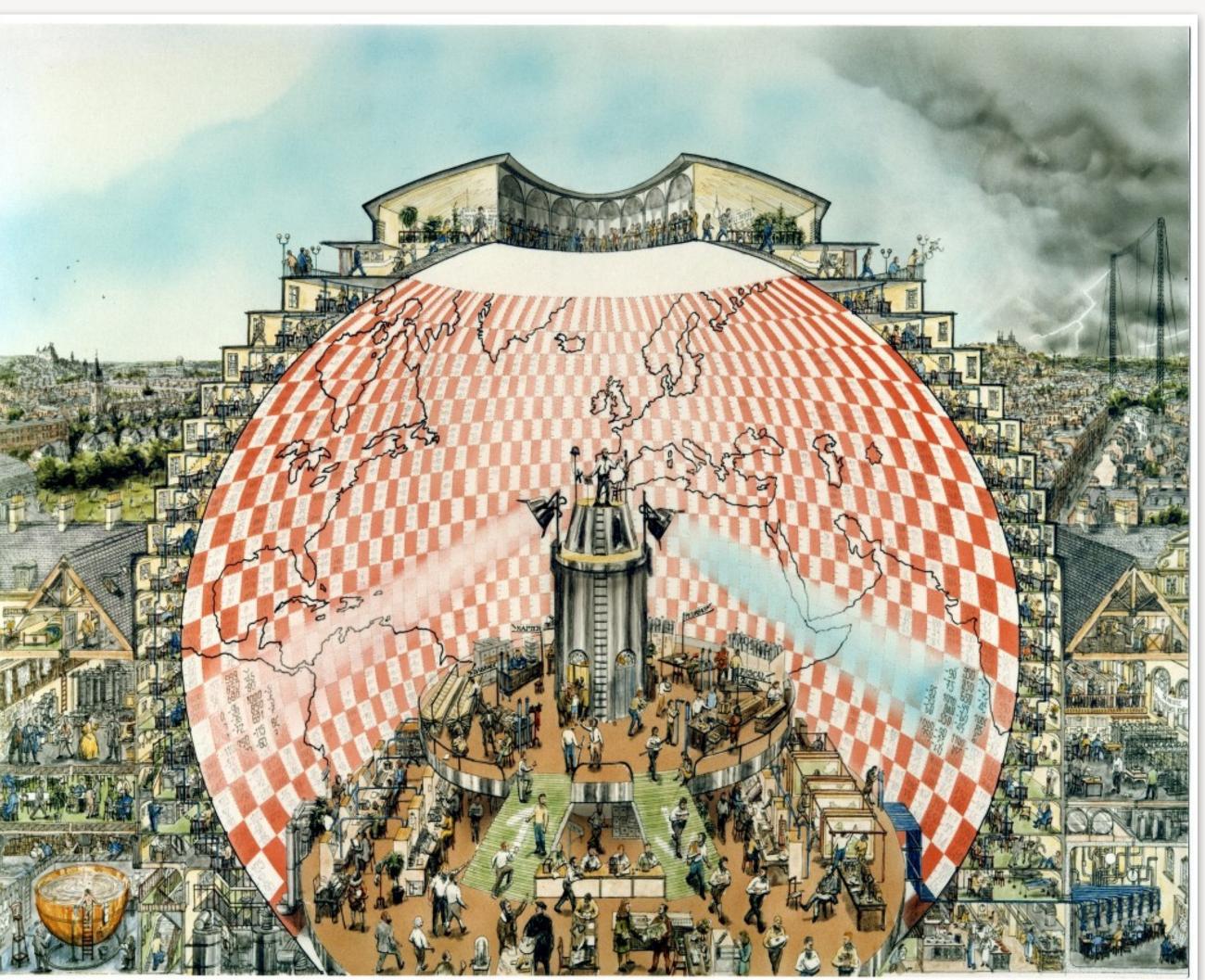
CAN DEEP LEARNING REPLACE CURRENT NUMERICAL WEATHER PREDICTION MODELS?

DALE DURRAN, JONATHAN WEYN, NATHANIEL CRESSWELL-CLAY, RICH CARUANA **OCTOBER 8, 2021**

A VISION OF NUMERICAL WEATHER PREDICTION (NWP)

"Imagine a large hall like a theatre... the walls of this chamber are painted to form a map of the globe.... A myriad computers are at work upon the weather of the part of the map where each sits, but each computer attends only to one equation or part of an equation."

-Lewis Fry Richardson, Weather Prediction by Numerical Process, 1922



"Weather Forecasting Factory" by Stephen Conlin, 1986

MADE PRACTICAL BY ADVANCEMENTS IN COMPUTING AND NUMERICS

- Jule Charney and John Von Neumann led the first numerical weather prediction experiment in 1950
- They integrated the barotropic vorticity equation on 500-hPa surface

$$\frac{\partial \nabla^2 \psi}{\partial t} = \frac{1}{a^2} \left[\frac{\partial \psi}{\partial \mu} \frac{\partial \nabla^2 \psi}{\partial \lambda} - \frac{\partial \psi}{\partial \lambda} \frac{\partial \nabla^2 \psi}{\partial \mu} \right]$$

• 24-hour forecast took about 24 hours to compute on ENIAC computer

 $2\Omega \, \partial \psi$ $\overline{a^2} \overline{\partial \lambda}$



FUNDAMENTAL PHYSICS AND NWP MODELS?

- Dynamical core: equations for conservation of mass, energy and momentum ...
 - Inviscid motions and wave propagation
- Operational Models Rely on Parameterizations
 - Clouds and precipitation
 - Influence of the Earth's surface (surface temperatures)
 - Heat transfer by electromagnetic radiation
- Parameterizations
 - Have a major impact on forecast skill
 - Are tested empirically

• Its numerical approximation can be evaluated for order of accuracy, stability, ...

AI AND NWP

- Parameterizations are empirical and major limitations in the accuracy of NWP Many groups are trying to improve parameterizations using AI
- State-of-the-art NWP models require enormous computer resources for each forecast
- Completely replacing NWP with Deep Learning Weather Prediction (DLWP) may • Reduce the time required for each forecast by orders of magnitude

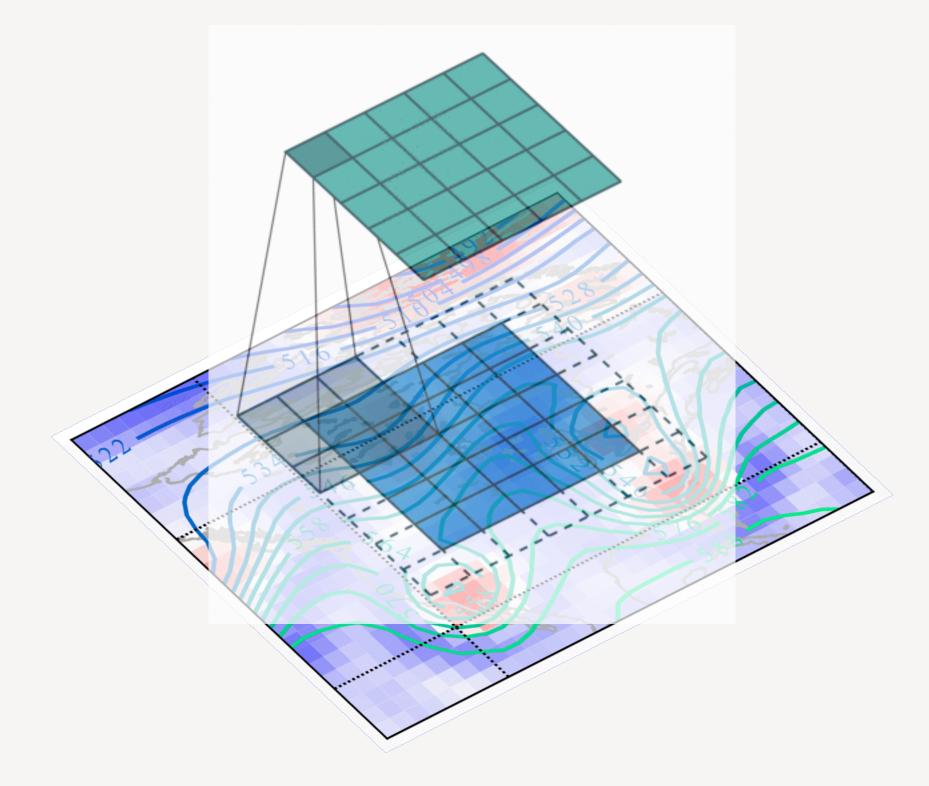
 - Address uncertainty by
 - Allowing a large number O(1000) of simulations of likely future states (ensembles)
 - Giving better probabilistic forecasts
 - Capturing extreme events

OUR DLWP STRATEGY

- Like NWP, we create forecasts by recursively stepping forward in time
- We will use far fewer variables to characterize the atmospheric state
- We use just a few variables and coarse horizontal resolution because
 - It's a starting point for DLWP
 - Numerical resolution in NWP may be greater than the important degrees of freedom in a given atmospheric state.
 - For convergence: $\Delta z < 200 \text{ m if } \Delta x < 15 \text{ km}$ (Skamarock et al., 2019)

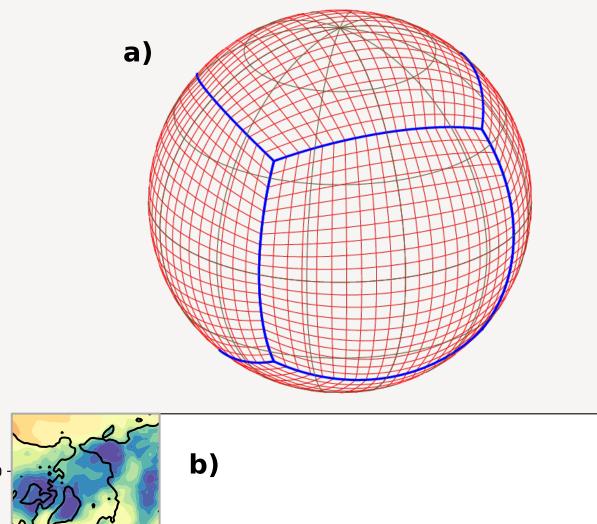
DLWP BUILDING BLOCKS: CONVOLUTIONAL NEURAL NETWORKS

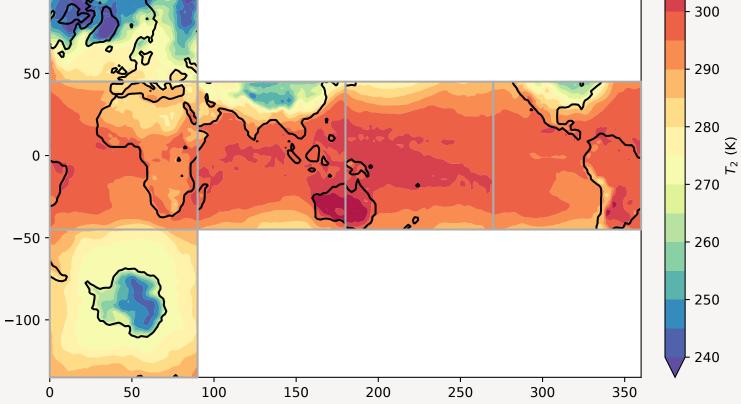
- Same filter coefficients multiply the input data at every point
 - 3x3 horizontal stencil
 - 3rd dimension is number of fields
 - Output is single number
- Learn many sets of these filter coefficients (64/128/256)

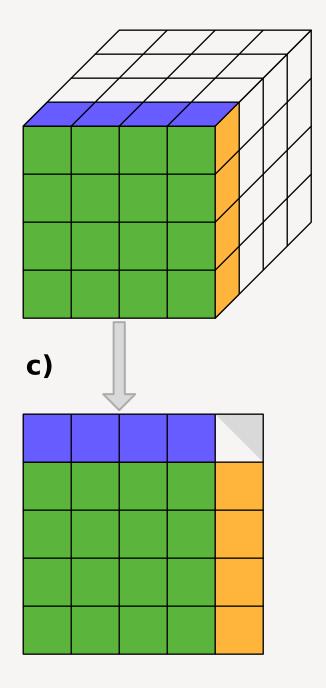


DLWP BUILDING BLOCKS: CUBED SPHERE GRID

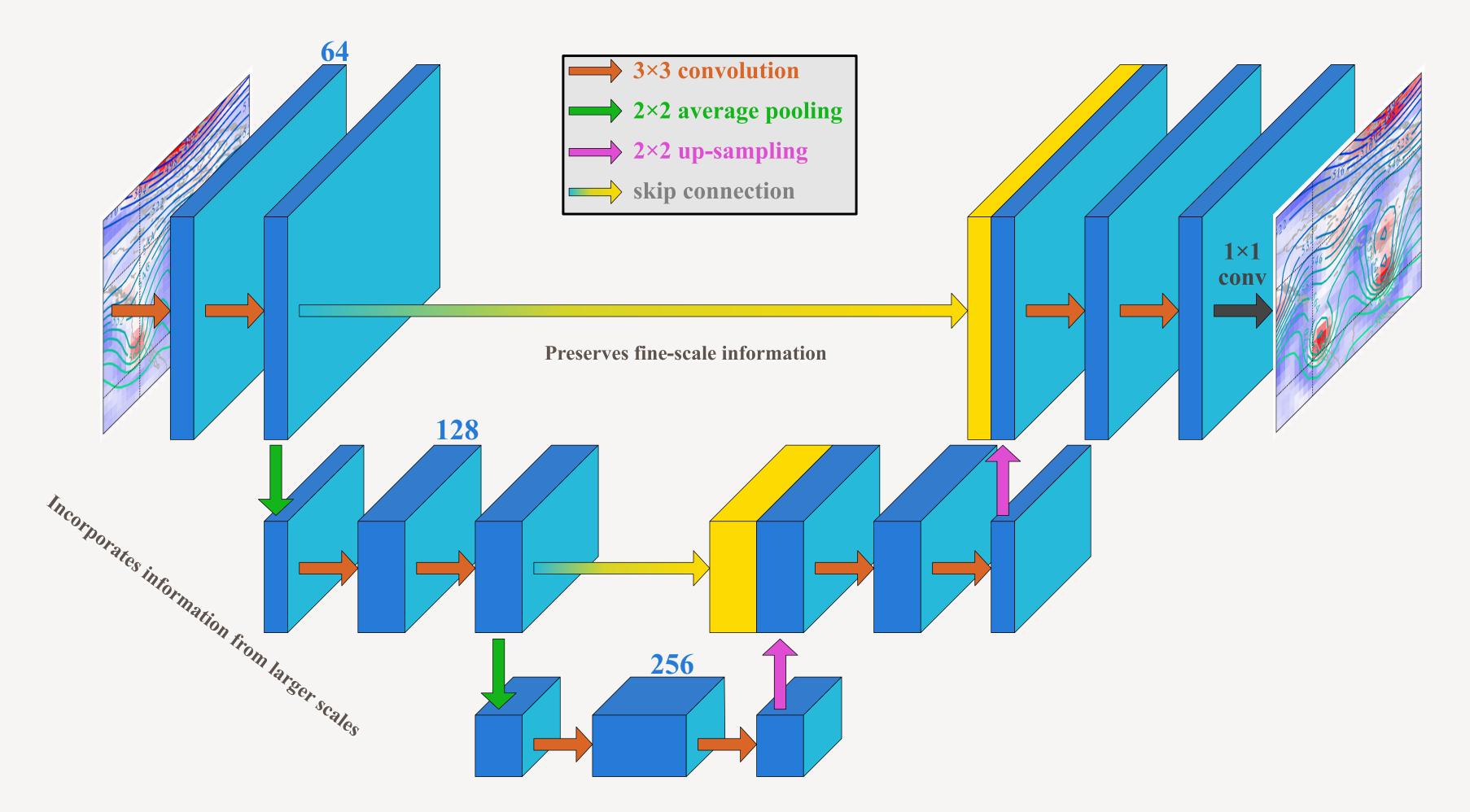
- Convenient for 3x3 spatial stencil
- Train identical filters for
 - 4 equatorial-centered faces
 - 2 polar faces
 - sense of rotation reversed between polar faces







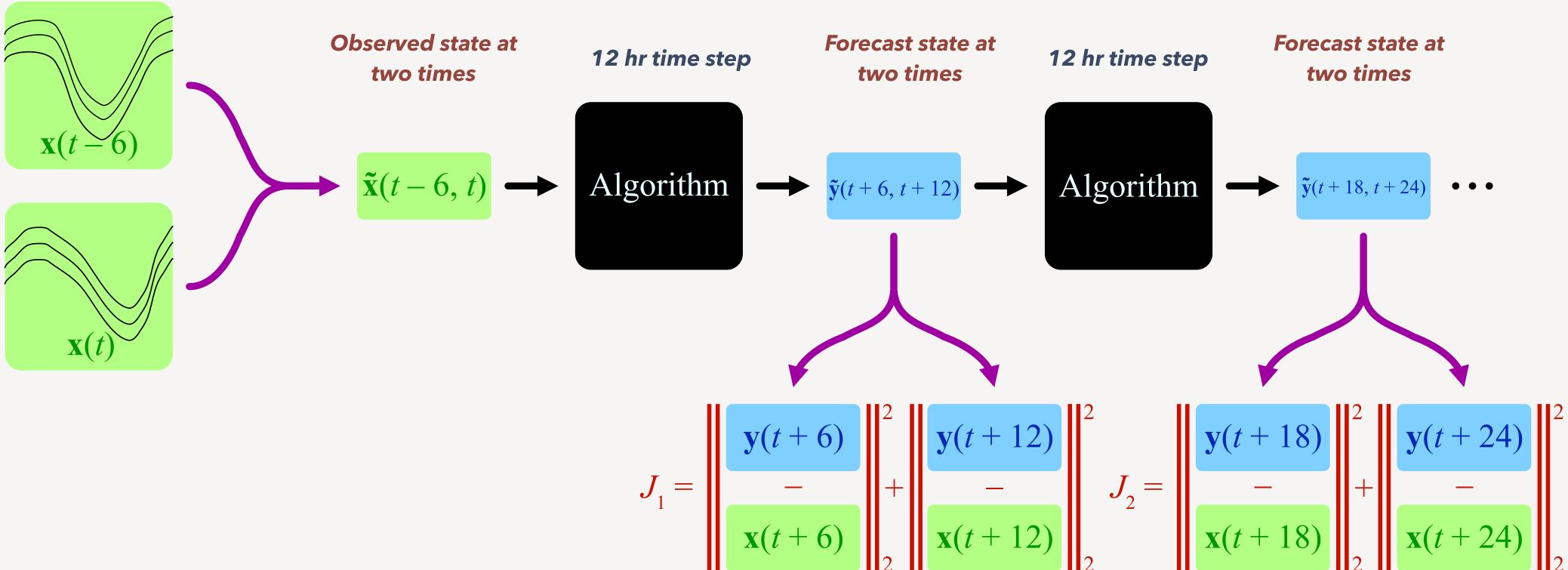
DLWP BUILDING BLOCKS: U-NET ARCHITECTURE



UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021

DURRAN

TIME STEPPING



UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021

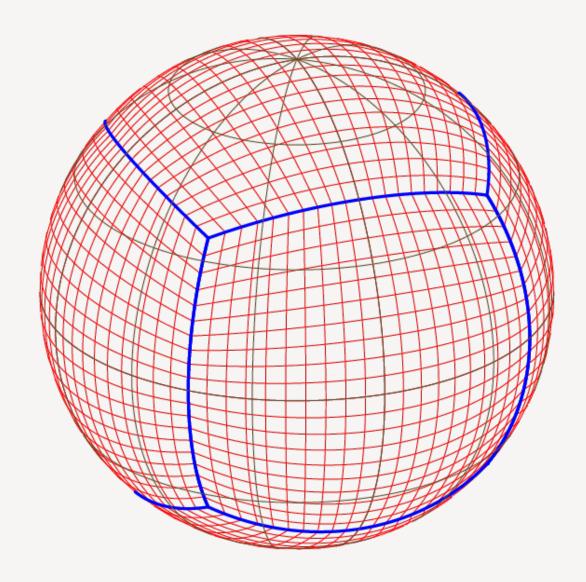
DURRAN

DLWP BUILDING BLOCKS: DATA

- ERA5: observations blended with NWP model output
 - Retrieved on 1° lat-lon grid
 - Re-gridded to cubed sphere (Ullrich & Taylor, 2015)
- Model *training*: 1979-2012
 - ~100,000 samples
- Model validation set: 2013-2016
- *Test* set: final performance evaluation: 2017-2018
 - twice weekly: 208 cases

2D FIELDS ON SPHERICAL SHELLS

- 6 or 7 prognostic variables
 - 1000-hPa height
 - 500-hPa height
 - 300-700-hPa thickness
 - 2-m temperature
 - 850-hPa temperature
 - Total column water vapor
 - 250-hPa height
- 3 prescribed fields
 - TOA incoming solar radiation
 - land-sea mask
 - topographic height

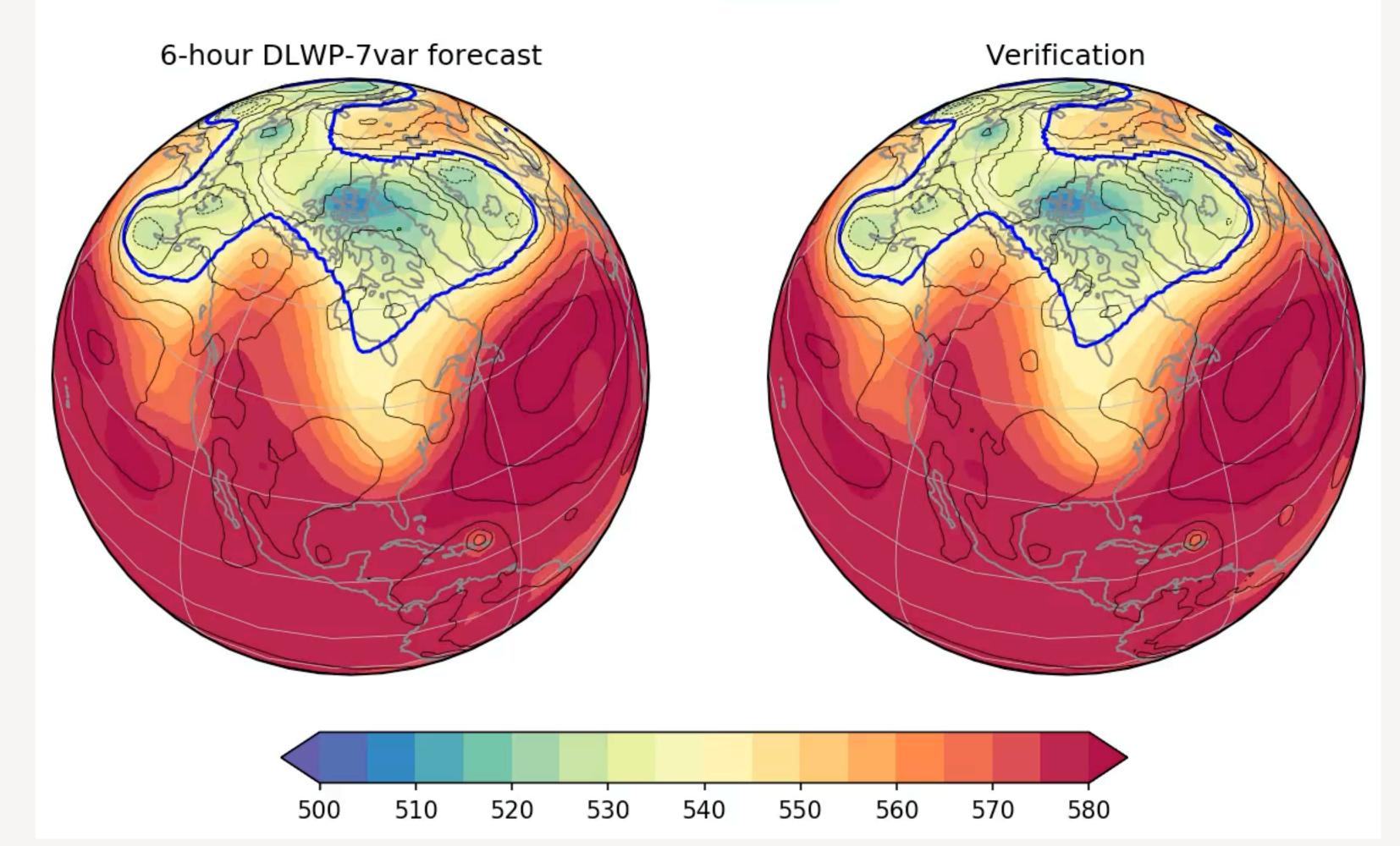


- Resolution
 - 64x64 points on each face of the cube sphere (figure is 20x20)
 - ~1.4° x 1.4° at the equator

12

HURRICANES IRMA & JOSE

- 4-day single model forecast
- 1.4° x 1.4° resolution
- 7 prognostic variables
- Showing
 - 1000-hPa height (black)
 - 500-hPa height (color fill)



DLWP-NWP COMPARISON

Extended-Range Forecasting

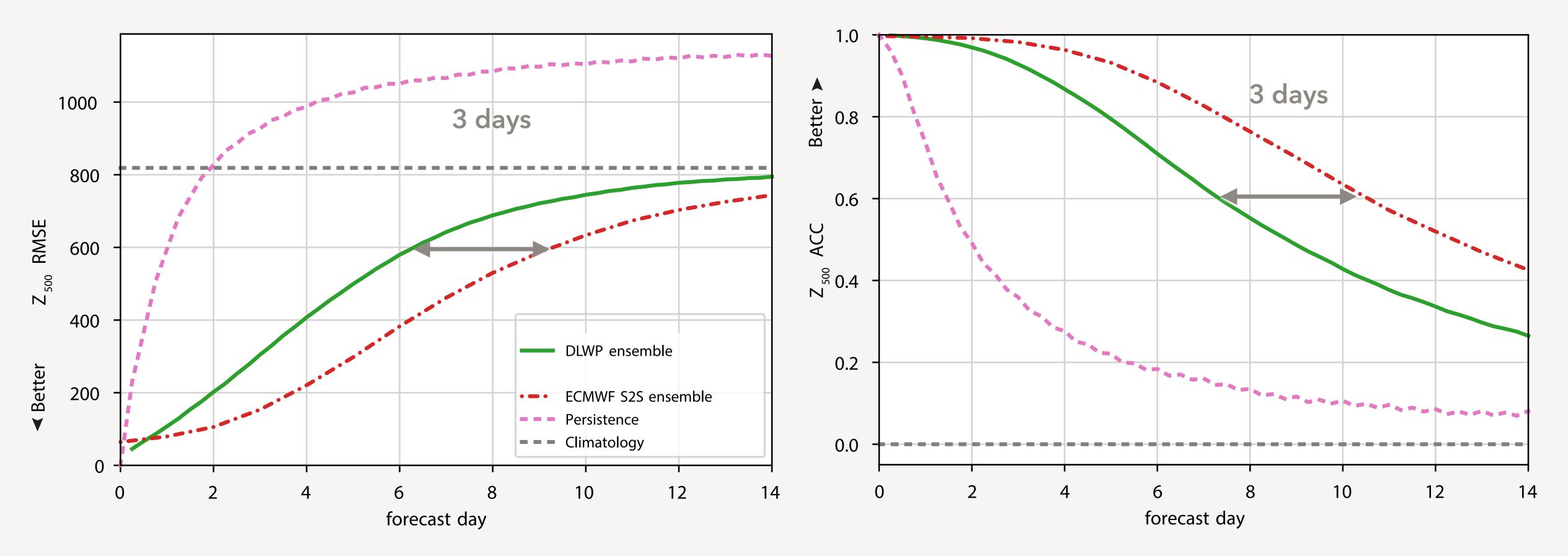
	DLWP	ECMWF	
Atmospheric fields	6 2-D variables	9 prognostic 3-D variables; 91 vertical level	
Horizontal resolution	150 km	18 km (36 km after day 15)	
Atmospheric physics	3 prescribed inputs	Many physical parameterizations	
Coupled models	None	Ocean, wave, and sea ice models	
Initial condition perturbations	10 (ERA5 uncertainty)	50 (SVD/4DVAR)	
Model perturbations	Perturbed CNN weights	Stochastic physics	
Ensemble members	320 (+control)	50 (+control)	

Comparison of Key Attributes of Our DLWP Ensemble and Those of the State-of-the-Art ECMWF Ensemble for

UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021

14

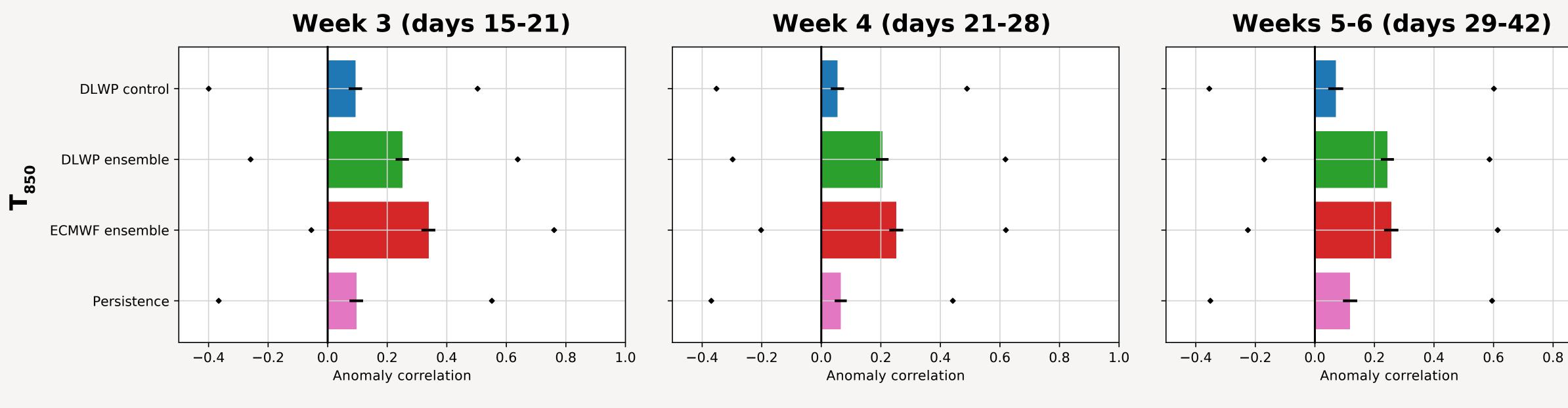
ENSEMBLE PERFORMANCE: DETERMINISTIC LEAD TIMES



DLWP grand ensemble: 32 stochastically perturbed models x 10 initial conditions = 320 members

DURRAN

ENSEMBLE PERFORMANCE: S2S LEAD TIMES Anomaly correlation skill of the ensemble mean Anomaly correlation coefficient of the ensemble mean

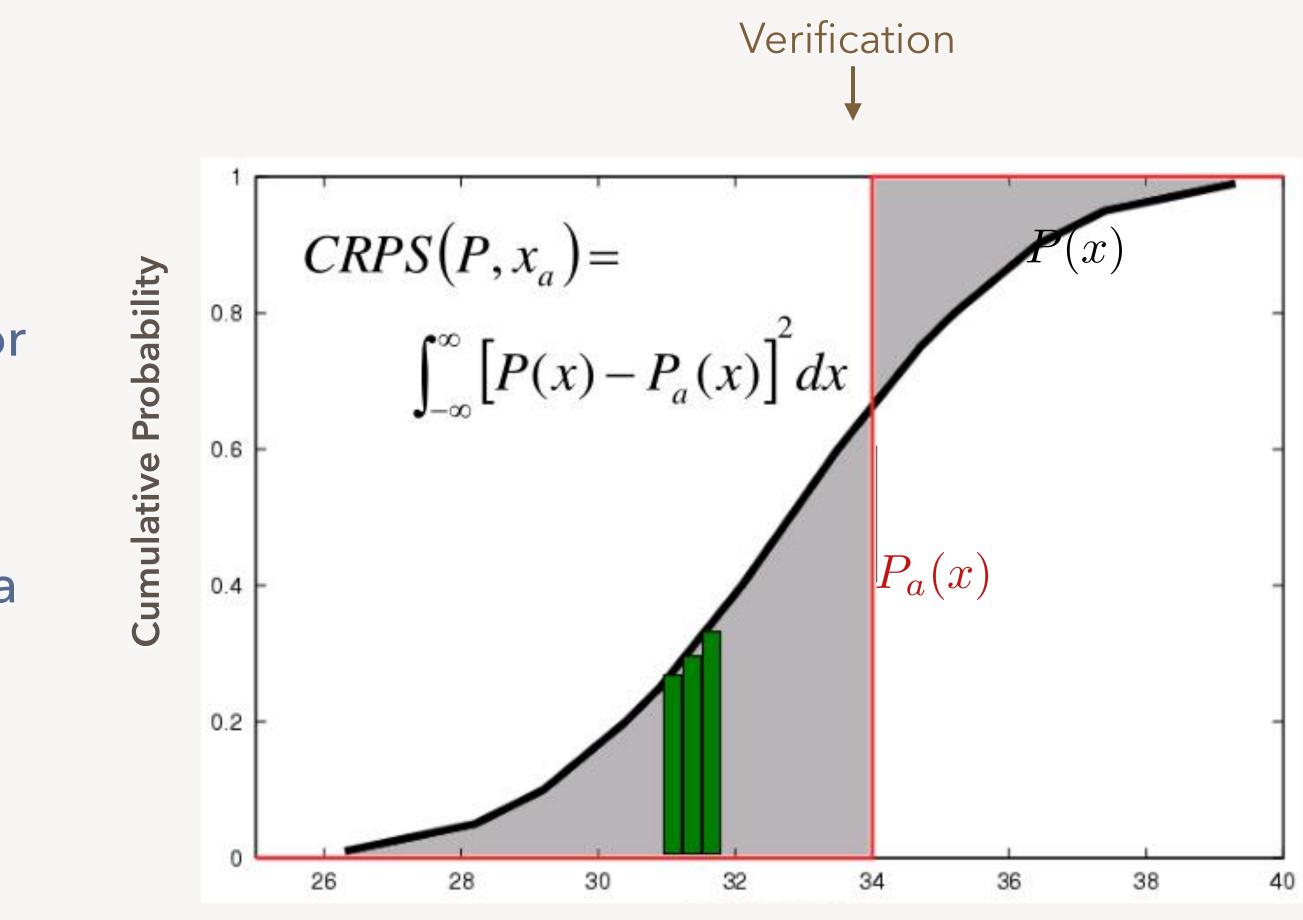


Persistence is computed as the 1- or 2-week-averaged anomaly just prior to the initialization anomaly forecasts is nearly on par with that of the Black bar: 95% confidence interval. Black dots: best and worst forecast. State-of-the-art ECMWF ensemble.

DURRAN

PROBABLISTIC SCORES OF ENSEMBLE FORECASTS

- Continuous ranked probability score (CRPS)
 - Evaluates the integrated square error between the forecast and observed cumulative probability distribution
 - Reduces to mean absolute error for a deterministic forecast
- Dimensional score, lower is better.

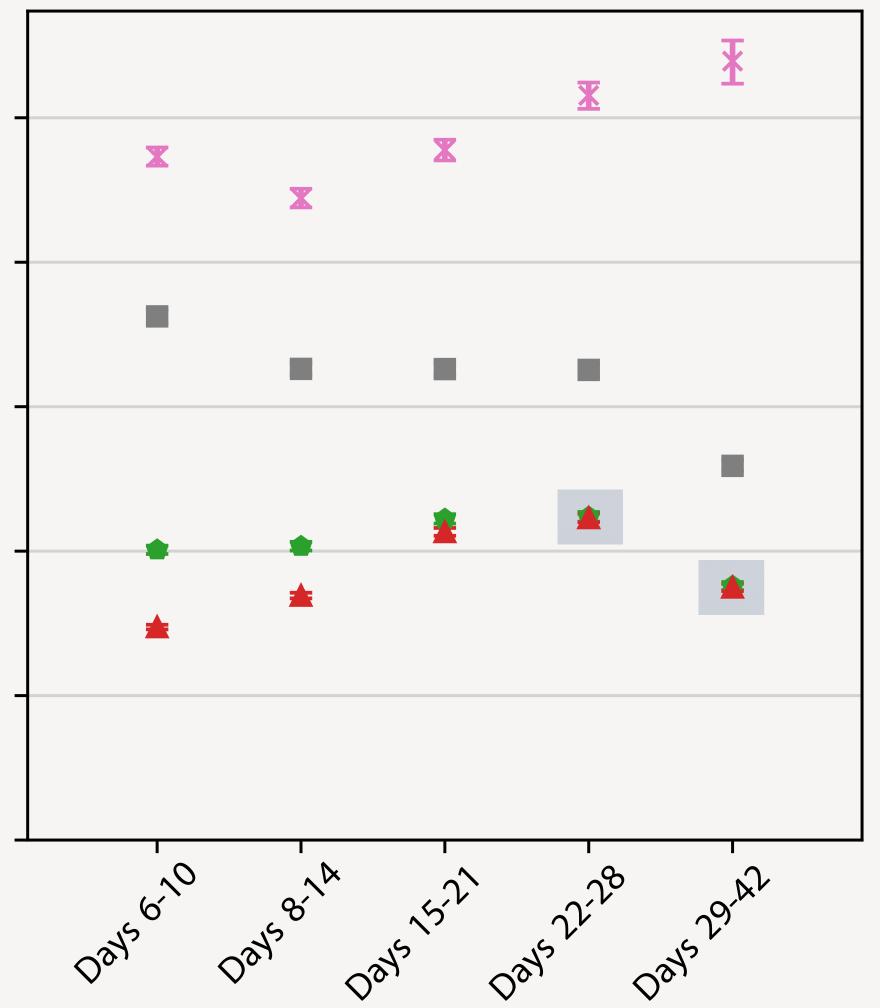


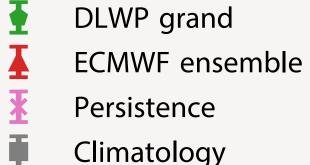
CRPS: DLWP vs Current ECMWF S2S Ensemble

		2.5
•	Global, annual average	2.0
•	DLWP & ECMWF tied in week 4 and weeks 5-6	(X) SGRPS T.5
•	Both ensembles beat persistence and climatology	⁰²⁰ 1.0
		▲ Better

0.0

UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021

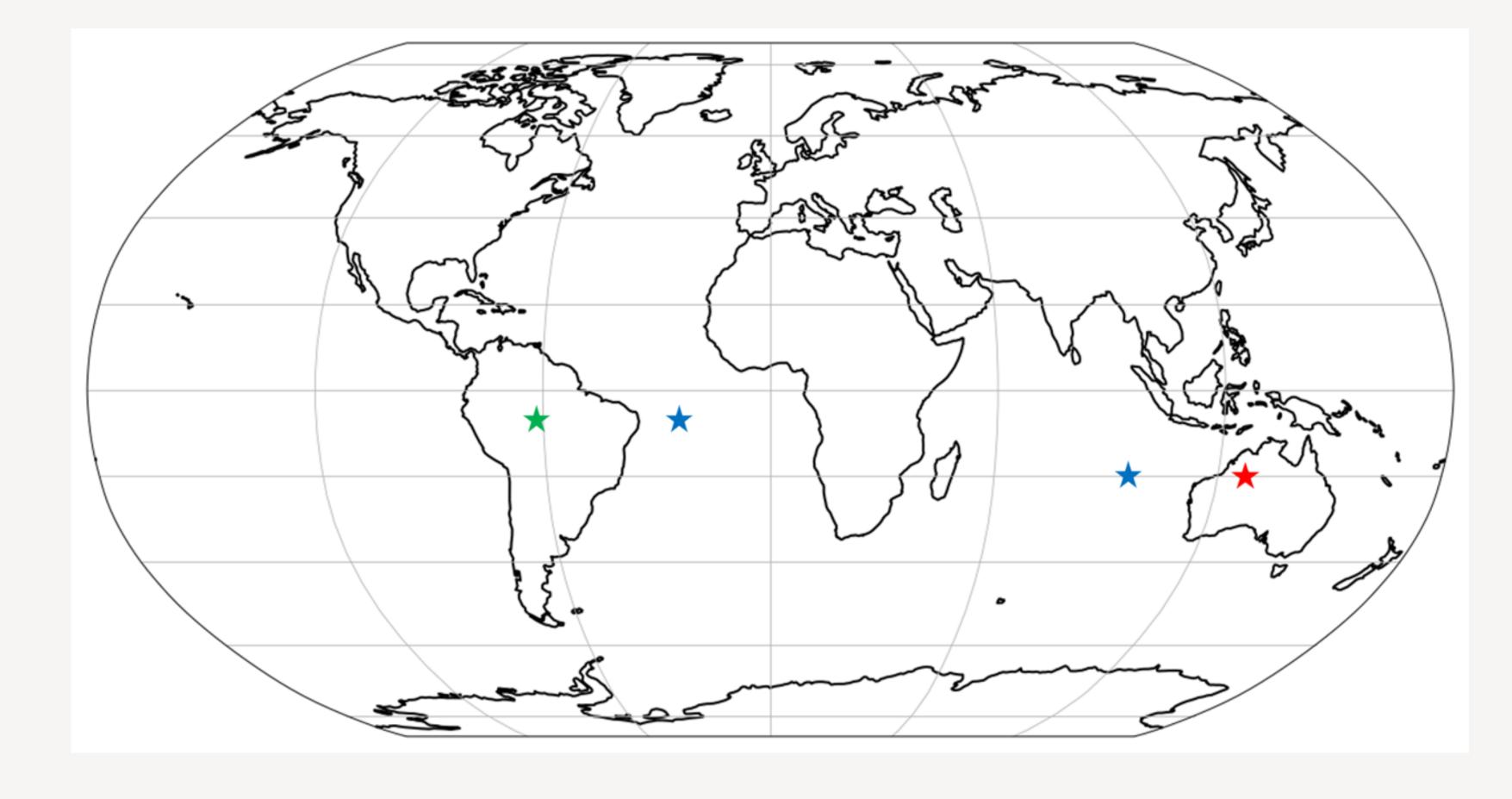




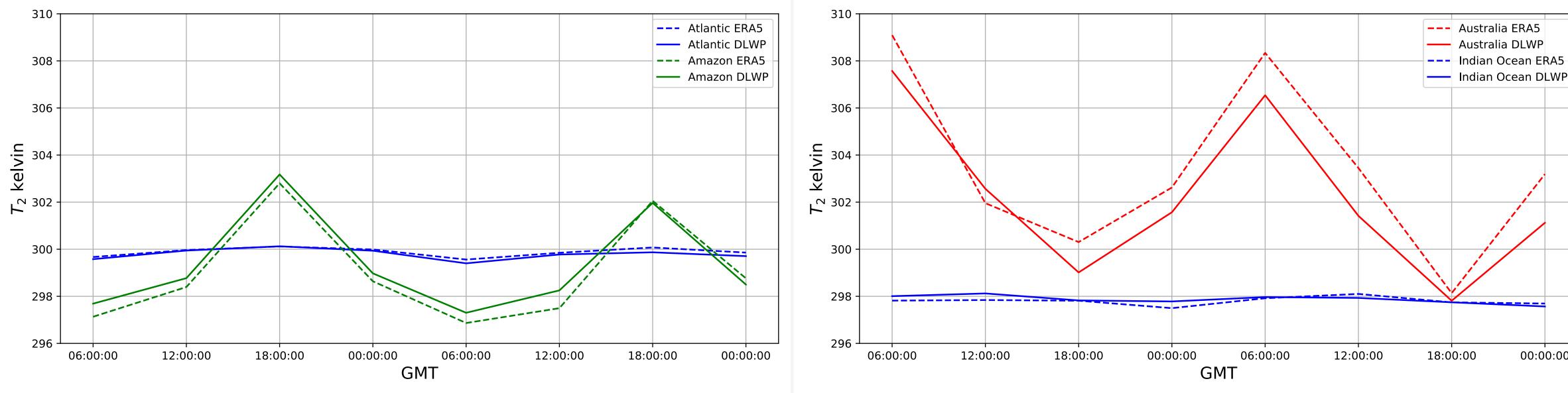
Climatology

NEAR SURFACE PREDICTIONS WITHOUT PLANETARY BOUNDARY LAYER PARAMETERIZATION

- 2-m temperature
- 2-day forecast
- Initialized March 11, 2018 at 00 UTC
- 2 paired sites
 - Amazon & ocean
 - Australia & ocean



2-M TEMPERATURE FORECASTS

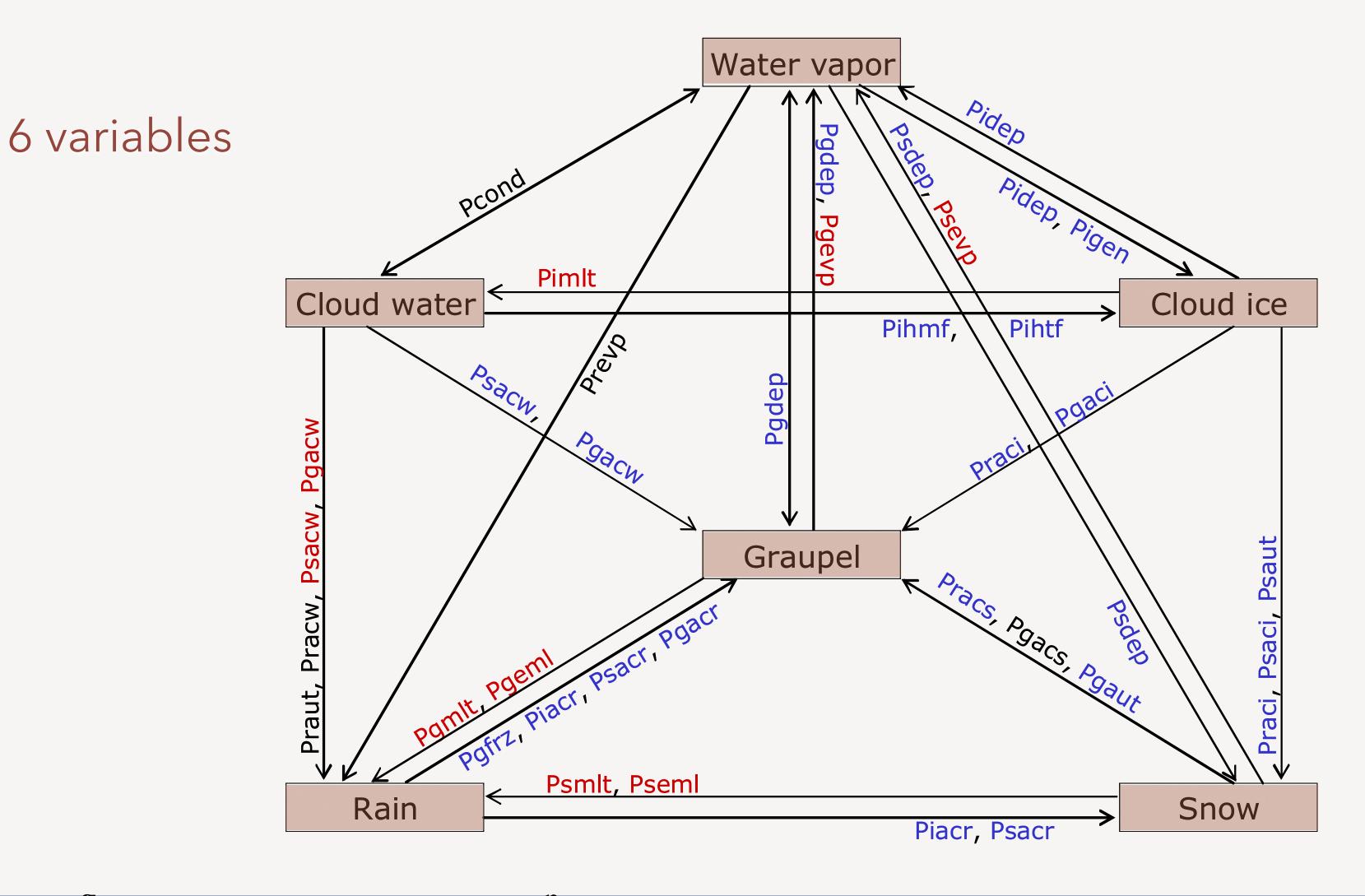


- Little temperature variation over oceans (land-sea mask)
- vapor)

DURRAN

Larger diurnal variations over Australia than the Amazon (total column water

PARAMETERIZATION OF CLOUD AND PRECIPITATION PROCESSES IN NWP



DURRAN

g

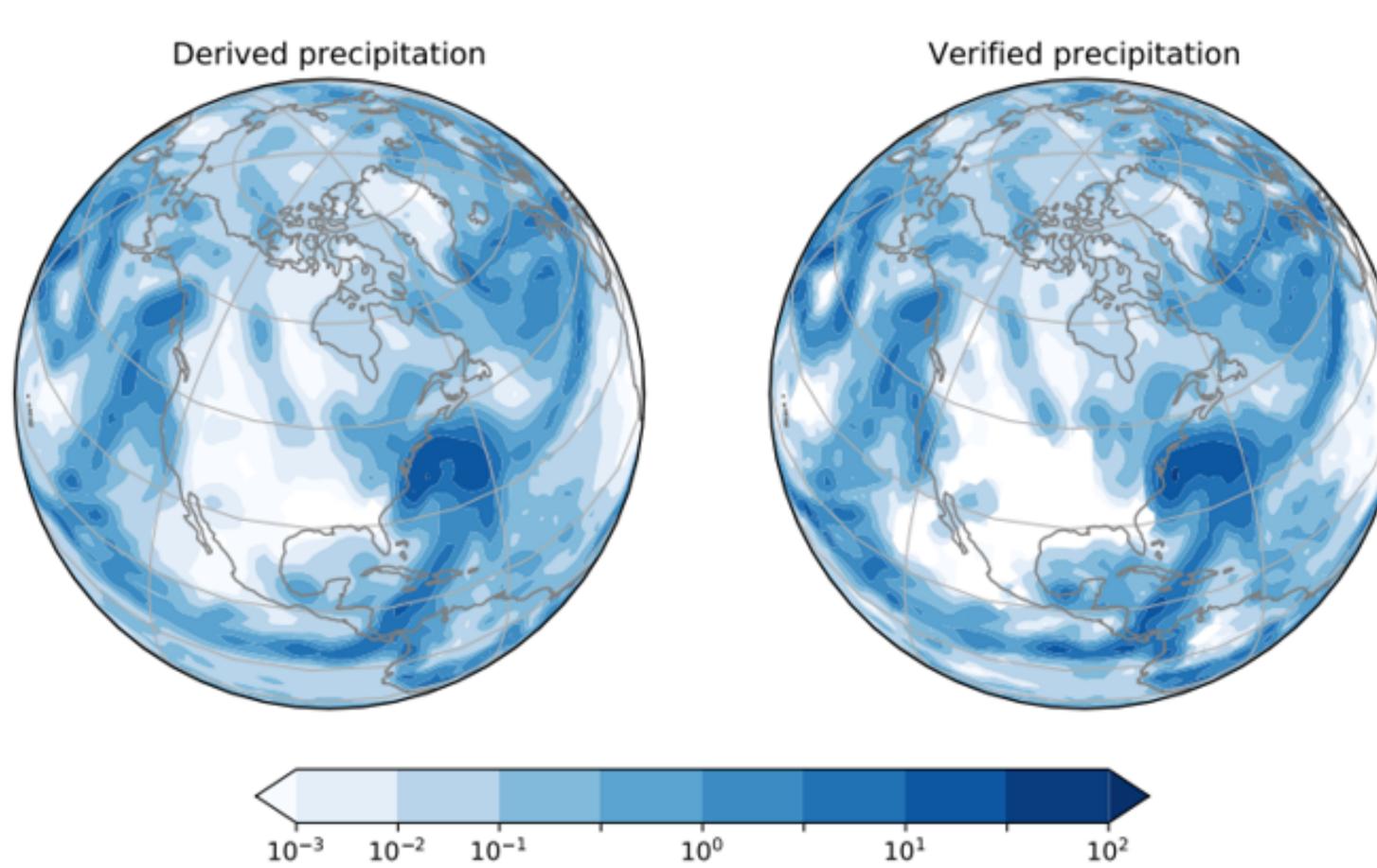
UNIVERSITY OF TSUKUBA, CENTER FOR COMPUTATIONAL SCIENCES: INTERNATIONAL SYMPOSIUM 2021 p

Hong and Lim, 2006

p

U-NET DIAGNOSIS OF PRECIPITATION

- Same 6 variables as prognostically forecast in DLWP model
- But precipitation is diagnosed from the **ERA5** analysis
- Can be used to diagnose precipitation in DLWP forecasts



Valid: 2018-01-04 12:00 Z

CONCLUSIONS

- DLWP has the potential to revolutionize weather forecasting, echoing of the impact produced by the introduction of NWP in the 1950's
 - Data-driven Al-based weather prediction has been enabled by advances in algorithms and hardware.
- Can learn dynamics and physical parameterizations at the same time.
- The speed of DLWP allows use of much larger "ensembles" of near-twin forecasts. Large well-calibrated ensemble would
 - - Better define the probable distribution of future atmospheric states
 - Better capture extreme events.
 - 1-week forecast stepped forward with 12-hr time step (and 6-hr resolution) requires just 1/10 of a second on one Nvidia V100 GPU

23

FURTHER READING:

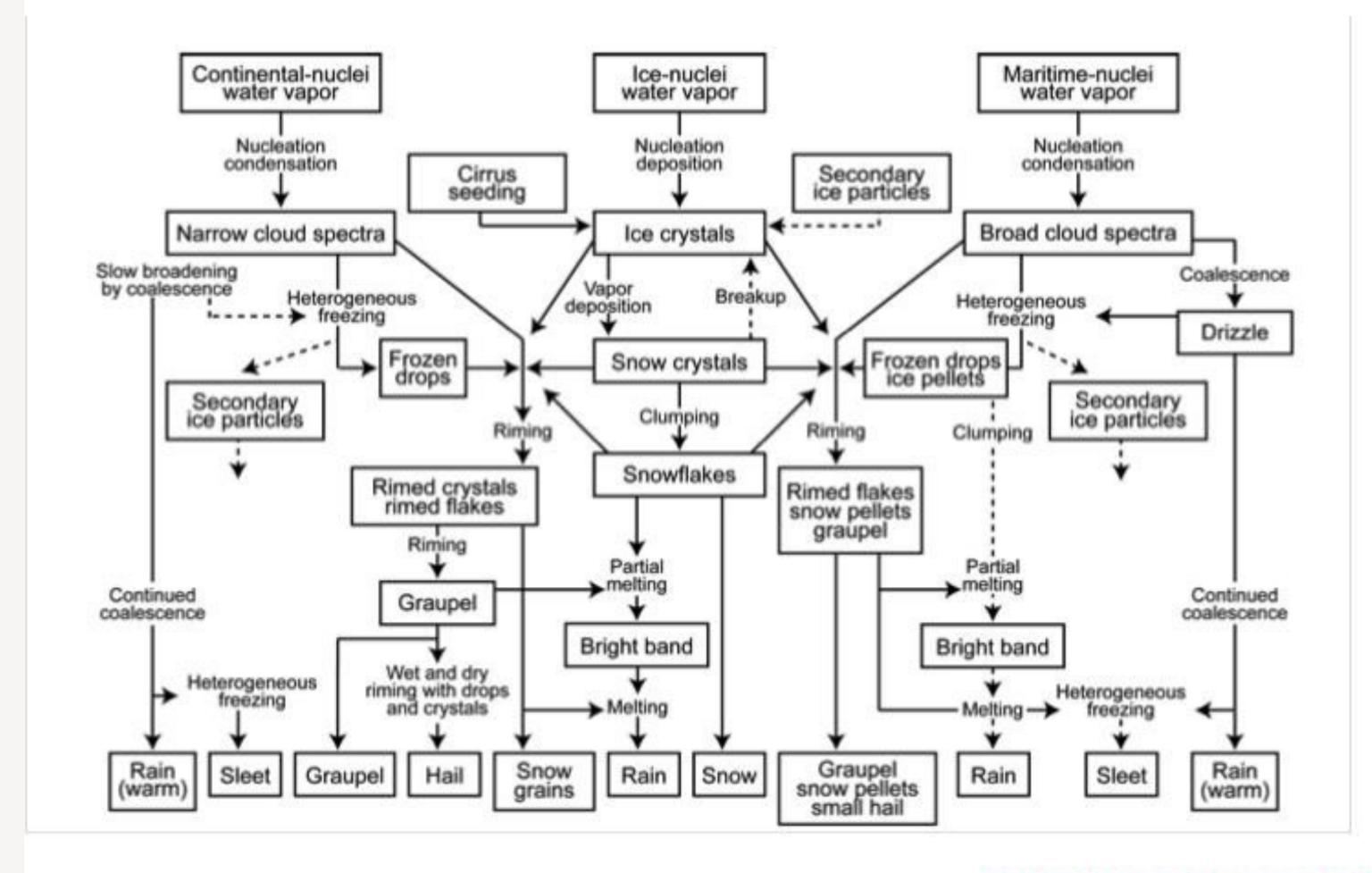
Weyn, J.A., Durran, D. R., Caruana, R., and Cresswell-Clay, N. (2021). Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models. *J. Adv. Modeling Earth Sys*, 13, e2021MS002502 <u>https://doi.org/10.1029/2021MS002502</u>

Weyn, J. A., Durran, D. R., & Caruana, R. (2020). Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. *J. Adv. Modeling Earth Sys*, 12, e2020MS002109 https://doi/10.1029/2020MS002109

Weyn, J. A., Durran, D. R., & Caruana, R. (2019). Can machines learn to predict weather? Using deep learning to predict 500 hPa geopotential height from historical weather data. J. Adv. Modeling Earth Sys, 11, 2680-2693. <u>https://doi/10.1029/2019MS001705</u>

DURRAN

CLOUD AND PRECIPITATION PROCESSES: UNDERLYING PHYSICS



DURRAN

from Dudhia, Overview of WRF Physics

