高精度輻射輸送計算と 機械学習との融合による 近赤外光トモグラフィ -現状とこれから-

筑波大学 計算科学研究センター

矢島 秀伸

グループメンバー: 梅村雅之、安部牧人、高水裕一、佐藤大樹 星詳子(浜松医科大)、三村徹也(浜松フォトニクス)

計算メディカルサイエンスワークショップ 2021/9/6

生体光イメージングとは?

波長700-1000ナノメートルの近赤外線を 人体へ照射し、透過もしくは戻ってきた 光を検出して生体内を診断する手法

cerebrospinal fluid (CSF) gray matter (cortex) white matter

Hillman (2007)より

Human Brain ただし、画像再構成 には光の伝播について 理論モデルが必要 大規模な並列計算により 可能

研究の構想(生体光イメージング技術の開拓)

①革新的技術開発

z=6.2	<u>大規模シミュレーション</u> (高精度輻射輸送計算、 ビッグデータ)	
	<u>最先端技術</u> (Wavelet法、GPU/FPGA 機械学習/深層学習)	
	<u>研究環境</u> (スーパーコンピュータCygnus、 専有PCクラスタ)	

②巨大データバンクの創設

国際的に開かれた医学・天文学 の構造解析拠点へ

国際ひかりイメージング データバンク

保存する計算データ規模

輻射強度 I: 各場所、各時刻で角度bin数分の情報 空間グリッド数: (100)^3、角度グリッド数: 3000、スナップショット数: 8000

3次元情報をフルに全て保存する場合 8 byte x 10⁶ x 3000 x 8000 = 192 TB / 1パラメータ

表面情報(2次元)のみ、時間保存も1/10にする 8 byte x 10⁴ x 3000 x 800 = 192 GB / 1パラメータ

=>1PBストレージで~5000パラメータ保存可能

JST創発的研究支援事業 (PI:矢島秀伸)の予算にて購入予定 「宇宙物理輻射輸送計算で拓く新しい生体医用光学」 (2021年度-2027年度)

既存の方法との比較

真空に斜めビーム照射 経路上(y=2cm)に吸収体を置く

Short法(有限要素法)では数値的な 拡散により、ビームが広がる その結果吸収体を人工的に回り込 んでいる

散乱がある場合

散乱係数 1.0 cm⁻¹ を一様にセット 経路上に大きさをもつ吸収体

人工的な拡散よりも、物理的な拡 散が支配的になり、スキーム間の 差が小さくなっている 吸収体背面での光の散乱の回り込 みはTRINITYの法が小さい

計測平面:ファントム底面から、35 mm, 45 mm, 55 mm

生体模擬物質(ポリウレタン製)に 対するペルス照射実験との比較

ジュラコン(ポリオキシメチレン)
 40 X 40 X 180 mm
 μ_a = 0.019/mm, μ_s' = 0.86/mm (800 nm), g = unknown, n =1.48

Droportion of releast one			
Properties of phantom			
Box size	$4.0~\mathrm{cm}$		
$\mu_{ extbf{a}}$	$0.22~\mathrm{cm}^{-1}$		
$\mu_{ m s}$	$22.6~{\rm cm}^{-1}$		
g	0.62		
n	1.51		

 $\clubsuit^{D8} \clubsuit^{S8} \clubsuit^{D7} \clubsuit^{S7}$

光パルス数値実験

<u>脳・甲状腺計算に向けて</u>

<u>計算高速化(Wavelet法+GPU化)</u>

Abe et al. in prep.

Wavelet法 角度分解能を自動的かつ局所的に最適化 (計算メモリを激減、計算の高速化) level 0 level 1 level 2 $I^{(3)}(\vec{n}) = \lambda_k^{(0)} \varphi_k^{(0)}(\vec{n}) + \sum_{j=0m}^3 \sum_{m} \gamma_{k,m}^{(j)} \psi_{k,m}^{(j)}(\vec{n})$ 精度を保ったまま、計算メモリを大幅に

減らす事に成功

計算高速化(Wavelet法+GPU化)

Abe et al. in prep.

- GPU版TRINITYコードも開発済み
- CPUコードに比べて~6-7倍程度の高速化に成功
 - ボトルネックは通信部分 (40%程度を占める)

1 GPU/CPUあたりの計算規模を32³ meshに固定、300 stepの計算時間を比較

CPU (@TRINITY): Intel Xeon Gold 6140 (18 core)

10⁶

Nm

機械学習による画像再構成

(Takamizu et al. in prep.)

Google TensorFlowを用いて機械学習の モデルを作成(**LSTM**法)

複数かつ異なる異常部位に関しても高精度に 判定出来るようになった

光音響トモグラフィ (PAT:Photoacoustic Tomography)

近赤外光と音波を組み合わせた診断法

- *光イメージングのみよりもさらに深部を 調べられる
- *血管・血流の画像化に強い

(脳虚血、薬剤輸送) *条件によっては細胞レベルの可視化

光音響波を用いた人の手 の血管の画像 Canon(http://www.canon.com/tech nology/future/index.html)

修十論文予定

目的:これら輻射輸送、光音響波の式を正確に解いたPATモデル を作成する。脳内の虚血・出血の診断を目指す。

ヒト頭部を想定した光音響波伝搬シミュレーション

<u>ヒト頭部光音響波シミュレーション</u>

妥当な時間で音波が 表面に到着 頭蓋骨での反射により 複数ピークが見られる

光音響波に対する機械学習

ヒト頭部を想定して、光源を1箇所、血管を1本配置して 光の伝搬・吸収のシミュレーション+光音響波伝搬のシミュレーション

- シミュレーションから得られた9箇所の検出位置での光音響波の波形を使用して 機械学習を行い、血管が複数本ある場合の位置や大きさを判断する。
- 光源位置と光音響波検出位置は片側のみ 光源位置:4箇所 光音響波検出位置:9箇所
- 血管の配置パターン数は
 半径:0.25cm → 28パターン
 半径:0.5cm → 28パターン
 半径:0.75cm → 15パターン

機械学習による血管の同定

判定された位置に点数を付与し、各光源位置(4箇所)での判定結果を重ね合わせる。

白丸が血管の正しい位置。 血管が二本や三本ある時でも近しい位置もしくは、正確な位置を判定できている。 一方で、まだまだ近しい位置すら判定できていない場合もある。 様々な場合で正確な判定ができるように、精度を向上させていく必要がある。

まとめ

*輻射輸送計算コードTRINITYを開発し、ファントムで検証した *Wavelet法+GPU化によって10倍程度の高速化、低メモリ化 *光音響波の計算コードを開発した

*機械学習で簡単な状況では95%以上の精度で判定可能になった

今後

*甲状腺・脳などの複雑な部位への適用

* 光イメージング・光音響のお互いの長所・短所、組み合わせ の効果について定量評価

* FPGA化

*ビッグデータ処理について