Simulations of galaxy formation with radiative transfer and its application for near-infrared bio-imaging

Hidenobu Yajima (CCS, University of Tsukuba)

History of our Universe

Cosmic Dawn (t~3Gyr)/

z~15: First stars/First Galaxies (t~300Myr) z~1: Galaxy Clusters z~10: Cosmic Reionization (t~6Gyr) (t~500Myr) z<1: Our Solar system z~7: First Quasars z~3: Dusty galaxies (t~800Myr) (t~3Gyr) 13.8 Gyr

z~3: Passive galaxies

Theoretical astrophysics group

First billion years

36"×1.15") is beam correct it positions for agenta (dashed as used in the

Diversity in observed galaxies

Various radiative properties of high-redshift galaxies

Radiative processes

Simulations

Cosmological hydrodynamics simulations Gadget-3 (Springel+05; Johnson+13)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \rho \left[\frac{\partial v}{\partial t} + (v \cdot \nabla) v \right] &= -\nabla p + F_{\rm rad} + F_{\rm grav} \end{aligned}$$

$$\rho \left[\frac{\partial e}{\partial t} + (v \cdot \nabla) e \right] &= -p \nabla v + \Gamma - \Lambda \end{aligned}$$

Dark matter Star formation Feedback Chemistry

Multi-wavelength radiative transfer ART² (Li+08; Yajima+12)

$$\frac{\partial I}{c\partial t} + n \cdot \nabla I = -\alpha I + \epsilon + \oint \phi(\Omega', \Omega) I d\Omega'$$

Formation of first galaxy (Yajima et al. 2017, ApJ, 846, 30)

Zoom-in simulation $L_{box}=20Mpc$ $L_{zoom}\sim1Mpc$ $M_{halo}=10^{11}M_{sun}$

Blue (gas density)

Yellow (Metal-enriched gas)

250 kpc/h (comoving)

Star formation history

Radiative transfer calculations Surface brightness (z=10→6) Halo-11

Redshift evolution of flux

Time scale of the fluctuation

$$t \sim rac{\lambda R_{
m vir}}{V_{
m c}} \lesssim 10 \ {
m Myr}$$

Arata, **<u>Yajima</u>**, et al. (2019)

Lya surface brightness

Rapid change of radiative properties

Low-mass galaxies Massive galaxies Clustering $(M_{halo} < 10^{11} M_{sun})$ $(M_{halo} \sim 10^{11-12} M_{sun})$ $(M_{halo} \sim 10^{13} M_{sun})$ Infrared bright Infrared bright UV bright 15

Lya intensity map

We consider Lya cooling radiation under UVB (Stellar and AGN radiation are not included)

Metal enriched along filaments Filaments are bright at Lya line

Interdisciplinary science

Optical/NIR bio-imaging

Medical diagnosis using near-infrared light which is returned from a human body via scattering processes <u>This diagnostic method requires radiative</u> <u>transfer simulations</u>

No radiative exposure, Non-invasive, No contrast medium required, No side effect, Low-cost, high-time resolution So, OK for new-born babies and infants

cerebrospina fluid (CSF)

gray matt (cortex)

white matte Hillman (2007)

Human Brain

Diffuse Optical Tomography (DOT)

Numerical simulations of radiative transfer in a human body

Basic equation

$$\frac{\partial I}{c\partial t} + n \cdot \nabla I = -\alpha I + \oint \phi(\Omega', \Omega) I d\Omega'$$

- * Scheme: ART method (Yajima+2009)
- * Angle grids made by HEALPix
- * Parallelization: domain decomposition

HEALPix (Gorski et al. 2005)

21

Test calculation

Pulse injection test for polyurethane modeling biological tissues

S,照射;D,受光、最短SD間隔,8mm 計測平面:ファントム底面から、35mm,45 mm,55mm

From Prof. Hoshi

Simulation results

Simulation results

Spherical wavelet

Usual radiative transfer simulations take huge memory place (x,y,z), direction (theta, phi), time(~10) => ~ 1TB

By using spherical wavelet method, we reduce memory and accelerate the simulations

Formulation

$$S_{k}^{(J)}(\overrightarrow{n}) = \lambda_{k}^{(0)}\varphi_{k}^{(0)}(\overrightarrow{n}) + \sum_{j=0}^{J-1}\sum_{m=1}^{3}\gamma_{k,m}^{(j)}\psi_{k,m}^{(j)}(\overrightarrow{n})$$

where

$$\begin{split} \lambda_{k}^{(j)}(\overrightarrow{n}) &= \int d\Omega' I^{(j+1)}(\overrightarrow{n'}) \int d\Omega \phi^{(j+1)}(\overrightarrow{n},\overrightarrow{n'}) \varphi_{k}^{(j+1)}(\overrightarrow{n}) \equiv \int d\Omega' I^{(j+1)}(\overrightarrow{n'}) w_{\lambda,k}^{(j)}(\overrightarrow{n'},\overrightarrow{n}) \\ \gamma_{k,m}^{(j)}(\overrightarrow{n}) &= \int d\Omega' I^{(j+1)}(\overrightarrow{n'}) \int d\Omega \phi^{(j+1)}(\overrightarrow{n},\overrightarrow{n'}) \gamma_{k,m}^{(j+1)}(\overrightarrow{n}) \equiv \int d\Omega' I^{(j+1)}(\overrightarrow{n'}) w_{\gamma,k,m}^{(j)}(\overrightarrow{n'},\overrightarrow{n}) \end{split}$$

Reduced memory (Abe, Yajima, Umemura in prep.)

Future plan

Acceleration of radiative transfer simulations with FPGA/GPU on Cygnus Simulations of huge parameter space

Summary

- We study galaxy formation and radiative properties by combining cosmological hydrodynamics simulations and radiative transfer calculations
- We find the galaxy evolve with supernova feedback and the radiative properties rapidly change that reproduce the observed diversity of distant galaxies
- We develop a new radiative transfer code to model near-infrared bio-imaging, and show the simulation matches the experimental data nicely