Accelerating Regular Path Queries
using FPGA

Kento Miura, Toshiyuki Amagasa, Hiroyuki Kitagawa

S s

University of Tsukuba

Kitagawa & Amagasa
Data Engineering

® Background and Obijective

® Related Work
® The proposed method

@® Experiment and Discussion

® Conclusion

® Background and Objective

® Related Work
® The proposed method

@® Experiment and Discussion

® Conclusion

Labeled graph 4

@® Graph with labels on vertices or edges

Labeled graphs are used in many fields

Place City

Movie Hollywood

is a

™~

HOLLYNOOD.

. : //S /Ocaf is a
is a REWNR . 7 Sq¢
\ W \ Q

4

Titanic Los Angeles

Labeled graph example

Regular Path Query (RPQ)

@ A query to retrieve pairs of vertices that are reachable
via such paths whose label sequences conform to the
user specified regular expression

a
Query example @ ” @
RPQ:aocbob NG
Find paths in orderofa - b — b ‘ d @ \ C

=1(2,5)}

RPQ: (a°c) u(ct?) @ @

Find paths a — ¢~ (c follows in
inverse order)or k(1 <k <2)
repetitions of ¢ In.ttrr]]is rlesearch, vx[_e focusedt.on IZ{P)QS
with only composition operation (o
= (14, 23)} Yo i

Actual RPQ usage example

Example. What other conferences have
authors who submitted to conference A?

Author A N PaperA Conference A
writing published in
‘ written by
@‘\(\g
~ written by }Jublishing
Author B Paper B Conference B

Paper submission information graph

(Start vertex = Conference A)

RPQ : publishing o written by o writing o published in

Running an RPQ on a large graph
takes a lot of time

Acceleration of RPQ processing
IS required

[1] Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases

FPGA 8

FPGA is a device that allows users to implement
arbitrary logic circuits by programming dynamically

The implemented circuit operates in parallel

FPGA can process a large amount of data
at high speed by and

High-level synthesis (HLS) has enabled FPGA
programming using C, C++, OpenCL

In order to speedup RPQ

® Main approach

RPQ processing can be divided into
multiple stages and

We considered that RPQ could be
processed efficiently by FPGA.

® Objective

Outline

® Background and Obijective

o
® The proposed method

@® Experiment and Discussion

® Conclusion

Examples of speedup using FPGA 11

@ Graphicionado [Ham et al. 2016]

FPGA accelerator for graph analysis processing
such as PageRank and collaborative filtering

About than CPU only

@ Sidler et al. 2017

Accelerate queries that include regular expressions
to databases using CPU-FPGA architecture

than running in software

Research on RPQ speedup 12

® Path Index

All occurrences of paths up to length k are extracted
and stored in corresponding indexes

k=1 k=2
O’emyiO.
> Path | Source | Destination Path | Source | Destination
Cc b N 1 5 aob 2 3
\ / a 9 A aoc 1 4
bob 4 5
C
| 8 @ \ b 3 o boc 3 4
b 4 3 coa 2 5
c 1 3 cob 1 5
c 2 1 cob 5 3
C 5% 4 coc 2 3
Target Graph Path Index (k = 2)

Limitation: Larger graphs require more storage space

Outline

® Background and Obijective

@® Related Work
O

@® Experiment and Discussion

® Conclusion

RPQ pipeline processing

Stage1

Example. RPQ :

Edges witha| [X] | Edges with b

join 3.5

a
2-3

\C‘
Stage2
d
Results of N Edges with b

stage1
@ @ join
4—-3
2-5
Stage3
Result : 24 ZZZZES o IX| | Edges with c

join 1.3

Process overview

RPQ :

Host PC

| |
I I
I |
| | Edges with a
I | >
I |
| | Edges with b
| Graph Data } >
| |
| | Edges with ¢
I | >
I |
I |
I |
I I
—— Result “
I |
I
|

I
I RPQ pipeline
|
| Stage1
I : :
| | Edgeswitha X | Edges with b
I
|
: Stage2
I | Results of M Edges with b
| | stage1
|
|
I
I Stage3
I | Results of .
I | stage2 N Edges with ¢
|
FPGA

Host : Storage format of graph data 16

...

1.5 3,5 1,3
a 2,4 4,3 2,1
> 5,4
\C‘ b/'
q a_src b src c_src
C

b
\ 2.4 4.3 2,1
a 1.5 3.5 1.3
> 5,4
a_dst b _dst c_dst

Target Graph Storage area

a_src : File that holds the edge with label a. Sorted by source 1D
a_dst : File that holds the edge with label a. Sorted by destination ID

FPGA : Module implementation 17

Join Module

A

A

3-8
Join >3 >
A A _
7—-1 3-5
1-3 5-2
37 /-4
Left Input Right Input
(Sorted by (Sorted by

dst vertex ID)

src vertex ID)

Sort Module

A

5—2 Sorted by
1-3 dst vertex ID
27

Sort

A

27
1-3
5-2

Buffer size = 3

Serial configuration

Join : jnactive

Join : active

Activated Join module
processes in parallel

RPQ :
Join
—
g Sort C dst
s Rl
Join
—
— Sort b dst
—
=
Join
T

a dst b _dst

Possible limitation

RPQ :
T.

Each Sort module saf jsm
buffers data r)

/ -

Sort b_src
Buffering - Jof

\ =
It takes time for the m
data to reach the R
module near the top SO

Join

I

a dst b_src

Parallel configuration

RPQ : FPGA

Process Process

1 1

Join Join

G\)\a.@b/'@
° N il il
/ @ Sort Db_dst . Sort adst

|
:
|
:
O yeo | 5 x
o R
|
i

Join Join

l T

Target Graph a_dst b_dst c_dst b_dst

Pipeline 1 Pipeline 2

Parallel configuration

Host PC

Edge
data

|

I

I

|

I
— : Graph Data

I

|

I

I

|

I
L1 | Result

FPGA

i— ______________

1 f f

| Join Joi

I = B
Sort D dst Sort 2.dst

- -

I Join Join

. o

| adstbdst o dst b dst

| Pipeline 1 Pipeline 2

I o o o o e e o e e o e =

The final join of the two pipelines is performed on the Host

Outline

® Background and Obijective

® Related Work
® The proposed method

® Experiment and Discussion

® Conclusion

Experimental setup

Host PC
- CPU : Intel Core i7-7700K 3.60 GHz x 8
- OS : Linux version 3.10.0
- Memory : 31.1GIB

FPGA

- Xilinx Kintex UltraScale FPGA KCU1500
- System Logic Cells :1,451K

- Block RAM : 75.9 Mb
- Global Memory : 16 GB DDR 4

Performance for small graph 24

Dataset : advogato

- # vertexes : 6,541
- # edges : 51,127
- # label types : 3

Investigate performance by changing RPQ
path length |R|

Comparison method : Path Index (1 < k < 3)

Performance for small graph 25

=
o
[e)]

proposed method serial

proposed method parallel

path index k =1

path index k = 2 2.31x
path index k = 3

Elapsed Time (ms)

= = = =
o o o o
N w D 6]

=
o
=

=
o
o

Length of R

Dataset and queries

Dataset : DBLP-Citation-network V10 Dataset

- # vertexes : 4,850,632
- # edges : 38,973,022
- # label types : 6

Queries : Executed five queries as shown

Query

Path length |R|

q1

2

q>

qs

44

ds

v b~ B~ W

Comparison method

Comparison method : PostgreSQL

- Path Index could not be created because
the graph is large
(Several tens of GB or more when k = 2)

- We searched for vertex pairs that satisfy
the path specified by RPQ using the PostgreSQL
Select clause.

Performance for large graph 28

=
o
o

B proposed method serial
1 W proposed method parallel
i mmm postgreSQL

=
o
wn

[
o
S

3.14x [

a1 gz

Elapsed Time (ms)
- —
R

=
o
[

[
o
o

gs Q4 gs
Queries

Discussion

® When processing large graphs
significant drop in performance

Cause
: : Join
Every time data is sent to the

Join module, a lookup from 1 ‘
the beginning is required

Sorted data Right input

Sort I

(ex. b_src)

Discussion

® When processing large graphs
significant drop in performance

Join

o
Shorter pipeline length is preferred HS"‘ c_dst
Join
- =
Further increase the number of B b st

pipelines in a serial configuration 4

Join

Tt

a dst b _dst

Outline

® Background and Obijective

® Related Work
® The proposed method

@® Experiment and Discussion
O

Conclusion

@® Objective
Acceleration of RPQ processing using FPGA

® The proposed method

Proposed pipeline processing method for RPQ
on FPGA using join and sort modules

In order to further increase the parallelism of processing,
a parallel configuration was proposed.

® Performance
About 1.72 to 23.6 times faster for small graphs

Performance decreased for large graphs

Conclusion

® Future work

Searching for ways to improve performance
In large graphs

Supports RPQ processing other than composition
operation

Thank you for your attention

Performance for large graph 35

Dataset : DBLP-Citation-network V10 Dataset

Author (A) Paper (P) Venue (V) -_# vertexes : 4,850,632
writing published in #P:3,079,007
written by :publishing # A : 1 ,7661547
citing l Icited by _# V: 5’078 _

- # edges : 38,973,022

- # label types : 6
Paper (P)

Vertex types and relationships

Experiment2 : Queries

q1 - R = writing o written by

q, - R = writing o citing o written by

g3 : R = writing o published in o publishing o written by

q4 - R = publishing o written by o writing o written by

gs - R = writing o citing o published in o citing o written by
Due to the excessive size of query results,

it was not feasible to enumerate all occurrences
of query results

Specify a specific vertex as the starting vertex

Setting for the PostgreSQL

edges labels

STC dst label_id label_id label
163954 | 1766548 0 0 writing
1766548 | 163954 1 1 written by
2 publishing
3 published in

4 citing

5 cited by

Query example (q; : R = writing o written by)

SELECT e1.src, e2.dst FROM edges AS e1, edges as e2
WHERE e1.src = 260069 AND e1.label _id = 0 AND
e2.label id =1 AND e1.dst = e2.src;

