
Accelerating Regular Path Queries
using FPGA

Kento Miura, Toshiyuki Amagasa, Hiroyuki Kitagawa

Kitagawa & Amagasa
Data EngineeringUniversity of Tsukuba

2Outline

Background and Objective

Related Work
The proposed method

Experiment and Discussion

Conclusion

3Outline

Background and Objective

Related Work
The proposed method

Experiment and Discussion

Conclusion

4Labeled graph

Graph with labels on vertices or edges
Labeled graphs are used in many fields

Labeled graph example

Los Angeles

City

is a
is locatedin

is a

Place

Titanic

is a

Movie

was

made in

Hollywood

5Regular Path Query (RPQ)
A query to retrieve pairs of vertices that are reachable
via such paths whose label sequences conform to the
user specified regular expression

Query example
RPQ : 𝑎 ∘ 𝑏 ∘ 𝑏
Find paths in order of 𝑎 → 𝑏 → 𝑏

= {(2,5)}

RPQ : (𝑎 ∘ 𝑐./) ∪ (𝑐/,1)
Find paths 𝑎 → 𝑐./ (𝑐 follows in
inverse order) or 𝑘 (1 ≤ 𝑘 ≤ 2)
repetitions of c

= { 1,4 , (2,3)}

a

d c

c

a

b

b
1

2

3

4

5

In this research, we focused on RPQs
with only composition operation ()∘

6Actual RPQ usage example
Example. What other conferences have
authors who submitted to conference A?

Author A

Author B

Paper A

Paper B

Conference A

Conference B

writing

writin
g

published in

(Start vertex = Conference A)
RPQ : publishing ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 ∘ 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛

Paper submission information graph

written by publishing

writte
n by

writing

written by

published in

publishing

7Problem

Running an RPQ on a large graph
takes a lot of time

Acceleration of RPQ processing
is required

[1] Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases

8FPGA

FPGA is a device that allows users to implement
arbitrary logic circuits by programming dynamically

The implemented circuit operates in parallel
FPGA can process a large amount of data
at high speed by parallel processing and pipelining

High-level synthesis (HLS) has enabled FPGA
programming using C, C++, OpenCL

9In order to speedup RPQ

Main approach

RPQ processing can be divided into
multiple stages and can be pipelined

We considered that RPQ could be
processed efficiently by FPGA.

Objective

Acceleration of RPQ processing using FPGA

10Outline

Background and Objective

Related Work
The proposed method

Experiment and Discussion

Conclusion

11Examples of speedup using FPGA

Graphicionado [Ham et al. 2016]

About 10~100 times faster than CPU only

Sidler et al. 2017

FPGA accelerator for graph analysis processing
such as PageRank and collaborative filtering

1.76 to 6.54 times faster than running in software

Accelerate queries that include regular expressions
to databases using CPU-FPGA architecture

12Research on RPQ speedup
Path Index

All occurrences of paths up to length k are extracted
and stored in corresponding indexes

k = 1 k = 2

Path Index (k = 2)Target Graph

Limitation: Larger graphs require more storage space

13Outline

Background and Objective

Related Work
The proposed method

Experiment and Discussion

Conclusion

14RPQ pipeline processing
Example. RPQ : 𝒂 ∘ 𝒃 ∘ 𝒃 ∘ 𝒄 Stage1

Edges with a

join2→4
1→5

3→5
4→3

Stage2
Results of
stage1

join2→3 3→5
4→3

Stage3
Results of
stage2

join2→5 1→3
5→4

2→3

2→5

Result : 2→4

Edges with b

Edges with b

Edges with c

15Process overview

USER Graph Data

Result

Host PC

Edges with a
RPQ : 𝒂 ∘ 𝒃 ∘ 𝒃 ∘ 𝒄

Edges with b

Edges with c

FPGA

Stage1

Edges with a Edges with b

Stage2

Results of
stage1 Edges with b

Stage3

Results of
stage2 Edges with c

RPQ pipeline

16Host : Storage format of graph data

Target Graph Storage area

a_src : File that holds the edge with label a. Sorted by source ID
a_dst : File that holds the edge with label a. Sorted by destination ID

17FPGA : Module implementation

Join Module Sort Module

Join Sort

Left Input
(Sorted by
dst vertex ID)

Right Input
(Sorted by
src vertex ID)

Buffer size = 3

7→1
1→3
3→7

3→5
5→2
7→4

1→3 →5

1→5

3→ 7 →4

３→4

2→7
1→3
5→2

2→7
1→3
5→2 Sorted by

dst vertex ID

7→1 3→5
1→3 5→2
3→7 7→4

18Serial configuration

RPQ : 𝒂 ∘ 𝒃 ∘ 𝒃 ∘ 𝒄

Join

Sort

Join

Sort

Join

a_dst b_dst

b_dst

c_dst

Sorted

Join

Join : inactive

Join : active

Activated Join module
processes in parallel

19Possible limitation
RPQ : 𝒂 ∘ 𝒃 ∘ 𝒃 ∘ 𝒄 ∘ 𝒃 ∘ 𝒂

a_dst b_src

b_src

c_src

b_src

a_src
Each Sort module
buffers data

It takes time for the
data to reach the
module near the top

Buffering

20Parallel configuration

Target Graph

FPGARPQ : 𝒂 ∘ 𝒃 ∘ 𝒃 ∘ 𝒄 ∘ 𝒃 ∘ 𝒂

a_dst b_dst

b_dst

c_dst b_dst

a_dst

Process 𝒂 ∘ 𝒃 ∘ 𝒃 Process 𝐜 ∘ 𝒃 ∘ 𝒂

Pipeline 1 Pipeline 2

21Parallel configuration

USER Graph Data

Result

Host PC

Edge
data

RPQ : 𝒂 ∘ 𝒃 ∘ 𝒃 ∘ 𝒄

FPGA

The final join of the two pipelines is performed on the Host

Join

22Outline

Background and Objective

Related Work
The proposed method

Experiment and Discussion

Conclusion

23Experimental setup

Host PC
- CPU : Intel Core i7-7700K 3.60 GHz × 8
- OS : Linux version 3.10.0
- Memory : 31.1GiB

FPGA
- Xilinx Kintex UltraScale FPGA KCU1500
- System Logic Cells : 1,451K
- Block RAM : 75.9 Mb
- Global Memory : 16 GB DDR 4

24Performance for small graph

Dataset : advogato
- # vertexes : 6,541
- # edges : 51,127
- # label types : 3

Investigate performance by changing RPQ
path length 𝑅

Comparison method : Path Index (1 ≤ 𝑘 ≤ 3)

25Performance for small graph

15.3x

23.6x

1.72x

2.31x

2.29x

N/A N/A

26Dataset and queries

Dataset : DBLP-Citation-network V10 Dataset

- # vertexes : 4,850,632
- # edges : 38,973,022
- # label types : 6

Queries : Executed five queries as shown

Query Path length |𝑹|
𝑞/ 2

𝑞1 3

𝑞X 4

𝑞Y 4

𝑞Z 5

27Comparison method

Comparison method : PostgreSQL
- Path Index could not be created because

the graph is large
(Several tens of GB or more when k = 2)

- We searched for vertex pairs that satisfy
the path specified by RPQ using the PostgreSQL
Select clause.

28Performance for large graph

4.61x
3.14x

29Discussion

When processing large graphs
significant drop in performance

Cause
Every time data is sent to the
Join module, a lookup from
the beginning is required

Sorted data Right input

(ex. b_src)

30Discussion

When processing large graphs
significant drop in performance

Sort

Join

Sort

Join

a_dst b_dst

b_dst

c_dst

Join

Shorter pipeline length is preferred

Further increase the number of
pipelines in a serial configuration

31Outline

Background and Objective

Related Work
The proposed method

Experiment and Discussion

Conclusion

32Conclusion

Objective
Acceleration of RPQ processing using FPGA

Performance
About 1.72 to 23.6 times faster for small graphs

Performance decreased for large graphs

The proposed method
Proposed pipeline processing method for RPQ
on FPGA using join and sort modules
In order to further increase the parallelism of processing,
a parallel configuration was proposed.

33Conclusion

Future work
Searching for ways to improve performance
in large graphs
Supports RPQ processing other than composition
operation

Thank you for your attention

35Performance for large graph

Dataset : DBLP-Citation-network V10 Dataset

- # vertexes : 4,850,632
P : 3,079,007
A : 1,766,547
V : 5,078

- # edges : 38,973,022
- # label types : 6

Author (A) Paper (P) Venue (V)
writing published in

written by publishing

Paper (P)

citing cited by

Vertex types and relationships

36Experiment2 : Queries

𝑞/ : 𝑅 = 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦

𝑞1 : 𝑅 = 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑐𝑖𝑡𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦

𝑞X : 𝑅 = 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 ∘ 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦

𝑞Y : 𝑅 = 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 ∘ 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦

𝑞Z : 𝑅 = 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑐𝑖𝑡𝑖𝑛𝑔 ∘ 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 ∘ 𝑐𝑖𝑡𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦

𝑞/, 𝑞1, 𝑞X, 𝑞Y : source vertex = “Hiroyuki Kitagawa”
𝑞Z: source vertex = “very large data bases”

Due to the excessive size of query results,
it was not feasible to enumerate all occurrences
of query results

Specify a specific vertex as the starting vertex

37Setting for the PostgreSQL

edges labels

Query example (𝑞/ ∶ 𝑅 = 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ∘ 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦)

SELECT e1.src, e2.dst FROM edges AS e1, edges as e2
WHERE e1.src = 260069 AND e1.label_id = 0 AND
e2.label_id = 1 AND e1.dst = e2.src;

