Recent Activities in CCS

Taisuke Boku Director, Center for Computational Sciences University of Tsukuba

1 2019/12/03

CCS-EPCC Joint Workshop@Tsukuba

Center for Computational Sciences, University of Tsukuba

- CCS = Center for Computational Sciences
- Established in 1992
 - 12 years as Center for Computational Physics
 - Reorganized as Center for Computational Sciences in 2004
- Daily collaborative researches with two kinds of researchers (40 in total)
 - Computational Scientists ~ 65% who have NEEDS (applications)
 - Computer Scientists ~ 35% who have SEEDS (system & solution)

Center for Computational Sciences, Univ. of Tsukuba

Organization of CCS

Multidisciplinary Computational Sciences

MCRP (Multidisciplinary Cooperative Research Program)

- Supercomputer resource sharing
 - Domestic -> International
 - Multiple sizes and categories
- Travel support for Meetings
 - Financial Support for travel expenses to attend scientific meetings
- International Schools
 - International expansion of "Computational Science Literacy"
- Long-term visitors
 - Those who stay from a few weeks to a few months are encouraged to carry out MCRP

Oakforest-PACS: Japan's Fastest General Purpose (non-accelerated) System

- 25 PFLOPS peak
- 8208 KNL CPUs
- FBB Fat-Tree by
 OmniPath
- HPL 13.55
 PFLOPS
 #1 in Japan
 #6 in World
- HPCG #3 in World
 Full operation started Dec. 2016

Supporting International Research Collaboration

- Proceeding tightly coupled international collaboration with people exchange with an appropriate duration
- Med-Term International Invitation to CCS
 - a couple weeks ~ months to stay in CCS
 - supporting travel fare, staying and some rewards
- Monthly Sabbatical
 - a couple of weeks ~ months to stay oversea research insititutes
 - covering university-wide program for sabbatical (3~12 months)

7

Computational Sciences

⁻⁸⁻

Computational Astrobiology

Collaboration of Astrophysics, Biophysics, and Planetary Science

Photosynthesis on extra-solar planets

Red edge as a biomerker

Curren Compared wi	t Potent	ars and Ranke	table Exor d in Order of Simil	olanets arity to Earth	Earth 1.00	Mars 0.66
#1	#2	#3	#4	#5	#6	#7
0.92	0.85	0.81	Earth Similarity Index 0.79	0.77	0.72	0.72
Sec. 1	and a second		(A			A. A.
Gliese 581 g*	Gliese 667C c	Kepler-22 b	HD 40307 g*	HD 85512 b	Gliese 163 c	Gliese 581 d
Sep 2010	Nov 2011	Dec 2011	Discovery Date - Nov 2012	Sep 2011	Sep 2012	Apr 2007
planet candidates				CREDIT: PHL	@ UPR Arecibo (phl.up	or.edu) Nov 19, 20

Collaboration with Post-K Project (FUGAKU)

- Post-K (so called Exascale Project in Japan) Project has been launched on Apr. 2014 at RIKEN AICS, Kobe (currently R-CCS)
- Collaboration with Post-K Project
 - Application:
 - ~ Post-K Prioritized Application Field 9

"Analysis of Fundamentals on Universe and Development" (PI: Shinya Aoki)

- System: Codesign on system development of Post-K Computer
 "Parallel Programming Environment and Interconnection Network Research on Post-K" (PI: Taisuke Boku)
- Sub-topics of applications: quantum material science in Field 7 (by Kazuhiro Yabana)
- Using JCAHPC resource OFP as an application and system software development platform for Post-K

Future Plans of Computing System Development

History of PAX (PACS) series at U. Tsukuba

1989

Performance

7 KFLOPS

4 MFLOPS

3 MFLOPS

14 GFLOPS

614 GFLOPS

14.3 TFLOPS

1.166 PFLOPS

1.001 PFLOPS

500 KFLOPS

- 1977: research started by T. Hoshino and T. Kawai
- 1978: PACS-9 (with 9 nodes) completed
- 1996: CP-PACS, the first vendor-made supercomputer at CCS, ranked as #1 in TOP500 1996

Name

PACS-9

PACS-32

PAX-128

PAX-32J

QCDPAX

CP-PACS

PACS-CS

HA-PACS

COMA (PACS-IX)

1980 2nd gen. PACS-32

6th gen: CP-PACS 5th gen, QCDPAX Ranked #1 in TOP500

2006 7th gen: PACS-CS

2012~2013 8th gen: GPU cluster HA-PACS

2014 9th gen: COMA

- *co-design* by computer scientists and computational scientists toward "practically high speed computer"
- Application-driven development
- Sustainable development experience

2019 Cygnus (PACS-X) 2.5 PFLOPS

CCS-EPCC Joint Workshop@Tsukuba

2019/12/03

12

Year 1978

1980

1983

1984

1989

1996

2006

2012~13

2014

Accelerators in HPC

- Traditionally...
 - **Cell Broadband Engine, ClearSpeed, GRAPE....**
 - then GPU (most popular)
- Is GPU perfect ?
 - good for many applications (replacing vector machines)
 - depending on very wide and regular parallelism
 - Iarge scale SIMD (STMD) mechanism in a chip
 - high bandwidth memory (HBM, HBM2) and local memory
 - insufficient for cases with...
 - not enough parallelism
 - not regular computation (warp splitting)
 - frequent inter-node communication (kernel switch, go back to CPU)

NVIDIA Tesla V100 (Volta) with PCIe interafce

FPGA (Field Programmable Gate Array)

- Goodness of recent FPGA for HPC
 - True codesigning with applications (essential)
 - Programmability improvement: OpenCL, other high level languages
 - High performance interconnect: 100Gb
 - Precision control is possible
 - Relatively low power
- Problems
 - Programmability: OpenCL is not enough, not efficient
 - Low standard FLOPS: still cannot catch up to GPU
 -> "never try what GPU works well on"
 - Memory bandwidth: 1-gen older than high end CPU/GPU
 -> be improved by HBM (Stratix10)

Nallatech 520N with Intel Stratix10 FPGA equipped with 4x 100Gbps optical interconnection interfaces

AiS: conceptual model of Accelerator in Switch

- FPGA can work both for computation and communication in unified manner
- GPU/CPU can request application-specific communication to FPGA

Cygnus Overlook (CCS, U. Tsukuba, April 2019)

CCS-EPCC Joint Workshop@Tsukub2019/12/03

Single node configuration (Albireo) of Cygnus cluster

- Each node is equipped with • both IB EDR and FPGA-direct network
- Some nodes are equipped • with both FPGAs and GPUs, and other nodes are with **GPUs only**

17

Center for Computational Sciences, Univ. of Tsukuba

Two types of interconnection network

Inter-FPGA direct network (only for Albireo nodes)

64 of FPGAs on Albireo nodes (2 FPGAS/node) are connected by 8x8 2D torus network without switch InfiniBand HDR100/200 network for parallel processing communication and shared file system access from all nodes

For all computation nodes (Albireo and Deneb) are connected by full-bisection Fat Tree network with 4 channels of InfiniBand HDR100 (combined to HDR200 switch) for parallel processing communication such as MPI, and also used to access to Lustre shared file system.

CCS-EPCC Joint Workshop@Tsukub2019/12/03

CCS-EPCC Joint Workshop@Tsukub2019/12/03

Center for Computational Sciences, Univ. of Tsukuba

Specification of Cygnus

Item	Specification				
Peak performance	2.4 PFLOPS DP (GPU: 2.24 PFLOPS, CPU: 0.16 PFLOPS + FPGA: 0.64 SP FLOPS)				
# of nodes	80 (32 Albireo nodes, 48 Deneb nodes) => 320x V100 + 64x Stratix10				
CPU / node	Intel Xeon Gold x2 sockets				
GPU / node	NVIDIA Tesla V100 x4 (PCIe)				
FPGA / node	Nallatech 520N with Intel Stratix10 x2 (each with 100Gbps x4 links)				
NVMe	Intel NVMe 1.6TB, driven by NVMe-oF Target Offload				
Global File System	DDN Lustre, RAID6, 2.5 PB				
Interconnection Network	Mellanox InfiniBand HDR100 x4 = 400Gbps/node (SW=HDR200)				
Total Network B/W	4 TB/s				
Programming Language	CPU: C, C++, Fortran, OpenMP GPU: OpenACC, CUDA FPGA: OpenCL, Verilog HDL				
System Integrator	NEC				

CCS-EPCC Joint Workshop@Tsukub2019/12/03

20

Center for Computational Sciences, Univ. of Tsukuba

How to open such a complicated system to application users?

- OpenCL environment is available
 - ex) Intel FPGA SDK for OpenCL
 - basic computation can be written in OpenCL without Verilog HDL
- Current FPGA board is not ready for OpenCL on interconnect access
 - BSP (Board Supporting Package) is not complete for interconnect
 - \rightarrow we developed for OpenCL access
 - GPU/FPGA communication is very slow via CPU memory
- Our goal
 - enabling OpenCL description by users including inter-FPGA communication
 - providing basic set of HPC applications such as collective communication, basic linear library
 - providing 40G~100G Ethernet access with external switches for large scale systems

CIRCUS

- FPGA is possible to combine computation and communication in a single framework of pipelined data stream
 - loop computation is pipelined according to the index
 - all the computation part is implemented on logic elements except buffering on memory
 - possible to access IP by chip provides (ex. Intel) for optical link driving
- making all to be programmable on OpenCL
 - scientific users never write Verilog HDL -> perhaps OK with OpenCL
 - key issue for practical HPC cluster: OpenCL-enabled features such ash
 - FPGA communication link
 - GPU/FPGA DMA

CIRCUS: Communication Integrated Reconfigurable CompUting System

=> detail talk by Prof. Norihisa Fujita

GPU-FPGA communication (via CPU memory)

GPU-FPGA communication (DMA)

CCS-EPCC Joint Workshop@Tsukuba

Communication Bandwidth (on Arria10 – V100)

[Reference]

٠

Ryohei Kobayashi, Norihisa Fujita, Yoshiki Yamaguchi, Ayumi Nakamichi, Taisuke Boku, "GPU-FPGA Heterogeneous Computing with OpenCL-enabled Direct Memory Access", Proc. of Int. Workshop on Accelerators and Hybrid Exascale Systems (AsHES2019) in IPDPS2019 (to be published), May 20th, 2019.

CUDA (GPU) + OpenCL (FPGA)

- **Calling two device Kernels written in CUDA (for GPU) and OpenCL (for FPGA)**
 - CUDA compiler (NVIDIA/PGI) and OpenCL compiler (Intel)
 - \rightarrow Two "host" program exist
 - Behavior of Host Program differs on two systems, but can be combined
 - \rightarrow One Host Program calls different system kernels
- We found the library to be resolved for each compiler and confirmed that hey don't conflict

29

Center for Computational Sciences, Univ. of Tsukuba

OpenACC high level coding

- OpenACC is available both for GPU and FPGA
 - under development in collaboration between CCS-Tsukuba and ORNL
 - GPU compilation PGI OpenACC compiler
 - FPGA compilation OpenARC for FPGA on OpenACC, developed at FTG ORNL
 -> collaboration between CCS and ORNL
- Solving some conflict on host code environment and run-time
 - Basic running is confirmed and testing example codes
- Issues
 - Performance enhancement on GPU and FPGA totally differs
 - GPU horizontal (data) parallelism in SIMD manner
 - FPGA clock level pipelining
 - Memory model difference: HBM2 vs BRAM

Application Example – ARGOT (collab. with M. Umemura et. al.)

- ARGOT (Accelerated Radiative transfer on Grids using Oct-Tree)
 - Simulator for early stage universe where the first stars and galaxies were born
 - Radiative transfer code developed in Center for Computational Sciences (CCS), University of Tsukuba
 - CPU (OpenMP) and GPU (CUDA) implementations are available
 - Inter-node parallelisms is also supported using MPI
- ART (Authentic Radiation Transfer) method
 - It solves radiative transfer from light source spreading out in the space
 - Dominant computation part (90%~) of the ARGOT program
- In this research, we accelerate the ART method on an FPGA using Intel FPGA SDK for OpenCL as an HLS environment

ARGOT code: radiation transfer simulation

CCS-EPCC Joint Workshop@Tsukuba

ARGOT code: radiation transfer simulation

CCS-EPCC Joint Workshop@Tsukuba

ART Method

- ART method is based on ray-tracing method
 - 3D target space split into 3D meshes
 - Rays come from boundaries and move in straight in parallel with each other
 - Directions (angles) are given by HEALPix algorithm
- ART method computes radiative intensity on each mesh as shows as formula (1)
 - Bottleneck of this kernel is the exponential function (expf)
 - There is one expf call per frequency (v). Number of frequency is from 1 to 6 at maximum, depending on the target problem
 - All computation uses single precision computations
- Memory access pattern for mesh data is varies depending on ray's direction
 - Not suitable for SIMD style architecture
 - FPGAs can optimize it using custom memory access logics.

$$I_{\nu}^{out}(\hat{\boldsymbol{n}}) = I_{\nu}^{in}(\hat{\boldsymbol{n}})e^{-\Delta\tau_{\nu}} + S_{\nu}(1 - e^{-\Delta\tau_{\nu}})$$
(1)

CCS-EPCC Joint Workshop@Tsukub2019/12/03

Overall performance improvement on ARGOT (14x2 cores Xeon, P100, Arria10)

- Relative performance of entire ARGOT code with ARGOT method and ART method
- GPU cannot gain the performance
- CPU (for ARGOT method) + FPGA (for ART method) achieves 3x performance with single P100 and single A10 compared with 28-core CPU
- No GPU/FPGA DMA

35

Other target application candidates and topics

- Quantum Bioscience
 - non-local potential calculation in RSDFT, not good at GPU
- City-LES (local climate)
 - surface simulation has weak parallelism and conditional branches
- Data Science
 - using FPGA for data search and file system control
 - Graph
- Programming
 - OpenACC-only approach for AiS programming
 - collaboration with FTG (PI: Jeff Vetter) at ORNL to apply their research compiler OpenARC
 - high level PGAS approach with OpenACC (XcalableACC) under collaboration with Programming Environment Group (PI: Mitsuhisa Sato) at R-CCS RIKEN

Summary

37

- CCS has continues "codesigning" from the origin of center to provide an ideal field for collaboration between application scientists and computer scientists
- Collaboration with Medical field through Computational Medical Science activities
- New machine Cygnus is equipped with very high performance GPU and FPGA (partially) to make "strong scaling ready" accelerated system for applications where GPU-only solutions is weak, as well as all kind of GPU-ready applications
- FPGA for HPC is a new concept toward next generation's flexible and low power solution beyond GPU-only computing
- Multi-physics simulation is the first stage target of Cygnus and will be expanded to variety of applications where GPU-only solution has some bottleneck
- New applications are under development

