
NEXTGenIO: Next Genera0on I/O for HPC
Michèle Weiland
m.weiland@epcc.ed.ac.uk
@micheleweiland

http://epcc.ed.ac.uk

Optane DCPMM

• Intel Optane DC Persistent Memory, based on 3D XPoint device technology
• Hosted in the DIMM slots, additional memory controller

• Byte addressable connected to the memory bus like normal DRAM
• Cache Coherent, Load /Store Accesses
• Ability to do DMA & RDMA

• 128/256/512GB per module, 2 socket system up to 6TB
• High Endurance with 5 years lifetime assuming maximum write bandwidth

• ~500 Petabyte written per module (flash devices ~500-700 Terabyte)

• Storage I/O operations become fast persistent memory operations
• No Paging for storage I/O
• No Context Switching for storage I/O
• No Interrupts for storage I/O
• No Kernel Code Running for storage I/O

CCS-EPCC Collaboration workshop, Tsukuba

• System built by Fujitsu using bespoke motherboard
• 34 compute nodes
• Node configuration

• Dual socket, 2 x 24-core Intel Xeon Platinum8260M CPUs
• 192GB DDR4 DRAM (12 x 16GB)
• 3TB DCPMM (12 x 256GB)

• Omni-Path interconnect
• Dual rail

• 270TB Lustre file system

• Total memory capacity
• 6.5TB DRAM
• 100TB NVRAM

CCS-EPCC Collaboration workshop, Tsukuba

CPU

Basic throughput & latency

DDR4 DRAM
• ~70ns idle latency
• ~18.7GB/s read
• ~8.9GB/s write

DCPMM NVRAM
• ~176ns idle latency (2.5x)
• ~8.0GB/s read (2.4x)
• ~1.5GB/s write (6x)

CCS-EPCC Collaboration workshop, Tsukuba

• Values are per device
• Bandwidth between sockets (UPI) ~83,2 GB/s bidirectional

The measured idle latencies (in ns) reported by Intel Memory Latency Checker

PlaDorm modes

CCS-EPCC Collaboration workshop, Tsukuba

1LM

• NVRAM needs to be addressed directly

• Persistent
• Various namespaces options

• e.g. fsdax, devdax

2LM

• NVRAM is transparent and not persistent

• All DRAM is used as L4 cache for the
memory mode space

• Use application as normal, no changes
required

Memory mode:
Size of all memory mode space in all DCPMMs == the size of the OS main memory
à can only be used in 2LM platform mode
App Direct mode:
App Direct space can be accessed via memory mapped operations
à can be used in both 1LM and 2LM platform mode

System setup

• DCPMM devices are socket local

• Memory space has 192GB Level 4 cache
• OS main memory is 3TB per node

• App Direct space configured as fsdax (ext4) namespace
• fsdax == filesystem dax
• /mnt/pmem_fsdax{0,1}

CCS-EPCC Collaboration workshop, Tsukuba

STREAM benchmark

• Synthetic application designed to measure the achievable memory
bandwidth
• Standard STREAM for DRAM and Memory mode
• Modified STREAM for App Direct
• Initial memory allocation replaced with a call to pmem_map_file & memory

offset calculations
• Add “data persist” instructions to ensure data is fully stored on the DCPMM

• Configuration
• DRAM and App Direct: array size 19MB per process (2.7GB total)
• Memory mode: array sizes 19MB and 4GB per process (768GB total)

CCS-EPCC Collaboration workshop, Tsukuba

https://github.com/NGIOproject/benchmarks

STREAM Triad

• Theoretical peak (DRAM only) is 210GB/s
• Configuration: 48 MPI processes per node, 10 nodes
• App Direct DCPMM bandwidth is ~5x less than DRAM
• Memory mode bandwidth for small size is roughly same as DRAM

• This does not fulfil the “array size should be at least 4x the size of the sum of all the last-level
caches used in the run” rule

CCS-EPCC Collaboration workshop, Tsukuba

Conference’17, July 2017, Washington, DC, USA

Table 11: STREAM Triad operation, using an array size of 19MB and 48 MPI processes each with 1 OpenMP thread.

Mode Min BW Med BW Max BW
(GB/s) (GB/s) (GB/s)

App Direct (DRAM only) 174 180 183
App Direct (DCPMM only) 47 48 49

Memory mode (19MB array size) 144 146 147
Memory mode (4GB array size) 27 28 28

Memory intensive application

CCS-EPCC Collaborahon workshop, Tsukuba

CASTEP

• Materials modelling application
• Needs scale to satisfy memory demands
• BUT poor scaling behaviour due to high volume

of all-to-all communications
• Poor parallel efficiency – CPUs underutilised

CCS-EPCC Collaboration workshop, Tsukuba

SC’19, November 17–22, 2019, Denver, CO, USA Weiland et al.

Figure 2: Timeline of DCPMM loads (red graph) during the execution of the most expensive routine (green graph) in the TiN
test case. The top timelines (white background) show the application running in AppDirectmode, with no loads fromDCPMM
registered. The bottom timelines (purple background) show the same application running in Memory mode, and here loads
from DCPMM have been registered throughout the entire run although CASTEP and its data fully �t into DRAM cache.

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown CPI Stall cycles Load instructions from DCPMM

App Direct (DRAM only) 442.30 - 1.17 1.62E+13 0
App Direct + libvmmalloc local 468.89 1.06x 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 599.70 1.36x 1.57 2.45E+13 5.66E+08
Memory mode 484.90 1.10x 1.25 1.87E+13 3.81E+08

Table 4: TiN test case, 1 node (48 MPI). App Direct (DRAM
only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

less power than reads. On DCPMM however the power consump-
tion of writes can be up to 20W peak, whereas reads are closer to
idle power. In Memory mode, DRAM acts as a write-back cache
and thus covers writes to the DCPMM; as writes to DRAM are less
power hungry than writes to DCPMM, and with reads being very
power e�cient, this accounts for the di�erence in the overall power
draw.

Table 5: Measured memory high watermark ("MaxRSS") for
the DNA test case, as reported by SLURM’s sacct tool.

Number MPI procs Average mem Total mem
of nodes per node (GBs) (TBs)

1 48 (48 MPI per node) 1,735.40 1.69
2 96 (48 MPI per node) 882.16 1.72
4 192 (48 MPI per node) 452.10 1.77
20 720 (36 MPI per node) 103.21 2.01

5.1.8 CASTEP summary. For a simulation such as the DNA test
case with CASTEP, the large capacity of the DCPMM can be highly
bene�cial if used in Memory mode. Although there are no perfor-
mance gains in real terms of time to solution, the bene�ts lie in the
much more e�cient use of the resources that are available. It is pos-
sible to run the simulation on a smaller number of nodes while using

SC’19, November 17–22, 2019, Denver, CO, USA Weiland et al.

Figure 2: Timeline of DCPMM loads (red graph) during the execution of the most expensive routine (green graph) in the TiN
test case. The top timelines (white background) show the application running in AppDirectmode, with no loads fromDCPMM
registered. The bottom timelines (purple background) show the same application running in Memory mode, and here loads
from DCPMM have been registered throughout the entire run although CASTEP and its data fully �t into DRAM cache.

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown CPI Stall cycles Load instructions from DCPMM

App Direct (DRAM only) 442.30 - 1.17 1.62E+13 0
App Direct + libvmmalloc local 468.89 1.06x 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 599.70 1.36x 1.57 2.45E+13 5.66E+08
Memory mode 484.90 1.10x 1.25 1.87E+13 3.81E+08

Table 4: TiN test case, 1 node (48 MPI). App Direct (DRAM
only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

less power than reads. On DCPMM however the power consump-
tion of writes can be up to 20W peak, whereas reads are closer to
idle power. In Memory mode, DRAM acts as a write-back cache
and thus covers writes to the DCPMM; as writes to DRAM are less
power hungry than writes to DCPMM, and with reads being very
power e�cient, this accounts for the di�erence in the overall power
draw.

Table 5: Measured memory high watermark ("MaxRSS") for
the DNA test case, as reported by SLURM’s sacct tool.

Number MPI procs Average mem Total mem
of nodes per node (GBs) (TBs)

1 48 (48 MPI per node) 1,735.40 1.69
2 96 (48 MPI per node) 882.16 1.72
4 192 (48 MPI per node) 452.10 1.77
20 720 (36 MPI per node) 103.21 2.01

5.1.8 CASTEP summary. For a simulation such as the DNA test
case with CASTEP, the large capacity of the DCPMM can be highly
bene�cial if used in Memory mode. Although there are no perfor-
mance gains in real terms of time to solution, the bene�ts lie in the
much more e�cient use of the resources that are available. It is pos-
sible to run the simulation on a smaller number of nodes while using

Table 1: DNA test case baseline performance results, including CASTEP’s own estimates of memory requirements and parallel
e�ciency, together with measured wallclock time for 3 SCF loop iterations, for di�erent node and process counts.

Nodes MPI x OpenMP Active cores Memory estimate per process Runtime Overall parallel e�ciency

34 48x1 1632 5,486.6 MB OOM N/A
24 36x1 864 6,476.0 MB 3,959.01s 23%
24 24x2 1152 7,491.2 MB 4,598.74s 28%
20 36x1 720 7,034.9 MB 3,311.88s 33%
20 24x2 960 8,320.0 MB 4,377.15s 36%
18 36x1 648 7,355.5 MB 3,587.94s 34%
18 24x2 864 8,843.5 MB 4,814.94s 36%

Table 2: Characterization of ECMWF forecast model output �elds.

Model Avg. Resolution Field Pts Typical Field Size Nb Fields / cycle Total Size / cycle Total Size / day

HRES Atmos 9 km 6.6 M 3.2 MiB 272 K 950 GiB 3.8 TiB
HRES Wave 14 km 938 K 1.4 MiB 170 K 325 GiB 1.3 TiB
ENS Atmos 18 km 1.7 M 804 KiB 10 M 15025 GiB 60.1 TiB
ENS Wave 28 km 234 K 340 KiB 10.5M 3475 GiB 13.9 TiB

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown CPI Stall cycles Load instructions from DCPMM

App Direct (DRAM only) 442.30 - 1.17 1.62E+13 0
App Direct + libvmmalloc local 468.89 1.06x 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 599.70 1.36x 1.57 2.45E+13 5.66E+08
Memory mode 484.90 1.10x 1.25 1.87E+13 3.81E+08

Table 4: TiN test case, 1 node (48 MPI). App Direct (DRAM only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

Table 5: Measured memory high watermark ("MaxRSS") for the DNA test case, as reported by SLURM’s sacct tool.

Number MPI procs Average mem Total mem
of nodes per node (GBs) (TBs)

1 48 (48 MPI per node) 1,735.40 1.69
2 96 (48 MPI per node) 882.16 1.72
4 192 (48 MPI per node) 452.10 1.77
20 720 (36 MPI per node) 103.21 2.01

1

CASTEP baseline, no DCPMM

• DNA test case
• Application’s own estimates of memory requirements and parallel efficiency
• Measurement of wallclock time for 3 SCF loop iterations

CCS-EPCC Collaboration workshop, Tsukuba

More memory capacity

• DCPMM can provide more memory per core in two ways
• 2LM Memory mode - transparent
• 1LM App Direct mode using libvmmalloc (PMDK library)

• libvmmalloc intercepts calls to dynamic memory allocahons (e.g. malloc,
memalign or free) and replaces them with persistent memory allocahons

1. Set the size of the non-volahle memory pool (VMMALLOC_POOL_SIZE) and the
locahon of the pool (VMMALLOC_POOL_DIR)

2. The path to the non-volahle memory pool points to a directory that is created in
/mnt/pmem_fsdax{0,1}

3. Preload libvmmalloc using LD_PRELOAD and launch the applicahon as normal

CCS-EPCC Collaboration workshop, Tsukuba

Tracing with a smaller test case

• TiN test case – fits on single node, memory high watermark ~19GB
• 4 scenarios (top to bottom)

1. DRAM only
2. Memory mode
3. App Direct + libvmmalloc, compute and DCPMM on socket 0
4. App Direct + libvmmalloc, compute on socket 0 and DCPMM on socket 1

CCS-EPCC Collaboration workshop, Tsukuba

Tracing with a smaller test case (2)

CCS-EPCC Collaboration workshop, Tsukuba

Table 1: DNA test case baseline performance results, including CASTEP’s own estimates of memory requirements and parallel
e�ciency, together with measured wallclock time for 3 SCF loop iterations, for di�erent node and process counts.

Nodes MPI x OpenMP Active cores Memory estimate per process Runtime Overall parallel e�ciency

34 48x1 1632 5,486.6 MB OOM N/A
24 36x1 864 6,476.0 MB 3,959.01s 23%
24 24x2 1152 7,491.2 MB 4,598.74s 28%
20 36x1 720 7,034.9 MB 3,311.88s 33%
20 24x2 960 8,320.0 MB 4,377.15s 36%
18 36x1 648 7,355.5 MB 3,587.94s 34%
18 24x2 864 8,843.5 MB 4,814.94s 36%

Table 2: Characterization of ECMWF forecast model output �elds.

Model Avg. Resolution Field Pts Typical Field Size Nb Fields / cycle Total Size / cycle Total Size / day

HRES Atmos 9 km 6.6 M 3.2 MiB 272 K 950 GiB 3.8 TiB
HRES Wave 14 km 938 K 1.4 MiB 170 K 325 GiB 1.3 TiB
ENS Atmos 18 km 1.7 M 804 KiB 10 M 15025 GiB 60.1 TiB
ENS Wave 28 km 234 K 340 KiB 10.5M 3475 GiB 13.9 TiB

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 442.30 -
Memory mode 484.90 1.10x
App Direct + libvmmalloc local 468.89 1.06x
App Direct + libvmmalloc remote 599.70 1.36x

Table 4: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode CPI Stall cycles Load instructions
from DCPMM

App Direct (DRAM only) 1.17 1.62E+13 0
Memory mode 1.25 1.87E+13 3.81E+08
App Direct + libvmmalloc local 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 1.57 2.45E+13 5.66E+08

Table 5: TiN test case, 1 node (48 MPI). App Direct (DRAM only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

1

Table 1: DNA test case baseline performance results, including CASTEP’s own estimates of memory requirements and parallel
e�ciency, together with measured wallclock time for 3 SCF loop iterations, for di�erent node and process counts.

Nodes MPI x OpenMP Active cores Memory estimate per process Runtime Overall parallel e�ciency

34 48x1 1632 5,486.6 MB OOM N/A
24 36x1 864 6,476.0 MB 3,959.01s 23%
24 24x2 1152 7,491.2 MB 4,598.74s 28%
20 36x1 720 7,034.9 MB 3,311.88s 33%
20 24x2 960 8,320.0 MB 4,377.15s 36%
18 36x1 648 7,355.5 MB 3,587.94s 34%
18 24x2 864 8,843.5 MB 4,814.94s 36%

Table 2: Characterization of ECMWF forecast model output �elds.

Model Avg. Resolution Field Pts Typical Field Size Nb Fields / cycle Total Size / cycle Total Size / day

HRES Atmos 9 km 6.6 M 3.2 MiB 272 K 950 GiB 3.8 TiB
HRES Wave 14 km 938 K 1.4 MiB 170 K 325 GiB 1.3 TiB
ENS Atmos 18 km 1.7 M 804 KiB 10 M 15025 GiB 60.1 TiB
ENS Wave 28 km 234 K 340 KiB 10.5M 3475 GiB 13.9 TiB

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 442.30 -
Memory mode 484.90 1.10x
App Direct + libvmmalloc local 468.89 1.06x
App Direct + libvmmalloc remote 599.70 1.36x

Table 4: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode CPI Stall cycles Load instructions
from DCPMM

App Direct (DRAM only) 1.17 1.62E+13 0
Memory mode 1.25 1.87E+13 3.81E+08
App Direct + libvmmalloc local 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 1.57 2.45E+13 5.66E+08

Table 5: TiN test case, 1 node (48 MPI). App Direct (DRAM only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

1

DNA test case

CCS-EPCC Collaborahon workshop, Tsukuba

SC’19, November 17–22, 2019, Denver, CO, USA Weiland et al.

Figure 2: Timeline of DCPMM loads (red graph) during the execution of the most expensive routine (green graph) in the TiN
test case. The top timelines (white background) show the application running in AppDirectmode, with no loads fromDCPMM
registered. The bottom timelines (purple background) show the same application running in Memory mode, and here loads
from DCPMM have been registered throughout the entire run although CASTEP and its data fully �t into DRAM cache.

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown CPI Stall cycles Load instructions from DCPMM

App Direct (DRAM only) 442.30 - 1.17 1.62E+13 0
App Direct + libvmmalloc local 468.89 1.06x 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 599.70 1.36x 1.57 2.45E+13 5.66E+08
Memory mode 484.90 1.10x 1.25 1.87E+13 3.81E+08

Table 4: TiN test case, 1 node (48 MPI). App Direct (DRAM
only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

less power than reads. On DCPMM however the power consump-
tion of writes can be up to 20W peak, whereas reads are closer to
idle power. In Memory mode, DRAM acts as a write-back cache
and thus covers writes to the DCPMM; as writes to DRAM are less
power hungry than writes to DCPMM, and with reads being very
power e�cient, this accounts for the di�erence in the overall power
draw.

Table 5: Measured memory high watermark ("MaxRSS") for
the DNA test case, as reported by SLURM’s sacct tool.

Number MPI procs Average mem Total mem
of nodes per node (GBs) (TBs)

1 48 (48 MPI per node) 1,735.40 1.69
2 96 (48 MPI per node) 882.16 1.72
4 192 (48 MPI per node) 452.10 1.77
20 720 (36 MPI per node) 103.21 2.01

5.1.8 CASTEP summary. For a simulation such as the DNA test
case with CASTEP, the large capacity of the DCPMM can be highly
bene�cial if used in Memory mode. Although there are no perfor-
mance gains in real terms of time to solution, the bene�ts lie in the
much more e�cient use of the resources that are available. It is pos-
sible to run the simulation on a smaller number of nodes while using

DNA test case now
fits on a single node

20% throughput
improvement

Conference’17, July 2017, Washington, DC, USA

Table 6: Measured memory high watermark ("MaxRSS") for the DNA test case, as reported by SLURM’s sacct tool.

Number MPI procs Average mem Total mem
of nodes per node (GBs) (TBs)

1 48 (48 MPI per node) 1,735.40 1.69
2 96 (48 MPI per node) 882.16 1.72
4 192 (48 MPI per node) 452.10 1.77
20 720 (36 MPI per node) 103.21 2.01

Table 7: DNA test case - comparing the runtime, total energy consumption (CPUs and memory only) and power draw (CPU
and memory per node) for App Direct vs App Direct with libvmmalloc vs Memory mode.

Mode Nodes MPI x OpenMP Hyperthreading Runtime
(per node) (Y/N) (seconds)

App Direct (DRAM only) 20 36x1 N 3,311.92
App Direct (DRAM only) 20 24x2 N 4,377.20

App Direct with libvmmalloc 20 36x1 N 3,491.59
App Direct with libvmmalloc 20 24x2 N 4,523.66

Memory mode 4 36x1 N 13,773.95
Memory mode 4 24x2 N 16752.95
Memory mode 4 48x1 N 14,127.05

Table 8: Memory power consumption per node - (1) DRAM only (no DCPMM), (2) DRAM plus DCPMM, (3) App Direct mode
(DCPMM at idle), and (4) Memory mode. The size of the STREAM problem is given both as the total memory required and the
array sizes.

STREAM total memory Memory power
(Array size) per node

Idle - DRAM only 11W
Idle - with DCPMM 23W
App Direct mode 4.5GiB (200 million) 40W
Memory mode 1,117.6 GiB (50 billion) 24W

I/O intensive application

CCS-EPCC Collaboration workshop, Tsukuba

OpenFOAM

• v1812 built with Intel 19.0.3.199 compilers & MPI library
• Test case: open wheel race car geometry – 90 million cells

CCS-EPCC Collaboration workshop, Tsukuba

decomposePar

•serial
•writes out

decomposed
mesh

renumberMesh

•parallel
•reads in

decomposed
mesh

•applies
renumbering
by
overwriting
existing mesh

potentialFoam

•parallel
•reads in field

data
•Applied

boundary
conditions

simpleFoam

•parallel
•reads in

mesh, fields
and
boundary
conditions

•writes output
at user
defined
intervals

Performance of default setup

CCS-EPCC Collaboration workshop, Tsukuba

7.68

4.46

3.37

1.89
1.5

0

1

2

3

4

5

6

7

8

9

4 nodes 8 nodes 12 nodes 16 nodes 20 nodes

TI
M

E
(S

EC
ON

DS
)

Performance - time per timestep

I/O characteristics for this case

CCS-EPCC Collaboration workshop, Tsukuba

-- processorN
|-- constant
|-- 0
|-- timestepT

|-- k
|-- nut
|-- omega
|-- p
|-- phi
|-- U
|-- uniform

|-- time
|-- functionObjects

|-- functionObjectProperties

“constant” and “0” are input – 31GB

timestep folder and its
contents are output

Total number of files created: N * T * 8
Total number of directories created: N * T * 3

Example: 960 processors, 100 iterations, write interval 1
à 960 * 100 * 8 = 768,000 files
à 960 * 100 * 3 = 288,00 directories

Data volume for 192 processes:
~40MB per hmestep on each process
à total: 7.5GB per hmestep

à wrihng every step for 500 steps
7.5GB * 500 = ~3.7TB

Using fsdax directly

• Taking advantage of OpenFOAM’s I/O strategy – use fsdax
namespace
• Write once, read never
• Write locally

• Copy test case data to DCPMM
• Use fsdax on both

sockets!

• Exploit MPMD for
good data locality

CCS-EPCC Collaboration workshop, Tsukuba

4 node experiments

CCS-EPCC Collaboration workshop, Tsukuba

7.
70

0

7.
68

0

7.
89

0

15
.0

60

7.
70

0

7.
70

0

7.
87

0 9.
50

0

N O I O W R I T E I N T E R V A L
1 0 0

W R I T E I N T E R V A L
1 0

W R I T E I N T E R V A L 1

TIME PER TIMESTEP
Lustre fsdax

1.6x

Total number of files created:
Write interval 1: 192 * 100 * 8 = 153,600

Total number of directories created: N * T * 3
Write interval 1: 192 * 100 * 3 = 57,600

20 node experiment

CCS-EPCC Collaboration workshop, Tsukuba

1.
49

1.
5 2.

87

29
.7

7

1.
47

1.
52 1.
98 2.
23

N O I O W R I T E I N T E R V A L
1 0 0

W R I T E I N T E R V A L
1 0

W R I T E I N T E R V A L 1

TIME PER TIMESTEP
Lustre fsdax

13x

Total number of files created:
Write interval 1: 960 * 100 * 8 = 768,000

Total number of directories created: N * T * 3
Write interval 1: 960 * 100 * 3 = 256,000

Performance stability

CCS-EPCC Collaboration workshop, Tsukuba

1

2

4

8

16

32

64

1
10 19 28 37 46 55 64 73 82 91

10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

31
6

32
5

33
4

34
3

35
2

36
1

37
0

37
9

38
8

39
7

40
6

41
5

42
4

43
3

44
2

45
1

46
0

46
9

47
8

48
7

49
6

TI
M

E
PE

R
ST

EP
 (S

EC
O

ND
S)

TIMESTEP #

Lustre Executiontime per step Lustre Clocktime per step fsdax Executiontime per step fsdax Clocktime per step

Achieved I/O performance

• Difference in time per timestep between “no IO” and “write interval X” can
be entirely attributed to data writes and associated metadata operations

• On 20 nodes – for “write interval 1”:

Lustre 29.77s - 1.47s = 28.28s
7.5GB / 28.28s = 0.256GB/s

fsdax 2.23s – 1.47s = 0.76s
7.5GB / 0.76s = 9.87GB/s

CCS-EPCC Collaborahon workshop, Tsukuba

Ensemble experiments

• Nobody runs on empty systems
• Single isolated experiments are also rare

• For a more realistic view, we compare performance of five 4-node
experiments running concurrently
• Using a total of 20 nodes, but independent simulations
• More representative of real, busy environments
• Plus: same number of metadata operations, but 5 times the amount of data

written
• 7.5GB per timestep per simulation

CCS-EPCC Collaboration workshop, Tsukuba

Ensemble performance

CCS-EPCC Collaboration workshop, Tsukuba

7.
67

4

7.
81

6

58
.9
7

7.
7 7.
84

4

9.
32

2

W R I T E I N T 100 WR I T E IN T10 WR I T E IN T1

AVERAGE TIME PER TIMESTEP - 5 SIMULTANEOUS RUNS
Lustre fsdax

Time per timestep: single run vs ensemble
Lustre fsdax

Single run
(4 nodes)

Ensemble average
(5 x 4 nodes)

Single run
(4 nodes)

Ensemble average
(5 x 4 nodes)

write interval 100 7.680 7.674 7.700 7.700

write interval 10 7.890 7.816 7.870 7.844

write interval 1 15.060 58.97 9.500 9.322

CCS-EPCC Collaboration workshop, Tsukuba

7.5GB per step

37.5GB per step
Lustre 7.5GB / (15.06-7.68) = 1.01GB/s

37.5GB / (58.97-7.67) = 0.73GB/s

fsdax 7.5GB / (9.5-7.7) = 4.17GB/s
37.5GB/ (9.3-7.7) = 23.12GB/s

Conclusions

• DCPMM is a new memory technology that offers unprecedented
opportunities both as memory & storage device
• Through byte-addressability, high capacity, low latency (and persistence)

• CASTEP in Memory mode à increased throughput
• OpenFOAM in App Direct mode à performance hit of I/O negated

• Many avenues for research still left to be explored

CCS-EPCC Collaboration workshop, Tsukuba

CCS-EPCC Collaboration workshop, Tsukuba
October 29, 2014

Messages To Take Home

36EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Storage Class Memories will change the way we use and store data

ECMWF has adapted its workflows to take advantage of these
upcoming technologies

Ensemble data sets are growing quadratically to cubically in size.
A challenge for time critical applications

NEXTGeQIO KaV UeceLYed IXQdLQJ IURP WKe EXURSeaQ UQLRQ¶V HRUL]RQ 2020
Research and Innovation programme
under Grant Agreement no. 671951

Semantic data access provides an abstraction under which new
technologies can be introduced, and performance can be gained.

Michèle Weiland, Holger Brunst, Tiago Quinhno, Nick Johnson, Olivier Iffrig, Simon Smart, Chrishan Herold, Antonino Bonanni, Adrian Jackson, and Mark
Parsons. 2019. An Early EvaluaPon of Intel’s Optane DC Persistent Memory Module and its Impact on High-Performance ScienPfic ApplicaPons. In The
Internahonal Conference for High Performance Com- puhng, Networking, Storage, and Analysis (SC’19), November 17–22, 2019, Denver, CO, USA.
hsps://doi.org/10. 1145/3295500.3356159

