2019 CCS-EPCC Workshop December 3rd, 2019

Proactive Preservation Activities of Cultural Heritage by Crowdsourcing

Hidehiko Shishido

Computational Media Group (CCS)

Proactive Preservation of World Heritage by Crowdsourcing and 3D Reconstruction Technology

⇒Judgment of damaged part → Visualization of damaged state

Cambodia, Bayon

Stone Pillar of ruins

Different chemicals were applied to stones made of same material as ruins to observe progress. Left: Various stone materials used for ruins Right: Stone pillar of ruins of observation target

Time-lapse Image with different shooting timing

Previous method

Our goal

Planning a proactive preservation project of Angkor ruins using crowdsourcing and time lapse images.

Preprocessing of the proposed method

Flow of the proposed method

- The camera position and orientation of two images with different image capture timing are obtained.
- The 3D model of the subject is rendered to the virtual camera.
- Estimate correct feature matches between each image using two captured images and two 3D model rendering images, and perform homography transformation.

Time-lapse Image with different shooting timing

Proposed method

Input image 1 December 2016

Our results

Input image 2 August 2017

Results

Results

Dataset1

Ours

Our goal

Planning a proactive preservation project of cultural heritage using crowdsourcing and time lapse images.

Feature matching of past image and current image (previous method)

Previous method : \rightarrow Many image features are miscorrespondence

Feature matching of past image and current image (previous method)

Goals of the proposed method: → Remove image feature miscorrespondence

Autoencoder \rightarrow Used for image feature matching

Image matching method using Autoencoder

Image matching method using Autoencoder

50 to 100 years ago image and current image data set for cultural heritage buildings

arch_easy01.jpg

londonbridge01.jpg

portcullis01.jpg

arch_easy02.jpg

londonbridge02.jpg

portcullis02.jpg

synagogue02.jpg

bank01.jpg

montreal01.jpg

postoffice01.jpg

montreal02.jpg

postoffice02.jpg

chinesebuilding01.jpg

neubrandenburg01.jpg

stargarder01.jpg

chinesebuilding02.jpg

neubrandenburg02.jpg

stargarder02.jpg

townsquare02.jpg

synagogue01.jpg

tavern01.jpg

tavern02.jpg

Hauagge, D. C., & Snavely, N. (2012, June). Image matching using local symmetry features. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 206-213). IEEE.

Image matching method using Autoencoder (experimental result)

Image matching method using Autoencoder (experimental result)

Research on 3D reconstruction of cultural heritage buildings

Matching images between 50 to 100 years ago and current heritage buildings

Proposal of image matching method using Autoencoder

