Delivering easy-to-use frameworks to empower data-driven research

> Dr. Rosa Filgueira, rosa.filgueira@ed.ac.uk

PhD Computer Science – University Carlos III of Madrid, Spain

- Dynamic optimization techniques (reducing overhead in IO and communication systems) to enhance performance of MPI-based applications
- <u>Compute-Intensive Applications</u>

Research Fellow – EPCC, University of Edinburgh, UK

- Scalability and performance of applications executed on HPC and Cloud
- Workflows, data-frameworks, containers and reproducibility tools, etc.
- <u>Data-Intensive Computing Applications</u>

https://www.rosafilgueira.com/

Common points

Astronomy, Geosciences, Meteorology, Bioinformatics

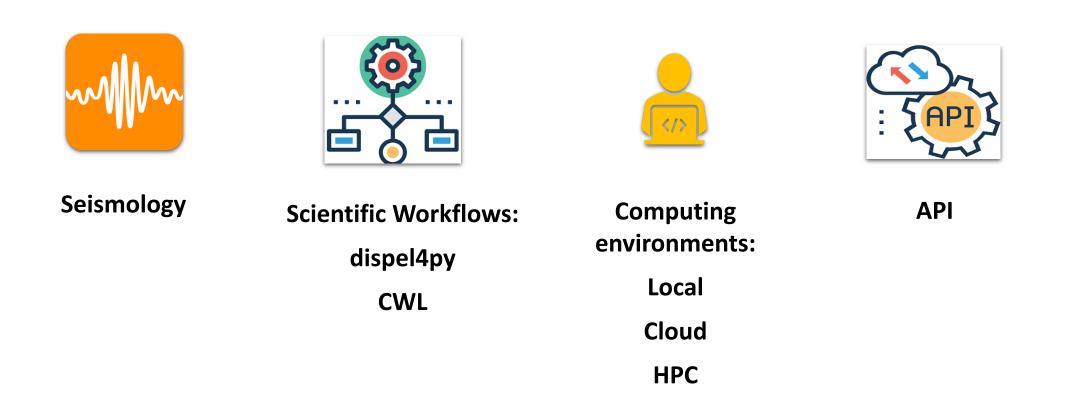
5

Big complex data sets


Need to be analysed

Numerous software tools

Data transformation and visualisation


Scientific Workflows and Computing environments

Computational steps:

- Scalability
- Flexibility
- Robustly

Delivering Agile Research Excellence on European e-Infrastructures

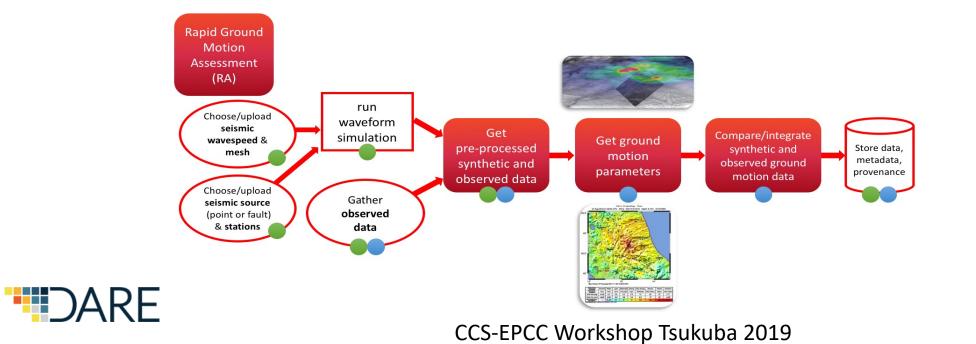
Aim: To empower domain experts to invent and improve their methods and models

How: By providing a new platform and working environment

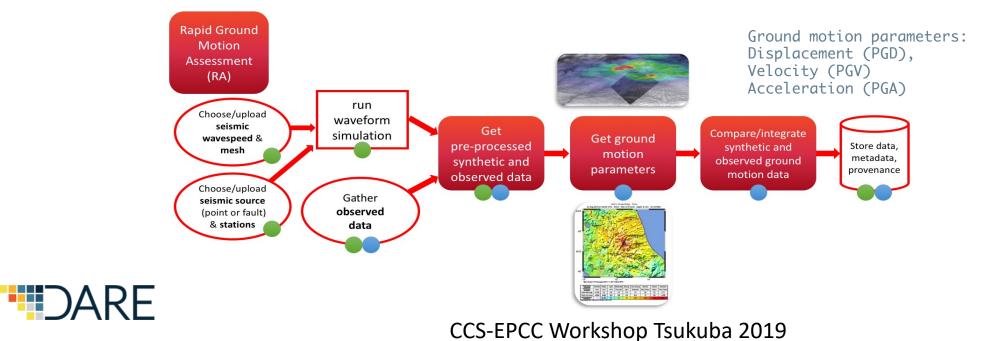
Outcome:

- * Tools/frameworks/APIs for data-driven experiments
- * Rapid prototyping
- * Run applications at scale on heterogenous systems.

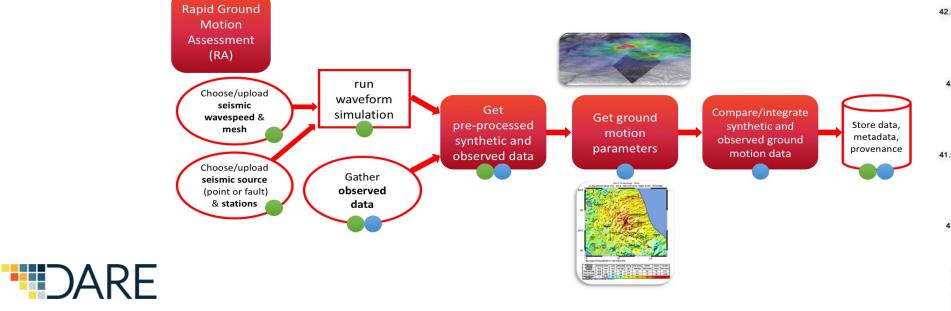
Domains: Seismology (INGV) and Climate (CERFACS)



http://project-dare.eu/

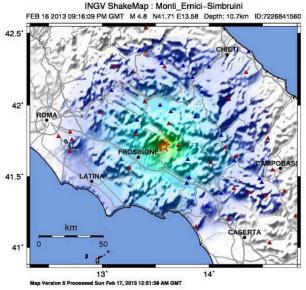

- * Quickly analyse earthquakes
- * Model the ground motion after earthquakes
- * Rapid assessment of earthquakes' impact, and emergency response

- (1) Select an earthquake gathering the real observed seismic waveforms
- (2) Simulate synthetic seismic waveforms corresponding to the same earthquake
- (3) Pre-process both synthetic and real data;
- (4) Calculate the ground motion parameters for synthetic and real data
- (5) Compare them with each other (two types of normalization: mean | max)
 - shake maps and json files

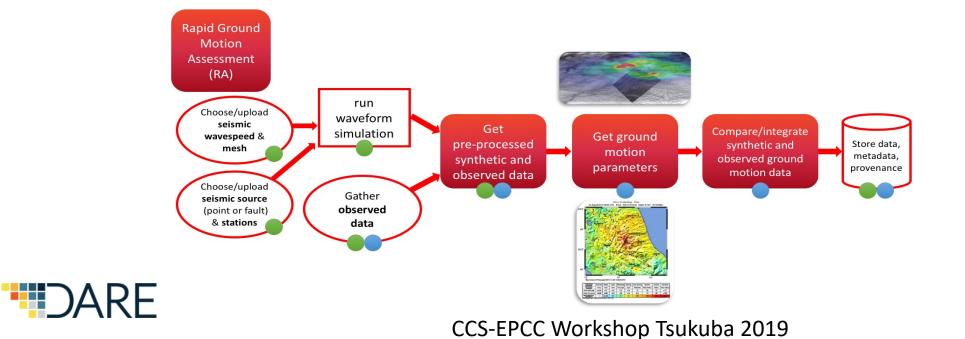

RA – Five main phases

Earthquake Sora: Southern Italy (Lazio - Frosinone) - 16 Feb 2013
Magnitude : 4.9

Synthetics:
43 stations * (3 components) simulated data == 129 synth waveforms


Real - Download from EIDA archive
31 stations * (3 components) observed data == 93 real waveforms

Outputs: 2 maps – one per normalization type == 62 files


3-Component Seismogram Records Seismic-wave Motion

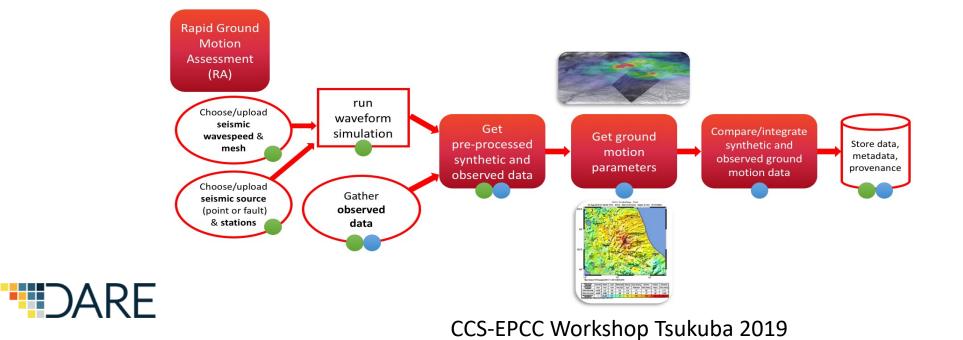
PERCEIVED	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.1	0.5	2.4	6.7	13	24	44	83	>156
PEAK VEL.(cm/s)	<0.07	0.4	1.9	5.8	11	22	843	83	>160
INSTRUMENTAL	1	11-111	IV	V	VI	VII	VIII	IX	×+

- * Rapid data analyses and transfer between co-working environments
- * Multiple data formats (ascii, xml, obspy, jpg, binary, geojson)
- * Multiple data sources (public databases)
- * Combination of numerous outputs from multiple workflows/software \rightarrow Provenance
- * Computing and storage resources on demand
- * Flexibility and abstraction of workflow pipelines

RA – User Stories – Agile Methodology

► Closed) 20 🛆 0	 Closed 	[]) 20 合	0 Closed	[] 20 合 0
As a seismologist I want to upload to an a simulation configuration parameters (wa model, mesh and seismic source) C - API C - DataStore T - Rapid Assessme T - Seismic Source Characterisation #29	aveform	As a seismologist I wan from external archives C - API C - DataStore C - Workflow Language T - Ensemble Simulations T - Seismic Source Charact #32	C - Provenance C- Processing T - Rapid Assessment	As a seismologist I want outputs (e.g. ground m observed data C - API C - PE Catalogu C - Workflow Language T - Ensemble Simulations #5	otion parameters) with C - Provenance C - Processing
As a seismologist I want to search and se an archive of configuration parameters (model, mesh and seismic source) to set simulation C - API C - DataStore T - Rapid Assessme T - Seismic Source Characterisation #28	(waveform up my	As seismologist I want for further analyses C - API C - PE Catalogu C - Workflow Language T - Ensemble Simulations T - Seismic Source Charact #41	C- Processing T - Rapid Assessment	visual products produce	nance T - Ensemble Simulations
As seismologist I want to run a waveform simulator with my selected configuration parameters C - API C - Provenance C - Workflow Lan C- Processing T - Rapid Assessment T - Seismic Source Characterisation	n	As a seismologist I wan motion parameters from C - API C - PE Catalogu C - Workflow Language T - Ensemble Simulations #12	Le C - Provenance C- Processing		

Current status (at M18 of the project) of the stories (all closed) for the RA use case



To run it on different computing environments

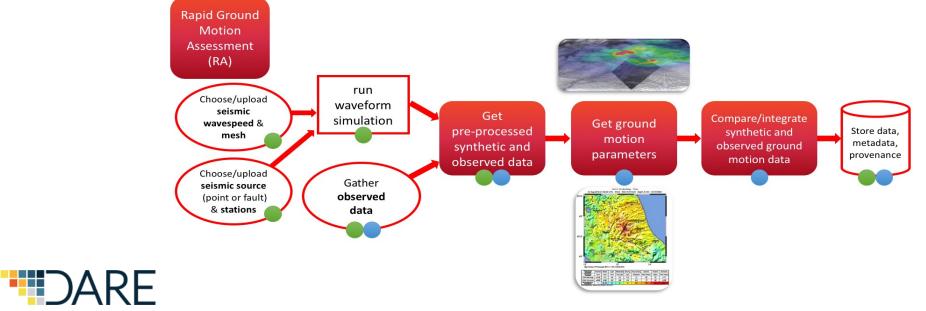
- without making any (or little) changes

Technologies:

- * Scientific workflows (CWL), stream-based data-flow systems (dispel4py),
- * Containers (Docker), Infrastructure orchestrations (Kubernetes),
- * Notebooks (Jupyter), and Cloud platforms.

RA - Summary Steps (I)

1. Dockerize Specfem3D



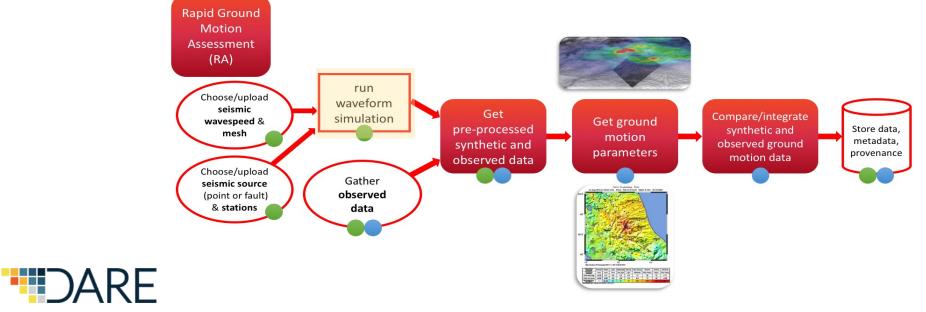
Build a CWL workflow for generating synthetic data

2. Build dispel4py workflows to represent each part of the RA (**)

(**) Except for the generation of the synthetic data

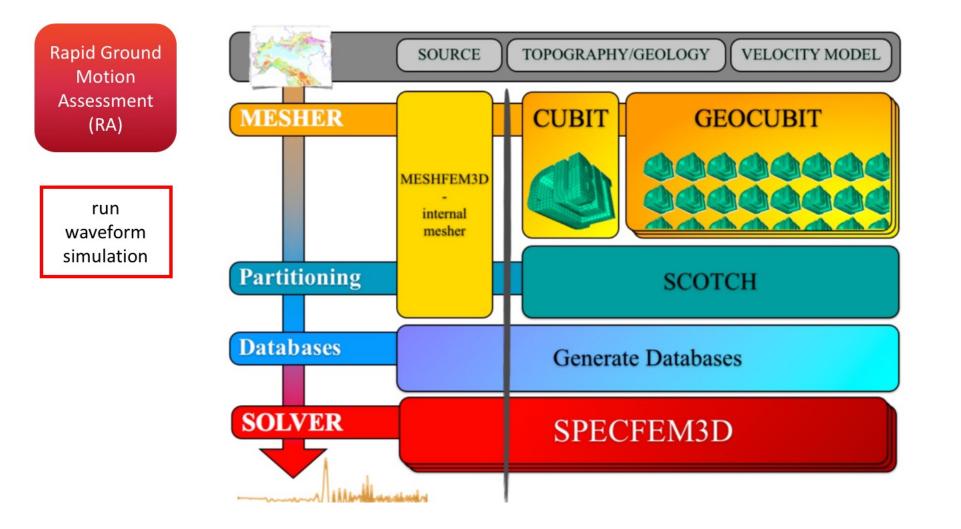
3. Use CWL to connect RA dispel4py workflows

RA - Summary Steps (I)


1. Dockerize Specfem3D

Build a CWL workflow for generating synthetic data

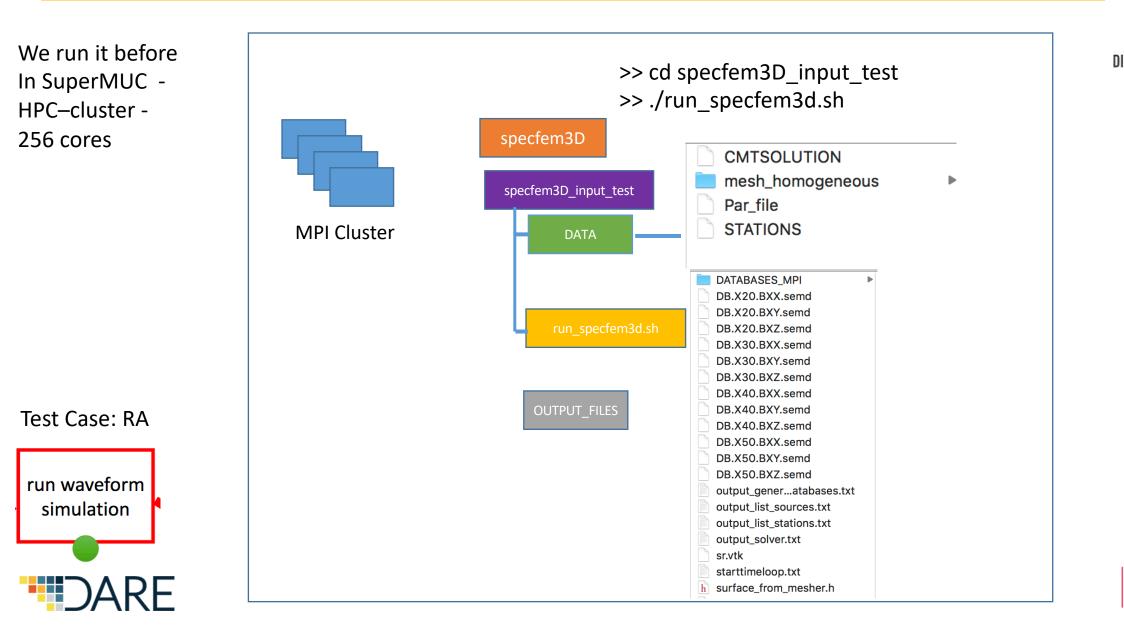
2. Build dispel4py workflows to represent each part of the RA (**)


(**) Except for the generation of the synthetic data

3. Use CWL to connect RA dispel4py workflows

Seismic Waveform Simulation: SPECFEM3D

Specfem3d– MPI application that creates the synthetic waveforms



Seismic Waveform Simulation: SPECFEM3D

ISTITUTO NAZIONALE We run it before **DI GEOFISICA E VULCANOLOGIA** >> cd specfem3D input test In SuperMUC ->> ./run specfem3d.sh HPC-cluster specfem3D 256 cores **CMTSOLUTION** : earthquake source parameter file mesh_homogeneous : high-quality mesh for the region specfem3D input test Par_file : the main parameter file : list of stations **STATIONS MPI** Cluster DATA A0T1 IV 42.77383 13.29350 770.0 0.0 AQU IV 42.35400 13.40500 710.0 0.0 #!/bin/bash ARRO IV 42.57917 12.76567 253.0 0.0 body-wave magnitude Prelin CAFR IV 42.22730 14.34700 250.0 0.0 echo "running example: `date` surface-wave magnitude currentdir=`pwd CAMP IV 42,53578 13,40900 1283.0 0.0 # sets up directory structure in current example directory CERA IV 41.59780 14.01830 800.0 0.0 longitude depth mb Ms PDE event name setting up example..." CERT IV 41.94903 12.98176 773.0 0.0 echo PD -118.3792 6.4 4.2 4.2 HOLLYWOOD CESX IV 42,60849 12,58676 380.0 0.0 eve # cleans output files FAGN IV 42,26573 13,58379 761.0 0.0 mkdir -p OUTPUT_FILES
rm -rf OUTPUT_FILES/* tim solutior 10 FIAM IV 42.26802 13.11718 1070.0 0.0 hal GIUL IV 41.55827 13.25458 566.0 0.0 # links executables lat mkdir -p bin cd bin/ GUAR IV 41.79450 13.31229 741.0 0.0 M_{rr} $M_{r\theta} \quad M_{r\phi}$ lon rm -f * INTR IV 42.01154 13.90460 924.0 0.0 CMT $M_{r\theta} \quad M_{\theta\theta} \quad M_{\theta\phi}$ In -s ../../specfem3d/bin/xdecompose_mesh
In -s ../../specfem3d/bin/xgenerate_databases dep LATB IV 41.49390 12.96239 0.0 0.0 ln -s ../../specfem3d/bin/xspecfem3D Mrr LAV9 IV 41.67778 12.69888 300.0 0.0 $M_{r\phi}$ $M_{\phi\phi}$ $M_{\theta\phi}$ cd ../ Mtt LNSS IV 42.60286 13.04032 1155.0 0.0 Harvard # stores setup
cp DATA/Par_file OUTPUT_FILES/ Mpp IPEL TV 42,04680 14,18320 760.0 0.0 Test Case: RA $\frac{1}{\sqrt{2}} \left(\mathbf{M} : \mathbf{M} \right)^{1/2} \approx 2.18 \times 10^{22} \text{ dyne cm}$ cp DATA/CMTSOLUTION OUTPUT_FILES/ cp DATA/STATIONS OUTPUT_FILES/ Mrt MA9 IV 41.76976 12.65907 340.0 0.0 Mrp 19 MIDA IV 41.64188 14.25402 950.0 0.0 # get the number of processors, ignoring comments in the Par_fi NPROC=`grep ^NPROC DATA/Par_file | grep -v -E '^[[:space:]]*#' Mtp MNS IV 42.38546 12.68106 706.0 0.0 20 $\frac{2}{3} (\log_{10} M_0 - 16.1) \approx 4.19$ MODR IV 41.14590 13.87790 345.0 0.0 BASEMPIDIR=`grep ^LOCAL_PATH DATA/Par_file | cut -d = -f 2 ` MOMA IV 42.80387 12.57007 1040.0 0.0 echo \$BASEMPIDIR mkdir -p \$BASEMPIDIR MTCE IV 42.02280 12.74222 388.0 0.0 run waveform # decomposes mesh using the pre-saved mesh files in MESH-defaul NRCA IV 42.83355 13.11427 927.0 0.0 echo " decomposing mesh..." echo Axis (x10^3) PIGN IV 41.20000 14.17989 398.0 0.0 simulation POFI IV 41.71743 13.71202 878.0 0.0 ./bin/xdecompose_mesh \$NPROC ./DATA/mesh_homogeneous \$BASEMPIDI # checks exit code PTOR TV 42,02193 13,40057 957,0 0,0 if [[\$? -ne 0]]; then exit 1; fi RDP IV 41.76039 12.71030 760.0 0.0 # runs database generation 29 RM32 IV 42.57024 13.29322 1362.0 0. if ["\$NPROC" -eq 1]; then # This is a serial simulation 30 RM33 IV 42.50898 13.21452 1097.0 0.0 - 10 RMP IV 41.81112 12.70222 380.0 0.0 echo " running database generation...' RNI2 IV 41.70328 14.15240 950.0 0.0 ./bin/xgenerate_databases ROM9 IV 41.82842 12.51553 110.0 0.0 else # This is a MPI simulation ARF SAMA IV 41.78050 12.59230 119.0 0.0 echo echo running database generation on \$NPROC processors... SGG IV 41.38667 14.37917 880.0 0.0 echo NGNOD --allow-run-as-root -np \$NPROC ./bin/xgenerate_databases SMA1 IV 42.63050 13.33530 1150.0 0.0 mpirun fi The nur exahedra. We use either 8-node mesh SRES IV 42.23696 12.50993 410.0 0.0 # checks exit code if [[\$? -ne 0]]; then exit 1; fi elemen 38 T0104 IV 42.35990 13.33820 754.0 0.0 rnal mesher, the only option is 8-node # runs simulation "run_test.sh" 84L, 1838C

Seismic Waveform Simulation: SPECFEM3D

Open standard for describing

- workflows and tools
- platform-independent

1st-tool.cwl

<pre>#!/usr/bin/env cwl-runne</pre>
cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
inputs:
message:
type: string
<pre>inputBinding:</pre>
position: 1
outputs: []

Next, create a file called echo-job.yml, containing the following boxed text, which will describe the input of a run:

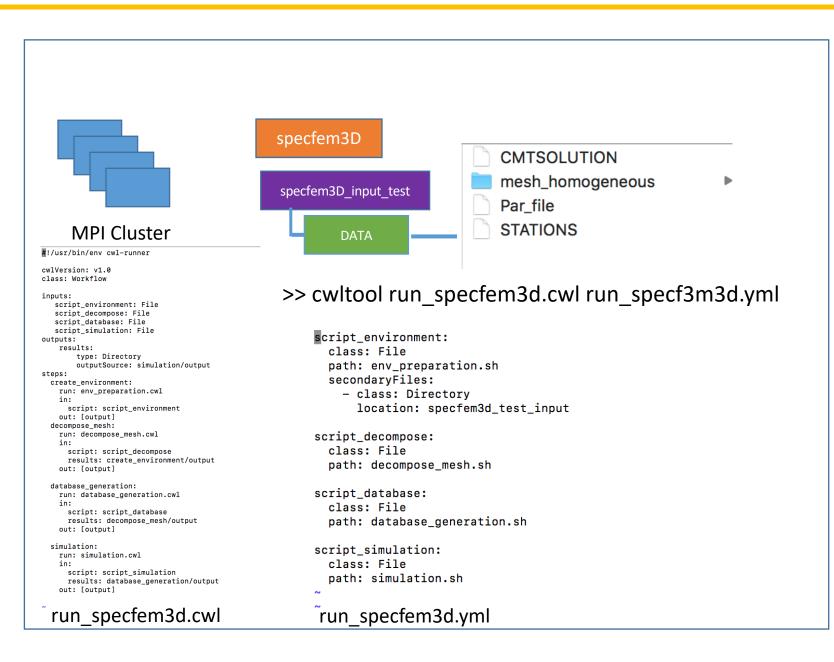
echo-job.yml

message: Hello world!

Designed to meet the needs of data-intensive science

\$ cwl-runner 1st-tool.cwl echo-job.yml
[job 1st-tool.cwl] /tmp/tmpmM5S_1\$ echo \
 'Hello world!'
Hello world!
[job 1st-tool.cwl] completed success
{}
Final process status is success

Rules to describe each command line tool and its parameters


https://www.commonwl.org/user_guide/02-1st-example/index.html

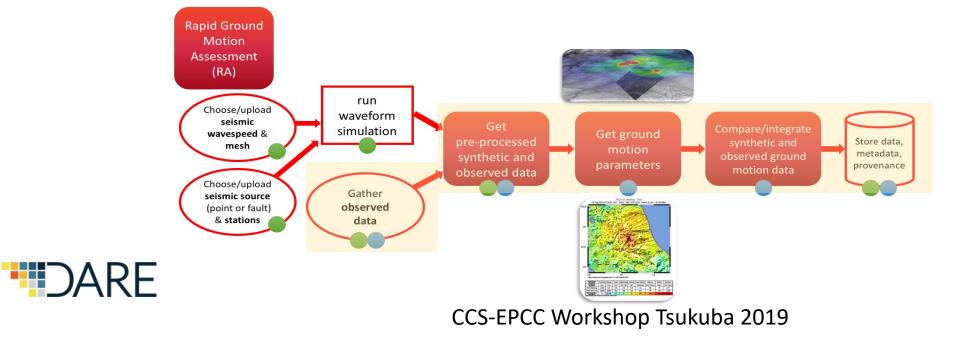
Test Case: RA

run waveform

simulation

)ARF

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA


1. Dockerize Specfem3D

Build a CWL workflow for generating synthetic data

2. Build dispel4py workflows to represent each part of the RA (**)

(**) Except for the generation of the synthetic data

3. Use CWL to connect RA dispel4py workflows



dispel4py parallel stream-based dataflow system

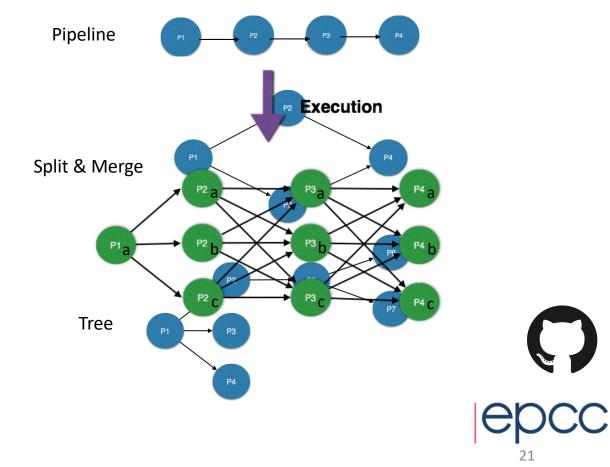
Key-features: Automatic mappings to different engines, concurrent & stream-based

Embarrassing parallel data-instensive applications

https://github.com/dispel4py/dispel4py

Graph

- Connections among PES
- Abstract workflow

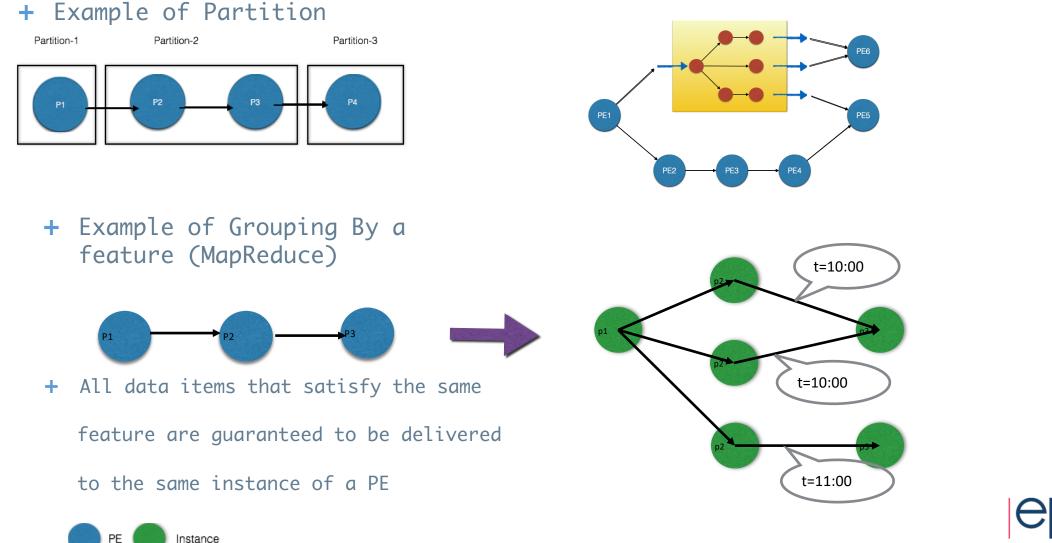

Instance

- Each PE is translated into one or more instances in run-time
- Each instance runs in a process
- dispel4py does it for you
- Concrete workflow

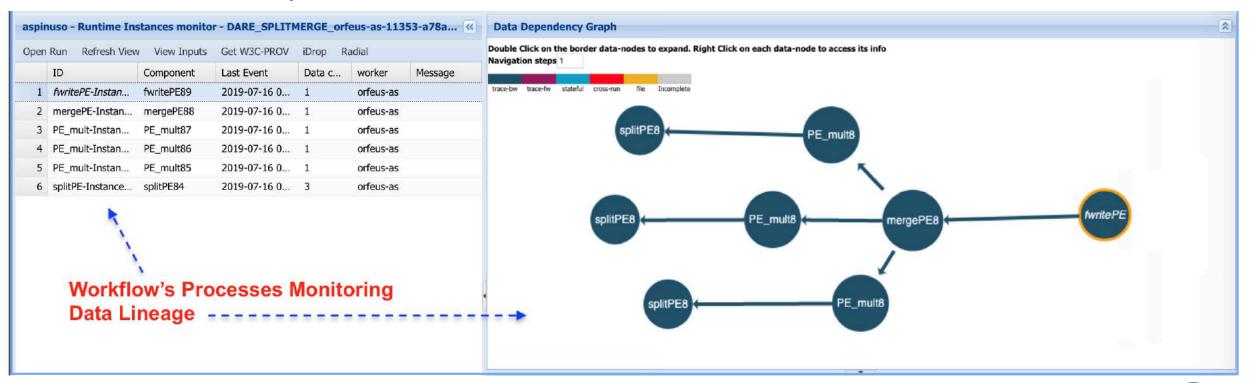
Mappings

• Sequential, multiprocessing, MPI

+ Example of graphs



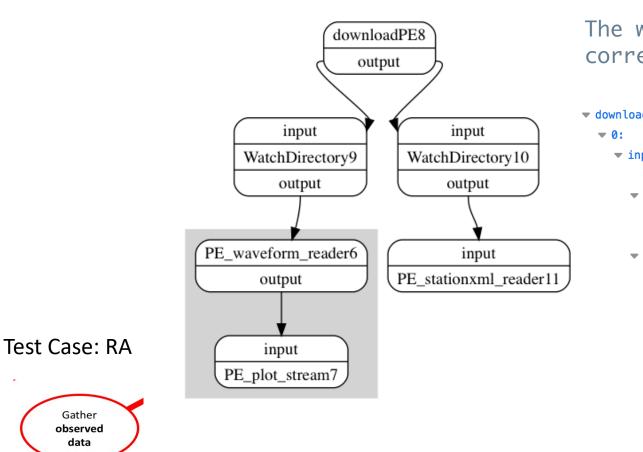
dispel4py parallel stream-based dataflow system



+ Example of Composite PE

22

Provenance Alessandro Spinuso


Runtime provenance collection with selective paths and user-defined domain information.

 \mathbf{O}

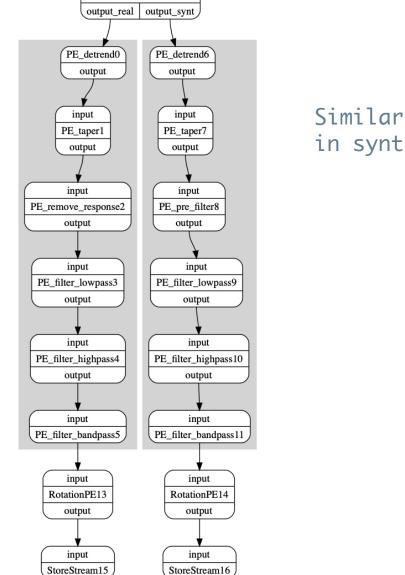
CCS-EPCC Workshop Tsukuba 2019

dis

Gather observed data

The workflow downloads real waveforms corresponding to the same earthquake.

wnloadPE:	
0:	
▼ input:	
<pre>minimum_interstation_distance_in_m:</pre>	100
<pre></pre>	
0:	"BH[E,N,Z]"
1:	"EH[E,N,Z]"
<pre>vlocation_priorities:</pre>	
0:	
1:	"00"
2:	"10"
<pre>mseed_path:</pre>	"./data"
<pre>stationxml_path:</pre>	"./stations"
RECORD_LENGTH_IN_MINUTES:	1
ORIGIN_TIME:	"2013-02-16T21:16:09.29"
minlatitude:	41.10007459633125
maxlatitude:	42.89777970948071
minlongitude:	12.041644551237324
maxlongitude:	14.439665626790928


CCS-EPCC Workshop Tsukuba 2019

v 0:

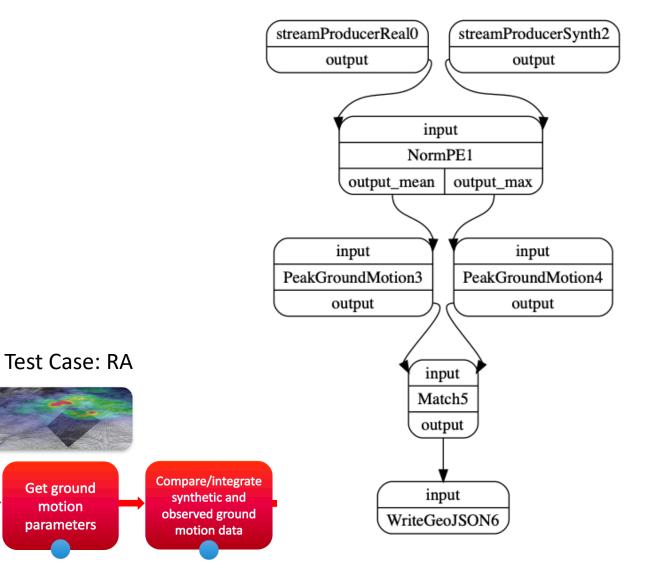
dis

RA – Pre-processing observed and synthetic data

data12

Similar preprocessing steps in synthetic and observed data

dis



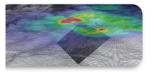
Get ground

motion

parameters

Ground motion parameters: Peak ground values of **displacement**, **velocity** and acceleration.

Two types of normalisation – Mean & Max Two set of PGM outputs - Max & Mean



RA – Ground motion parameters

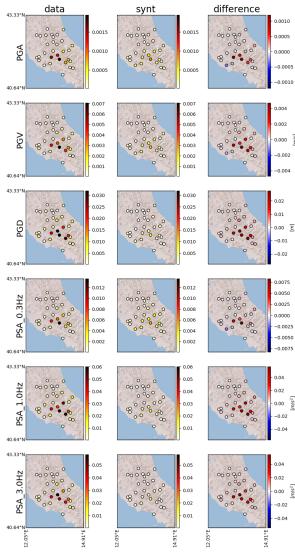
Peak ground values of Displacement (PGD), Velocity (PGV) Acceleration (PGA)

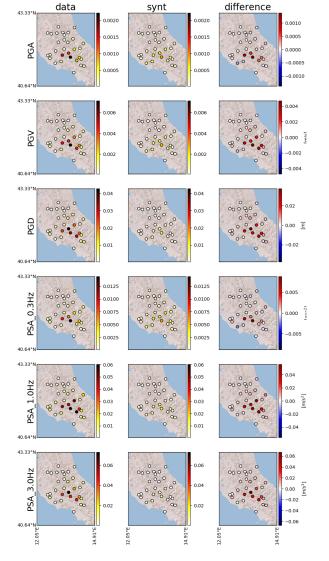
output

Test Case: RA

Get ground motion parameters

Compare/integrate
synthetic and
observed ground
motion data

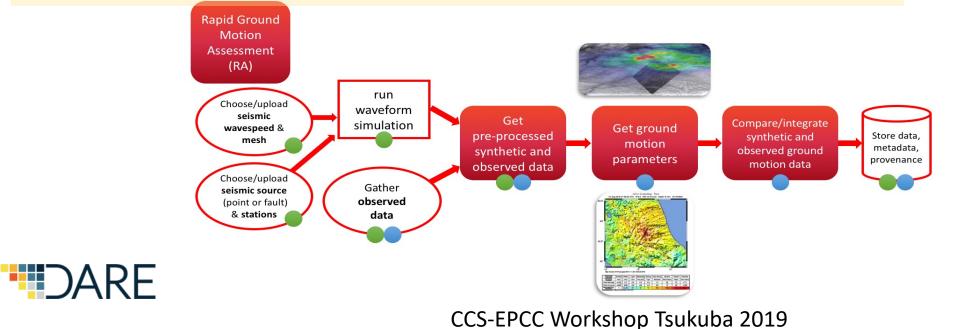

type:	"Feature"	type
properties:		▼ proj
station:	"ARRO"	s
▼data:		▼ d
PGD:	0.00003058970011915515	
PGV:	0.00015387362683992627	
PGA:	0.0008035731527687157	
p_norm:	"max"	
PSA_0.3Hz:	0.000171880777011629	
PSA_1.0Hz:	0.0020140831084336057	
PSA_3.0Hz:	0.0009812436987400703	
▼synt:		▼ s
PGD:	0.000038899272805005096	* 5
PGV:	0.00011736045694475592	
PGA:	0.00035493665398226155	
p_norm:	"max"	
PSA_0.3Hz:	0.0003942182089108563	
PSA_1.0Hz:	0.0007176179285863899	
PSA_3.0Hz:	0.0003707452407479844	
<pre>▼difference:</pre>		
PGD:	-0.000008309572685849946	⊸ d
PGV:	0.000036513169895170355	
PGA:	0.0004486364987864541	
PSA_0.3Hz:	-0.0002223374318992273	
PSA_1.0Hz:	0.0012964651798472158	
PSA_3.0Hz:	0.0006104984579920859	
<pre>relative_difference</pre>		
PGD:	-0.2716460983102781	▼ r
PGV:	0.23729322980834633	
PGA:	0.5583020005592205	
PSA_0.3Hz:	-1.2935561251517065	
PSA_1.0Hz:	0.6436999418834826	
PSA_3.0Hz:	0.6221680289778919	
▼ geometry:		
type:	"Point"	▼ g
coordinates:	[]	9


type:	"Feature"
<pre>properties:</pre>	
station:	"ARRO"
▼data:	
PGD:	0.00003058970011915515
PGV:	0.00015387362683992627
PGA:	0.0008035731527687157
p_norm:	"mean"
PSA_0.3Hz:	0.000171880777011629
PSA_1.0Hz:	0.0020140831084336057
PSA_3.0Hz:	0.0009812436987400703
▼synt:	
PGD:	0.000038899272805005096
PGV:	0.00011736045694475592
PGA:	0.00035493665398226155
p_norm:	"mean"
PSA_0.3Hz:	0.0003942182089108563
PSA_1.0Hz:	0.0007176179285863899
PSA_3.0Hz:	0.0003707452407479844
<pre>▼difference:</pre>	
PGD:	-0.000008309572685849946
PGV:	0.000036513169895170355
PGA:	0.0004486364987864541
PSA_0.3Hz:	-0.0002223374318992273
PSA_1.0Hz:	0.0012964651798472158
PSA_3.0Hz:	0.0006104984579920859
<pre>▼ relative_difference:</pre>	
PGD:	-0.2716460983102781
PGV:	0.23729322980834633
PGA:	0.5583020005592205
PSA_0.3Hz:	-1.2935561251517065
PSA_1.0Hz:	0.6436999418834826
PSA_3.0Hz:	0.6221680289778919
▼ geometry:	
type:	"Point"
coordinates:	[]

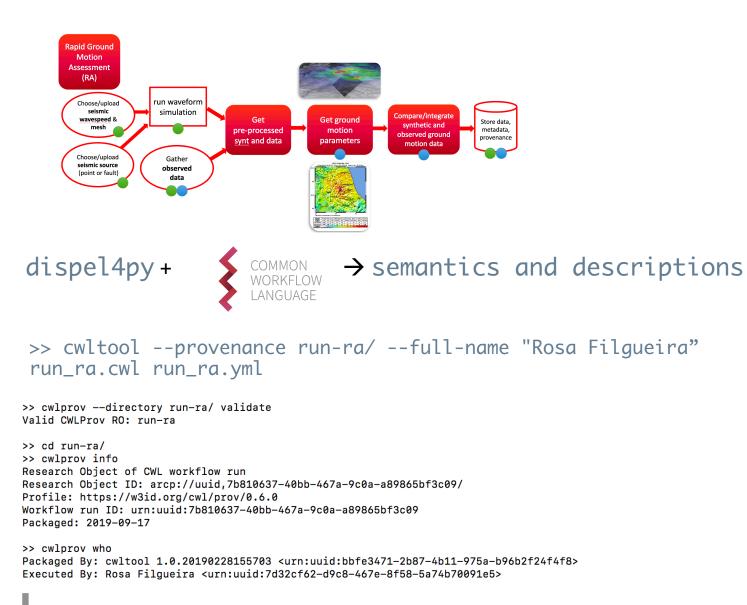
RA - Ground motion parameters maps

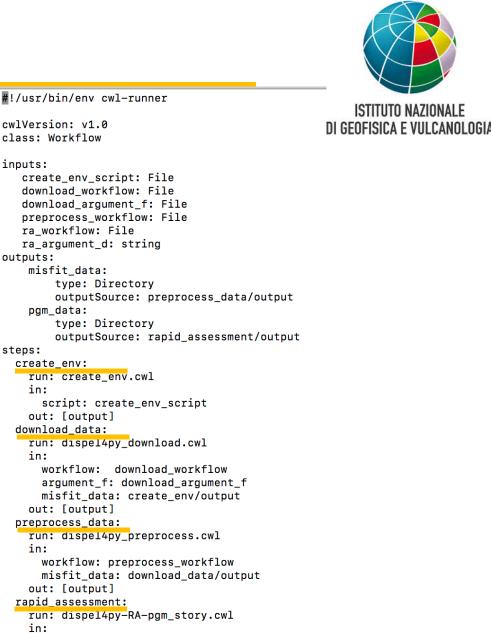
Waveform propagation snapshots and maps of ground motion parameters are fundamental for a visual representation of the earthquake

MEAN


1. Dockerize Specfem3D

Build a CWL workflow for generating synthetic data


2. Build dispel4py workflows to represent each part of the RA (**)


(**) Except for the generation of the synthetic data

3. Use CWL to connect RA dispel4py workflows

cwlVersion: v1.0

class: Workflow

misfit data:

pgm_data:

create env:

download data:

in:

in:

in:

in:

out: [output]

workflow: ra_workflow

argument_d: ra_argument_d

misfit_data: preprocess_data/output

inputs:

outputs:

steps:

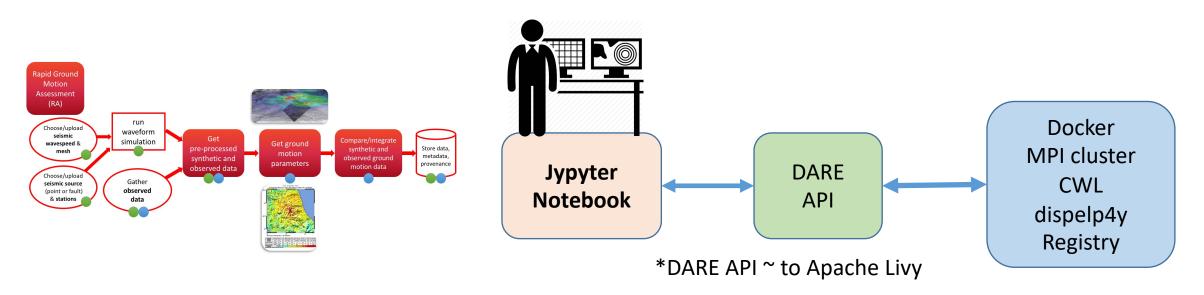
- 1. Dockerize Specfem3D + CWL
- 2. RA dispel4py workflows
- 3. CWL to connect RA dispel4py workflows

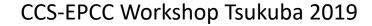
Experiment I:

• Run all the steps of the RA in our laptops, small dataset, sequential mapping

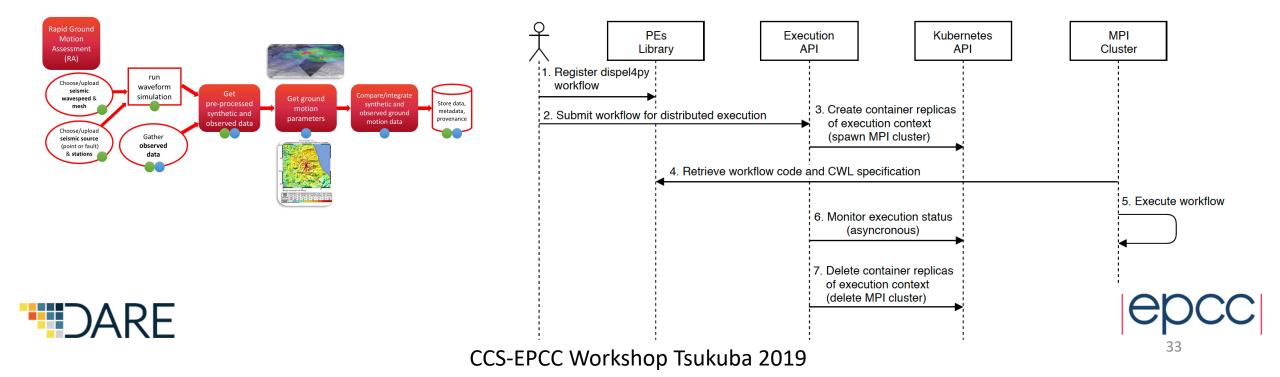
Experiment II:

• Run the same codes using NSF-Chameleon cloud, MPI docker cluster, larger dataset, MPI mapping


CWL is in charge to execute and connect each part of the RA application.

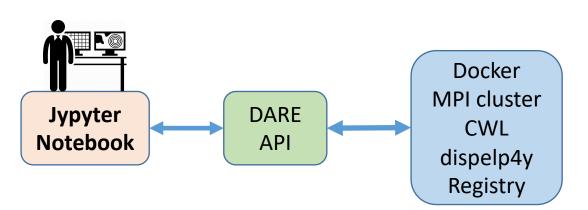

RA – Summary Steps (II)

- 4. DARE API Workflows as a Services
- 5. Orchestration with Kubernetes: MPI cluster, dispel4py, CWL, SPECFEM3D, Registry
- 6. Jupyter Notebooks to submit applications/workflows to the working environment:



RA - Summary Steps (II)

- 4. DARE API Workflows as a Services
- 5. Orchestration with Kubernetes: MPI cluster, dispel4py, CWL, SPECFEM3D, Registry
- 6. Jupyter Notebooks to submit applications/workflows to the working environment:



DARE API

- Web service
- Acts as an intermediary between: •
 - users' applications
 - the underlying computing resources
- Provisions a computing environment
 - Docker MPI cluster spawned on demand / Kubernetes
- Runs and monitors an application
- Collect its provenance and results

Jupyter WP6 Rapid assessment Last Checkpoint: 16 hours ago (autosaved)	Logout
File Edit View Insert Cell Kernel Widgets Help	Trusted mypython3 O

WP6 Rapid Assessment executed through DARE exec-api

Using DARE components:

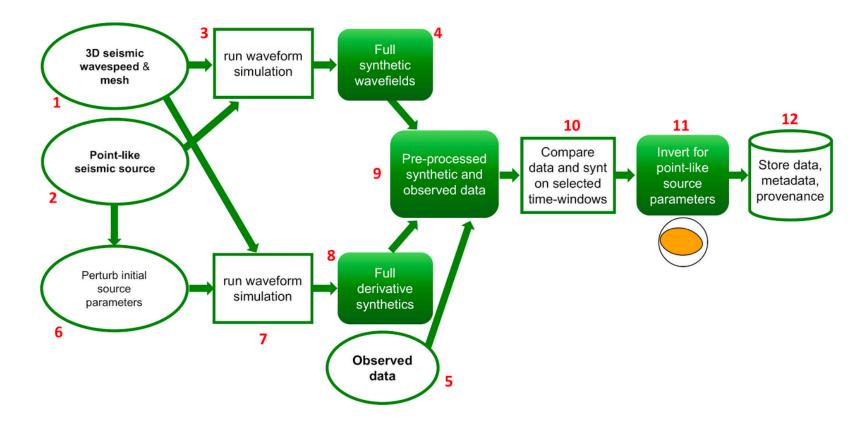
- Execution API: https://testbed.project-dare.eu/exec-api
 - Includes execution of d4p workflows and specfem. Also calls for uploading, downloading and listing data files.
- dispel4py Registry API: https://testbed.project-dare.eu/d4p-registry

Overview

- 1. Run waveform simulation --- Specfem3D -- it creates the sythetic waveforms (seed)
- 2. Create input for download -- it reads the input files of the specfem3d simulation and creates the corresponding input ison file for the following download workflow
- 3. Get observed data -- it downloads the observed waveforms and station xml files
- 4. Get pre-processed data and synth -- it preprocesses observed and synthetic seismograms
- 5. Get ground motion parameters and compare them -- it calculates pgm parameters from observed and synthetic seismograms and compare them
- 6. Plot the PGM map -- it plots maps of pgm parameters and of comparisons between data and synth

Constants and Imports

In [1]: # Constant hostnames of exec-api and d4p-registry api EXEC API HOSTNAME = 'https://testbed.project-dare.eu/exec-api' D4P REGISTRY HOSTNAME = 'https://testbed.project-dare.eu/d4p-registry


> # D4P-registry credentials REG USERNAME = ' REG PASSWORD = ''

Imports import json, os import sys import requests

Get helper functions from previous directory import helper_functions as F

Characterises the source parameters of an earthquake: location, magnitude and rupture mechanism.

Many simulations by perturbing the source parameters. Analysis of the impact caused by **each simulation** on the ground motion.

New interfaces provide a fluent path from prototyping to production.

Data-intensive applications are not locked to platforms

- * can be moved to suitable new platforms
- * without human intervention

Abstract and semantic descriptions to allow reproducibility and portability.

Workflows-as-a-services (Waas): End-users do not need to set up any environment

Workflows can be optimised intelligently without the user needing to do that

- New dispel4py mappings dynamic deployment ZeroMQ
- Handling errors Recovery from failure(s)
- Automatic optimizations exploiting data parallelism

CWLProv + dispel4py Provenance - integrate different levels of provenance

Delivering easy-to-use frameworks to empower data-driven research

Questions?

DARE: A Reflective Platform Designed to Enable Agile Data-Driven Research on the Cloud, IEEE eScience 2019 Comprehensible control for researchers and developers facing data challenges, IEEEE eScience 2019

Thanks!

DARE

CCS-EPCC Workshop Tsukuba 2019

Dr. Rosa Filgueira rosa.filgueira@ed.ac.uk

