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Introduction

What is Tensor Network (TN) Scheme?

Theoretical and numerical methods for high precision analyses
of many body problems with tensor network formalism   

What is different from conventional methods?

Free from sign problem and complex action problem in Monte Carlo method
Computational cost for LD system size ∝ D�log(L)
Direct treatment of Grassmann numbers
Direct evaluation of partition function Z itself

Possible applications in particle physics�
Light quark dynamics in QED/QCD, Finite density QCD,
Strong CP problem, Chiral gauge theories, Lattice SUSY etc.

Also many applications in condensed matter physics



Tensor Renormalization Group (TRG)

Explain the algorithm with 2D Ising model with N sites

Details of model are specified in initial tensor
The algorithmic procedure is independent of  models

Of course, direct contraction is impossible for large N even with current 
fastest supercomputer   
⇒ How to evaluate the partition function?

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2

1

Hamiltonian

Partition Function

Tensor Network formulation

χ(L) =
1

L2

∂2 ln Z

∂(1/2κ)2

Z =
∫
DψDψ̄DU e−ψ̄D[U ]ψ−Sg[U ]

Ti,j,k,l ≃
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{si}
exp (−βH)

=
2∑

α,β,γ,δ,···=1
Tα,λ,ρ,δTσ,κ,α,βTµ,β,γ,τTγ,δ,ν,χ · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

1

Levin-Nave 
PRL99(2007)120601
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Schematic View of TRG Algorithm
1. Singular Value Decomposition of local tensor T
2. Contraction of old tensor indices (coarse-graining)
3. Repeat the iteration  

Keep largest Dcut components
⇒ Reduction of freedom

#sites are reduced to half

Tensors 
w/ new indices
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TRG Algorithm (1)
Singular Value Decomposition of local tensor T

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

exp(x cos z) =
∞∑

k=−∞
Ik(x) exp(ikz) x ∈ R, z ∈ C

1

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

exp(x cos z) =
∞∑

k=−∞
Ik(x) exp(ikz) x ∈ R, z ∈ C

1

4
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j

m

m

ik

l

j
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l
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l
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S
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TRG Algorithm (2)

Contraction of old tensor indices of S1, S2, S3, S4 (coarse-graining)

Keep largest Dcut components ⇒ Reduction of freedom

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

Ti,j,k,l ≃
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

1

n

2

S4
S3
S1

T
(new)

i

j

k

l

m

po

po

mnS

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l ≃
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

1

#sites are reduced to half



Numerical test for 2D Ising Model

The key element in the algorithm is low-rank approximation by SVD

Truncation error is controlled by the parameter Dcut

Free energy on and off the transition point, lattice size=230�50, Dcut=24

Xie et al. 
PRB86(2012)045139

Comparison with analytic results
Relative error of free energy�≤10−6

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A

(a)
x'1
x'2

y'1

i

T(n)

T(n)

x1

x2
y2

y1 y'2

z

z'

z

z'

x'
y'

x
y T(n+1)

T(n)
(b)

M(n)

T(n+1)

x x'

y'

y

z

z'

U(n) U(n)
V(n)

V(n)
M(n)

FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with

l r

f

b

u

d

i j

m

n k
U
(n+1)

E
(n+1)

E
(n)

T
(n)

V
(n+1)

FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E

(n)
mnjiuk from E

(n+1)
lrf bud in three

dimensions.
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Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

Ti,j,k,l ≃
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n

⎡

⎢⎣(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)
⎤

⎥⎦

φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

1



Study of 3D Ising Model
Xie et al. 
PRB86(2012)045139

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 10. (Color online) Temperature dependence of the magne-
tization for the 3D Ising model (D = 14). The Monte Carlo result is
from Ref. 35. (Inset) Logarithmic plot of the magnetization around
the critical point. The slope of the fitting curve gives the critical
exponent of the magnetization, γ = 0.3295.

D. It becomes converged only when D ! 13, indicating the
importance of keeping a large D in the 3D TRG calculation.
The error in Tc, estimated from the difference between the
values of Tc for D = 15 and D = 16, is also less than 10−6. A
comparison of the values of Tc obtained by different methods
is shown in Table II. Our results agree with the Monte Carlo
data.37–39

The above discussion indicates that the HOTRG works
very well in 3D. The accuracy of the results can be further
improved by applying the HOSRG. However, the HOSRG
calculation costs much more CPU time. A thorough study
with the HOSRG on the 3D Ising model is still in progress
and the results will be published separately.

IV. GROUND STATE AND THERMODYNAMICS OF 2D
QUANTUM LATTICE MODELS

A d-dimensional quantum lattice model is equivalent
to a (d + 1)-dimensional classical model, the HOTRG and

FIG. 11. (Color online) The critical temperature Tc as a function
of the bond dimension D for the 3D Ising model obtained from the
internal energy (U ) and magnetization (M), respectively.

TABLE II. Comparison of the critical point Tc for the 3D Ising
model obtained by different methods.

Method Tc

HOTRG (D = 16, from U) 4.511544
HOTRG (D = 16, from M) 4.511546
Monte Carlo37 4.511523
Monte Carlo38 4.511525
Monte Carlo39 4.511516
Monte Carlo35 4.511528
Series expansion40 4.511536
CTMRG12 4.5788
TPVA13 4.5704
CTMRG14 4.5393
TPVA16 4.554
Algebraic variation41 4.547

HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG24 and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑

⟨ij⟩
σ i

zσ
j
z − h

∑

i

σ i
x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
the Trotter-Suzuki decomposition formula, we can express the
partition function as19

Z = Tre−βH ≈ Tr[e−τHze−τHx ]L + O(τ 2), (20)

where

Hz = −
∑

⟨ij⟩
σ i

zσ
j
z , (21)

Hx = −h
∑

i

σ i
x . (22)

β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V can be expressed as a product of
local tensors. From this, we can express the partition function
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Results show good agreement with Monte Carlo data at high precision

Higher-Order TRG (HOTRG): applicable to higher dimensional models

Computational cost ∝ (Dcut)11�log(V)

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 10. (Color online) Temperature dependence of the magne-
tization for the 3D Ising model (D = 14). The Monte Carlo result is
from Ref. 35. (Inset) Logarithmic plot of the magnetization around
the critical point. The slope of the fitting curve gives the critical
exponent of the magnetization, γ = 0.3295.

D. It becomes converged only when D ! 13, indicating the
importance of keeping a large D in the 3D TRG calculation.
The error in Tc, estimated from the difference between the
values of Tc for D = 15 and D = 16, is also less than 10−6. A
comparison of the values of Tc obtained by different methods
is shown in Table II. Our results agree with the Monte Carlo
data.37–39

The above discussion indicates that the HOTRG works
very well in 3D. The accuracy of the results can be further
improved by applying the HOSRG. However, the HOSRG
calculation costs much more CPU time. A thorough study
with the HOSRG on the 3D Ising model is still in progress
and the results will be published separately.

IV. GROUND STATE AND THERMODYNAMICS OF 2D
QUANTUM LATTICE MODELS

A d-dimensional quantum lattice model is equivalent
to a (d + 1)-dimensional classical model, the HOTRG and

FIG. 11. (Color online) The critical temperature Tc as a function
of the bond dimension D for the 3D Ising model obtained from the
internal energy (U ) and magnetization (M), respectively.

TABLE II. Comparison of the critical point Tc for the 3D Ising
model obtained by different methods.

Method Tc

HOTRG (D = 16, from U) 4.511544
HOTRG (D = 16, from M) 4.511546
Monte Carlo37 4.511523
Monte Carlo38 4.511525
Monte Carlo39 4.511516
Monte Carlo35 4.511528
Series expansion40 4.511536
CTMRG12 4.5788
TPVA13 4.5704
CTMRG14 4.5393
TPVA16 4.554
Algebraic variation41 4.547

HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG24 and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).44,45

Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H = −
∑

⟨ij⟩
σ i

zσ
j
z − h

∑

i

σ i
x . (19)

We start by representing the partition function of this model
as a tensor-network model in the 2 + 1 dimensions. By using
the Trotter-Suzuki decomposition formula, we can express the
partition function as19

Z = Tre−βH ≈ Tr[e−τHze−τHx ]L + O(τ 2), (20)

where

Hz = −
∑

⟨ij⟩
σ i

zσ
j
z , (21)

Hx = −h
∑

i

σ i
x . (22)

β = Lτ is the inverse temperature and τ is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V ,

Z = TrV L, (23)

where

V = e−τHx/2e−τHze−τHx/2 (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V can be expressed as a product of
local tensors. From this, we can express the partition function

045139-6

Dcut dependence of Tc Comparison with Monte Carlo data

1%
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Application of TRGs to Particle Physics (1)

2D models
Ising model�Levin-Nave, PRL99(2007)120601
X-Y model�Meurice+, PRE89(2014)013308
CP(1)�Kawauchi-Takeda, PRD93(2016)114503
Real φ4 theory�

Shimizu, Mod.Phys.Lett.A27(2012)1250035,
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184

Complex φ4 theory at finite density�
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation

U(1) gauge theory+θ�
YK-Yoshimura, arXiv:1911.06480

Schwinger, Schwinger+θ�
Shimizu-YK, PRD90(2014)014508, PRD90(2014)074503,

PRD97(2018)034502 
Gross-Neveu model at finite density�

Takeda-Yoshimura, PTEP2015(2015)043B01
N=1 Wess-Zumino model�

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1803(2018)141



12

Application of TRGs to Particle Physics (2)

3D models
Ising�Xie+, PRB86(2012)045139
Potts model�Wan+, CPL31(2014)070503
Free Wilson fermion�

Sakai-Takeda-Yoshimura, PTEP2017(2017)063B07, 
Yoshimura-YK-Nakamura-Takeda-Sakai, PRD97(2018)054511

Z2 gauge theory at finite temperature�
YK-Yoshimura, JHEP1908(2019)023

4D models
Ising�Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510

weak first-order phase transition (not second-order phase transition)



A Selected Topic on Complex Action

2D pure U(1) gauge theory w/ θ-term
YK-Yoshimura, arXiv:1911.06480

How to treat continuous dof? 
Complex action with so-called θ-term 
Sign problem is really solved?



Lattice action of 2D pure U(1) gauge theory w/ θ-term 

Periodic boundary condition ⇒ Q is integer

Analytic result

Predict a first order phase transition at θ=π

2D Pure U(1) Gauge Theory w/ θ-Term

UTHEP-738, UTCCS-P-125

Tensor renormalization group study of two-dimensional U(1) lattice gauge theory
with a θ term

Yoshinobu Kuramashi1 and Yusuke Yoshimura1

1Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
(Dated: November 13, 2019)

We make an analysis of the two-dimensional U(1) lattice gauge theory with a θ term by using
the tensor renormalization group. Our numerical result for the free energy shows good consistency
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I. INTRODUCTION

It has been argued that pure gauge theories with a θ
term contain intriguing nonperturbative aspects. Pos-
sible phase transition in the two-dimensional (2D) pure
U(N) gauge theory was investigated at θ = 0 in the large
N limit by Gross and Witten thirty years ago [1] and
Seiberg discussed that it has a phase transition at θ = π
in the strong coupling limit [2]. Later Witten showed
that the four-dimensional (4D) pure Yang-Mills theory
yields the spontaneous CP violation at θ = π in the large
N limit [3]. Recently this non-trivial phenomena was also
predicted based on the argument of the anomaly match-
ing between the CP symmetry and the center symmetry
[4]. Up to now, unfortunately, the numerical study with
the lattice formulation has not been an efficient tool to
investigate these nonperturbative phenomena. The rea-
son is that the lattice numerical methods are based on
the Monte Carlo algorithm so that they suffer from the
sign problem caused by the introduction of the θ term.

In 2007 the tensor renormalization group (TRG) was
proposed by Levin and Nave to study 2D classical spin
models [5]. They pointed out that the TRG method does
not suffer from the sign problem in principle. This is
a fascinating feature to attract the attention of the el-
ementary particle physicists, who have been struggling
with the sign problem to investigate the finite density
QCD, the strong CP problem, the lattice supersymme-
try and so on. In past several years exploratory numeri-
cal studies were performed by applying the TRG method
to the quantum field theories in the path-integral for-
malism [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
The authors and their collaborators have confirmed that
the TRG method is free from the sign problem by suc-
cessfully demonstrating the phase structure predicted by
Coleman [19] for the one-flavor Schwinger model with
the θ term employing the Wilson fermion formulation [8]
and the Bose condensation accompanied with the Silver
Blaze phenomena in the 2D complex scalar φ4 theory at
the finite density [18].

In this article we apply the TRG method to the 2D
pure U(1) lattice gauge theory with a θ term. Since this is

the simplest pure lattice gauge theory with a θ term and
the analytical result for the partition function is already
known [21], it is a good test case for the TRG method to
check the feasibility to investigate the nonperturbative
properties of the lattice gauge theories with a θ term
overcoming the sign problem. In the previous studies of
Schwinger model with and without the θ term [7, 8, 9], we
employed the character expansion method to construct
the tensor network representation following the proposal
in Ref. [20]. In this work, however, we use the Gauss
quadrature method to discretize the phase in the U(1)
link variable. This is motivated by the success of the
Gauss quadrature method to discretize the continuous
degree of freedom in the TRG studies of the scalar field
theories [16, 18].

This paper is organized as follows. In Sec. II we explain
the TRG method to calculate the partition function of
the 2D pure U(1) gauge theory. Numerical results for the
phase transition at θ = π are presented in Sec. III, where
our results are compared with the exact ones which are
analytically obtained. Section IV is devoted to summary
and outlook.

II. TENSOR RENORMALIZATION GROUP
ALGORITHM

A. 2D pure U(1) lattice gauge theory with a θ term

The Euclidean action of the two-dimensional pure U(1)
lattice gauge theory with a θ term is defined by

S = −β
∑

x

cos px − iθQ (1)

px = ϕx,1 + ϕx+1̂,2 − ϕx+2̂,1 − ϕx,2 (2)

Q =
1
2π

∑

x

qx, qx = px mod 2π (3)

where ϕx,µ ∈ [−π,π] is the phase of U(1) link variable
at site x in µ direction. The range of qx is [−π,π] and it
can be expressed as follows by introducing an integer nx:

qx = px + 2πnx, nx ∈ {−2,−1, 0, 1, 2}. (4)

"x,1

"x,+1,2"x,2

"x+2,1

complex

3

Mijkl =
√

wiwjwkwl

(2π)4

∞∑

n=−∞
ein(ϕ(i)+ϕ(j)−ϕ(k)+ϕ(l))

⎛

⎝
∞∑

m,m′=−∞
Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)

⎞

⎠ . (15)

In the practical calculation, the sums of n,m and m′ can
be truncated when the contributions of the terms are
small enough. In this work we discard the contributions
of Im,m′/I0 < 10−10 or Jn−m,n−m′/J0 < 10−10.

III. NUMERICAL ANALYSIS

A. Setup

The partition function of Eq. (7) is evaluated with the
TRG method at β =0.0 and 10.0 as a function of θ on a
V = L × L lattice, where L is enlarged up to 1024. We
choose N = 32 for the polynomial order of the Gauss-
Legendre quadrature in Eq. (8). The SVD procedure in
the TRG method is truncated with D = 32. We have
checked that these choices of D and N provide us suffi-
ciently converged results for all the parameter sets em-
ployed in this work. Since the scaling factor of the TRG
method is

√
2, the allowed lattice size for the partition

function is L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The peri-
odic boundary condition is employed in both directions
so that the topological charge Q is quantized to be an
integer.

B. Free energy

The analytic result for the partition function of Eq. (7)
is given by [21]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ,β))V , (16)

zP(θ,β) =
∫ π

−π

dϕP

2π
exp

(
β cos ϕP + i

θ

2π
ϕP

)
, (17)

where zP(θ,β) denotes the one-plaquette partition func-
tion with ϕP ∈ [−π,π]. In Fig. 1 we plot the magnitude
of the relative error for the free energy defined by

δf =
| ln Zanalytic − lnZ(N,D = 32)|

| lnZanalytic|
(18)

at θ = π on a 1024 × 1024 lattice. There are a couple
of important points to be noted. Firstly, the deviation
quickly diminishes as N increases even at θ = π, around
which the Monte Carlo approaches do not work effec-
tively due to large statistical errors [24]. Secondly, our
method yields more precise results than the plain Gauss-
Legendre quadrature method at any value of N . Thirdly,

our choice of a parameter set of (D,N) = (32, 32) yields
δf = 1.35 × 10−14, which means that the free energy is
determined at sufficiently high precision. Hereafter we
present the results obtained with (D,N) = (32, 32).
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100

 δ
f

Plain quadrature
Improved method

FIG. 1. Relative error of free energy as a function of N with
D = 32 on a 1024 × 1024 lattice. N is the polynomial order
of the Gauss-Legendre quadrature in Eq. (8).

C. Topological charge density

The expectation value of the topological charge ⟨Q⟩ at
β = 10.0 is obtained by the numerical derivative of the
free energy with respect to θ:

⟨Q⟩ = −i
∂ lnZ

∂θ
. (19)

In Fig. 2 we show the volume dependence of ⟨Q⟩/V
around θ = π, where the analytic calculation predicts
the first order phase transition at any value of β [21]. We
observe that a finite discontinuity emerges with mutual
crossings of curves between different volumes at θ = π
as the lattice size L is increased. This feature indicates
there is a first order phase transition at θ = π.

It may be interesting to calculate the topological
charge density in the strong coupling limit β = 0.0, whose
analytical result was obtained by Seiberg in the infinite
volume limit [2]:

⟨Q⟩
V

∣∣∣∣
β=0

= −i

(
1
2

cot
(

θ

2

)
− 1

θ

)
. (20)

Figure 3 compares the numerical result at β = 0.0 with
the analytic expression of Eq. (20). The discrepancy

Wiese, NPB318(1989)153

Z =
⎛

⎝
∏

x,µ

∫ π

−π

dϕx,µ

2π

⎞

⎠
∏

x
T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2) = exp
⎛

⎝β cos px + i
θ

2π
qx

⎞

⎠

Z =
⎛

⎝
∏

x,µ

∫ π

−π

dϕx,µ

2π

⎞

⎠ exp (−S)

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l ≃
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

1



Conventional Approach

Previous Monte Carlo result for free energy

Doesn’t work for θ≳0.7π (difficult near the transition point)
No successful numerical calculation so far

SU~1!5b(
p

~Up1Up*!, ~3.1!

where Up is the product of the U~1! link phases around the
plaquette p and where b is the inverse coupling.
Define a local topological density np via

np[
1
i ln(Up)/2p, where 2p, 1

i ln(Up)<p. The total topo-
logical charge Q is given by Q5(pnp . The u term Su term is
iuQ , that is @45#

Su term5
u

2p(
p
ln~Up!. ~3.2!

Equation ~3.2! is the lattice analog of the continuum u-term
action i(u/2p)*d2xF .
In d52 dimensions, gauge theories are exactly solvable

even in the presence of a u term. For periodic boundary
conditions, in which case Q is quantized to an integer, the
result is @41#

Z~u ,b ,V !5 (
m52`

`

@z~u12pm ,b!#V, ~3.3!

where

z~u ,b!5
*2p

p ~d f p/2p!exp~ i f pu/2p!exp@2bcos~ f p!#
*2p

p ~d f p/2p!exp@2bcos~ f p!#
.

~3.4!

Here, f p can be thought of as the field strength for a single
plaquette: Up5exp(ifp). In the infinite volume limit, the free
energy difference per unit volume f (u) is given by

f ~u ,b!52ln@z~u ,b!# . ~3.5!

In particular, at b50, one obtains @18#

f ~u ,0 !52lnF2usinS u

2 D G , ~3.6!

when 2p,u<p .

We have performed Monte Carlo studies of the U~1!
gauge theory to gain insight into computer simulations for a
system with a u term. The action consisted of the sum of the
actions in Eqs. ~3.1! and ~3.2!. Two values of b were con-
sidered: b50.0 and b51.0. Three simulation methods were
employed: naive, binning, and binning with a trial-
probability function. Heat-bath updating was used with the
naive and binning methods. The Metropolis algorithm was
used with the trial-probability-binning method. The trial-
probability distribution P0(Q) was chosen to be a Gaussian:
P0(Q)}exp(2kQ2), where the constant k was appropriately
selected. After thermalizing the system, the number of
sweeps ranged from tens of million to several hundred mil-
lion. One sweep corresponded to updating once all the link
variables of the lattice. The number crunching was done on
IBM and Sun desktop workstations.
Figure 1 plots the free energy versus u for b51.0, for a

periodic 16316 lattice. For the naive method, the data points
correspond to short horizontal line segments. A total of 75
million updating sweeps were performed. The error bars
were computed using a jackknife method @46# by dividing
the run into 15 data sets, each of which involved 5 million
sweeps. The solid line is the exact analytic result. Analytic
and Monte Carlo results agree for u less than 2.1. The agree-
ment, which is excellent, cannot be seen on the scale of Fig.
1. For example, at u50.5, fMC50.002 420 04(53) versus
f exact50.002 419 6, at u51.0, fMC50.009 668 5(46) ver-
sus f exact50.009 668 2, at u51.5, fMC50.021 699(61) ver-
sus f exact50.021714, and at u52.0, fMC50.0386(37) ver-
sus f exact50.0385, where the statistical uncertainty in the last
two digits is displayed in parentheses.6 For u beyond 2.1,
error bars grew and the partition function became negative.
One sees that the ‘‘barrier u’’ ub is about 2.1. The statistical
error in PMC(0) was 331025. Using this error in Eq. ~2.10!
to estimate ub , one finds ub'2.05. The agreement of the
theoretical ub with the Monte Carlo value confirms the data-
analysis discussion of Sec. II. One can also check Eq. ~2.13!

6For example, the u52.0 result is fMC50.038660.0037.

FIG. 1. U~1! free energy vs u at b51.0 for
the naive and binning methods.
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I. INTRODUCTION

It has been argued that pure gauge theories with a θ
term contain intriguing nonperturbative aspects. Pos-
sible phase transition in the two-dimensional (2D) pure
U(N) gauge theory was investigated at θ = 0 in the large
N limit by Gross and Witten thirty years ago [1] and
Seiberg discussed that it has a phase transition at θ = π
in the strong coupling limit [2]. Later Witten showed
that the four-dimensional (4D) pure Yang-Mills theory
yields the spontaneous CP violation at θ = π in the large
N limit [3]. Recently this non-trivial phenomena was also
predicted based on the argument of the anomaly match-
ing between the CP symmetry and the center symmetry
[4]. Up to now, unfortunately, the numerical study with
the lattice formulation has not been an efficient tool to
investigate these nonperturbative phenomena. The rea-
son is that the lattice numerical methods are based on
the Monte Carlo algorithm so that they suffer from the
sign problem caused by the introduction of the θ term.

In 2007 the tensor renormalization group (TRG) was
proposed by Levin and Nave to study 2D classical spin
models [5]. They pointed out that the TRG method does
not suffer from the sign problem in principle. This is
a fascinating feature to attract the attention of the el-
ementary particle physicists, who have been struggling
with the sign problem to investigate the finite density
QCD, the strong CP problem, the lattice supersymme-
try and so on. In past several years exploratory numeri-
cal studies were performed by applying the TRG method
to the quantum field theories in the path-integral for-
malism [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
The authors and their collaborators have confirmed that
the TRG method is free from the sign problem by suc-
cessfully demonstrating the phase structure predicted by
Coleman [19] for the one-flavor Schwinger model with
the θ term employing the Wilson fermion formulation [8]
and the Bose condensation accompanied with the Silver
Blaze phenomena in the 2D complex scalar φ4 theory at
the finite density [18].

In this article we apply the TRG method to the 2D
pure U(1) lattice gauge theory with a θ term. Since this is

the simplest pure lattice gauge theory with a θ term and
the analytical result for the partition function is already
known [21], it is a good test case for the TRG method to
check the feasibility to investigate the nonperturbative
properties of the lattice gauge theories with a θ term
overcoming the sign problem. In the previous studies of
Schwinger model with and without the θ term [7, 8, 9], we
employed the character expansion method to construct
the tensor network representation following the proposal
in Ref. [20]. In this work, however, we use the Gauss
quadrature method to discretize the phase in the U(1)
link variable. This is motivated by the success of the
Gauss quadrature method to discretize the continuous
degree of freedom in the TRG studies of the scalar field
theories [16, 18].

This paper is organized as follows. In Sec. II we explain
the TRG method to calculate the partition function of
the 2D pure U(1) gauge theory. Numerical results for the
phase transition at θ = π are presented in Sec. III, where
our results are compared with the exact ones which are
analytically obtained. Section IV is devoted to summary
and outlook.

II. TENSOR RENORMALIZATION GROUP
ALGORITHM

A. 2D pure U(1) lattice gauge theory with a θ term

The Euclidean action of the two-dimensional pure U(1)
lattice gauge theory with a θ term is defined by

S = −β
∑

x

cos px − iθQ (1)

px = ϕx,1 + ϕx+1̂,2 − ϕx+2̂,1 − ϕx,2 (2)

Q =
1
2π

∑

x

qx, qx = px mod 2π (3)

where ϕx,µ ∈ [−π,π] is the phase of U(1) link variable
at site x in µ direction. The range of qx is [−π,π] and it
can be expressed as follows by introducing an integer nx:

qx = px + 2πnx, nx ∈ {−2,−1, 0, 1, 2}. (4)

2

For periodic boundary conditions, the topological charge
Q becomes an integer:

Q =
∑

x

( px

2π
+ nx

)
=

∑

x

nx (5)

The tensor may be given with continuous indices,

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

= exp
(

β cos px + i
θ

2π
qx

)
. (6)

The partition function is represented as

Z =

(
∏

x,µ

∫ π

−π

dϕx,µ

2π

)

∏

x

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2). (7)

B. Gauss-Legendre quadrature method

I order to obtain a finite dimensional tensor network,
we discretize all the integrals in Eq. (7) using a numerical
quadrature. In general, an integral of a function f(ϕ) can
be evaluated by

∫
dϕf(ϕ) ≈

N∑

n=1

wnf
(
ϕ(n)

)
(8)

where ϕ(n) and wn are n-th node and the associated
weight, respectively. In this work, we use the Gauss-
Legendre quadrature for discretization. A discretized lo-
cal tensor can be expressed as

Tijkl =
√

wiwjwkwl

(2π)2
T

(
ϕ(i), ϕ(j), ϕ(k),ϕ(l)

)
, (9)

and we get a finite dimensional tensor network

Z ≈
∑

{n}

∏

x

Tnx,1nx+1̂,2nx+2̂nx,2 (10)

with {n} a set of indices associated with the Gauss-
Legendre quadrature.

C. Improved method

We have developed further improvement for the above
method. In the singular value decomposition (SVD) pro-
cedure to prepare the initial tensor before starting the
iterative TRG steps we employ the following eigenvalue
decomposition:

Mijkl =
√

wiwjwkwl

(2π)4

∫ π

−π
dϕ1dϕ2T

(
ϕ(i),ϕ(j),ϕ1,ϕ2

)
T ∗

(
ϕ(k),ϕ(l), ϕ1,ϕ2

)
. (11)

This formula is also expressed as

Mij,kl = lim
N ′→∞

N ′∑

m,n=1

TijmnTklmn. (12)

This procedure is expected to reduce the discretization
errors in Mijkl.

To evaluate Eq. (11), we use the character expan-
sion [22, 23]:

T (ϕ1,ϕ2,ϕ3, ϕ4)

=
∞∑

m,n=−∞
ein(ϕ1+ϕ2−ϕ3−ϕ4)Im(β)Jn−m(θ) (13)

where Im(β) is the m-th order modified Bessel function
of the first kind and

Jn(θ) = (−1)n 2
θ + 2πn

sin
(

θ

2

)
. (14)

Then, Eq. (11) is rewritten as

!x,1

!x,+1,2!x,2

!x+2,1

2

For periodic boundary conditions, the topological charge
Q becomes an integer:

Q =
∑

x

( px

2π
+ nx

)
=

∑

x

nx (5)

The tensor may be given with continuous indices,

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

= exp
(

β cos px + i
θ

2π
qx

)
. (6)

The partition function is represented as

Z =

(
∏

x,µ

∫ π

−π

dϕx,µ

2π

)

∏

x

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2). (7)

B. Gauss-Legendre quadrature method

In order to obtain a finite dimensional tensor network,
we discretize all the integrals in Eq. (7) using a numerical
quadrature. In general, an integral of a function f(ϕ) can
be evaluated by

∫
dϕf(ϕ) ≈

K∑

α=1

wαf
(
ϕ(α)

)
(8)

where ϕ(α) and wα are α-th node and the associated
weight, respectively. In this work, we use the Gauss-
Legendre quadrature for discretization. A discretized lo-
cal tensor can be expressed as

Tijkl =
√

wiwjwkwl

(2π)2
T

(
ϕ(i), ϕ(j), ϕ(k),ϕ(l)

)
, (9)

and we get a finite dimensional tensor network

Z ≈
∑

{α}

∏

x

Tnx,1nx+1̂,2nx+2̂nx,2 (10)

with {α} a set of indices associated with the Gauss-
Legendre quadrature1.

C. Improved method

We have developed further improvement for the above
method. In the singular value decomposition (SVD) pro-
cedure to prepare the initial tensor before starting the
iterative TRG steps [12, 16, 18], we employ the following
eigenvalue decomposition:

Mijkl =
√

wiwjwkwl

(2π)4

∫ π

−π
dϕ1dϕ2T

(
ϕ(i),ϕ(j),ϕ1,ϕ2

)
T ∗

(
ϕ(k),ϕ(l), ϕ1,ϕ2

)
. (11)

This formula is also expressed as

Mijkl = lim
K′→∞

K′∑

m,n=1

TijmnTklmn. (12)

This procedure is expected to reduce the discretization
errors in Mijkl.
where Im(β) is the m-th order modified Bessel function
of the first kind and

Jn(θ) = (−1)n 2
θ + 2πn

sin
(

θ

2

)
. (14)

Then, Eq. (11) is rewritten as

To evaluate Eq. (11), we use the character expan-
sion [22, 23]:

T (ϕ1,ϕ2,ϕ3,ϕ4)

=
∞∑

m,n=−∞
ein(ϕ1+ϕ2−ϕ3−ϕ4)Im(β)Jn−m(θ) (13)

1 Application of plain Gauss-Legendre quadrature method to this
model was originally proposed by Yuya Shimizu.
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Mijkl =
√

wiwjwkwl

(2π)4

∞∑

n=−∞
ein(ϕ(i)+ϕ(j)−ϕ(k)+ϕ(l))

⎛

⎝
∞∑

m,m′=−∞
Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)

⎞

⎠ . (15)

In the practical calculation, the sums of n,m and m′ can
be truncated when the contributions of the terms are
small enough. In this work we discard the contributions
of Im,m′/I0 < 10−12 or Jn−m,n−m′/J0 < 10−12.

III. NUMERICAL ANALYSIS

A. Setup

The partition function of Eq. (7) is evaluated with the
TRG method at β =0.0 and 10.0 as a function of θ on a
V = L × L lattice, where L is enlarged up to 1024. We
choose K = 32 for the polynomial order of the Gauss-
Legendre quadrature in Eq. (8). The SVD procedure in
the TRG method is truncated with D = 32. We have
checked that these choices of D and K provide us suffi-
ciently converged results for all the parameter sets em-
ployed in this work. Since the scaling factor of the TRG
method is

√
2, the allowed lattice size for the partition

function is L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The peri-
odic boundary condition is employed in both directions
so that the topological charge Q is quantized to be an
integer.

B. Free energy

The analytic result for the partition function of Eq. (7)
is given by [20]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ,β))V , (16)

zP(θ,β) =
∫ π

−π

dϕP

2π
exp

(
β cos ϕP + i

θ

2π
ϕP

)
, (17)

where zP(θ,β) denotes the one-plaquette partition func-
tion with ϕP ∈ [−π,π]. In Fig. 1 we plot the magnitude
of the relative error for the free energy defined by

δf =
| lnZanalytic − ln Z(K,D = 32)|

| lnZanalytic|
(18)

at θ = π on a 1024 × 1024 lattice. There are a couple
of important points to be noted. Firstly, the deviation
quickly diminishes as K increases even at θ = π, around
which the Monte Carlo approaches do not work effec-
tively due to large statistical errors [24]. Secondly, our
method yields more precise results than the plain Gauss-
Legendre quadrature method at any value of K. Thirdly,

our choice of a parameter set of (D,K) = (32, 32) yields
δf < 10−12, which means that the free energy is deter-
mined at sufficiently high precision. Hereafter we present
the results obtained with (D,K) = (32, 32).
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FIG. 1. Relative error of free energy as a function of K with
D = 32 on a 1024 × 1024 lattice. K is the polynomial order
of the Gauss-Legendre quadrature in Eq. (8).

C. Topological charge density

The expectation value of the topological charge ⟨Q⟩ at
β = 10.0 is obtained by the numerical derivative of the
free energy with respect to θ:

⟨Q⟩ = −i
∂ lnZ

∂θ
. (19)

In Fig. 2 we show the volume dependence of ⟨Q⟩/V
around θ = π, where the analytic calculation predicts
the first order phase transition at any value of β [20]. We
observe that a finite discontinuity emerges with mutual
crossings of curves between different volumes at θ = π
as the lattice size L is increased. This feature indicates
there is a first order phase transition at θ = π.

It may be interesting to calculate the topological
charge density in the strong coupling limit β = 0.0, whose
analytical result was obtained by Seiberg in the infinite
volume limit [2]:

⟨Q⟩
V

∣∣∣∣
β=0

= −i

(
1
2

cot
(

θ

2

)
− 1

θ

)
. (20)

Figure 3 compares the numerical result at β = 0.0 with
the analytic expression of Eq. (20). The discrepancy
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√

wiwjwkwl

(2π)4
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⎛

⎝
∞∑

m,m′=−∞
Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)

⎞

⎠ . (15)

In the practical calculation, the sums of n,m and m′ can
be truncated when the contributions of the terms are
small enough. In this work we discard the contributions
of Im,m′/I0 < 10−10 or Jn−m,n−m′/J0 < 10−10.

III. NUMERICAL ANALYSIS

A. Setup

The partition function of Eq. (7) is evaluated with the
TRG method at β =0.0 and 10.0 as a function of θ on a
V = L × L lattice, where L is enlarged up to 1024. We
choose N = 32 for the polynomial order of the Gauss-
Legendre quadrature in Eq. (8). The SVD procedure in
the TRG method is truncated with D = 32. We have
checked that these choices of D and N provide us suffi-
ciently converged results for all the parameter sets em-
ployed in this work. Since the scaling factor of the TRG
method is

√
2, the allowed lattice size for the partition

function is L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The peri-
odic boundary condition is employed in both directions
so that the topological charge Q is quantized to be an
integer.

B. Free energy

The analytic result for the partition function of Eq. (7)
is given by [21]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ,β))V , (16)

zP(θ,β) =
∫ π

−π

dϕP

2π
exp

(
β cos ϕP + i

θ

2π
ϕP

)
, (17)

where zP(θ,β) denotes the one-plaquette partition func-
tion with ϕP ∈ [−π,π]. In Fig. 1 we plot the magnitude
of the relative error for the free energy defined by

δf =
| ln Zanalytic − lnZ(N,D = 32)|

| lnZanalytic|
(18)

at θ = π on a 1024 × 1024 lattice. There are a couple
of important points to be noted. Firstly, the deviation
quickly diminishes as N increases even at θ = π, around
which the Monte Carlo approaches do not work effec-
tively due to large statistical errors [24]. Secondly, our
method yields more precise results than the plain Gauss-
Legendre quadrature method at any value of N . Thirdly,

our choice of a parameter set of (D,N) = (32, 32) yields
δf = 1.35 × 10−14, which means that the free energy is
determined at sufficiently high precision. Hereafter we
present the results obtained with (D,N) = (32, 32).
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FIG. 1. Relative error of free energy as a function of N with
D = 32 on a 1024 × 1024 lattice. N is the polynomial order
of the Gauss-Legendre quadrature in Eq. (8).

C. Topological charge density

The expectation value of the topological charge ⟨Q⟩ at
β = 10.0 is obtained by the numerical derivative of the
free energy with respect to θ:

⟨Q⟩ = −i
∂ lnZ

∂θ
. (19)

In Fig. 2 we show the volume dependence of ⟨Q⟩/V
around θ = π, where the analytic calculation predicts
the first order phase transition at any value of β [21]. We
observe that a finite discontinuity emerges with mutual
crossings of curves between different volumes at θ = π
as the lattice size L is increased. This feature indicates
there is a first order phase transition at θ = π.

It may be interesting to calculate the topological
charge density in the strong coupling limit β = 0.0, whose
analytical result was obtained by Seiberg in the infinite
volume limit [2]:
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Figure 3 compares the numerical result at β = 0.0 with
the analytic expression of Eq. (20). The discrepancy
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FIG. 2. Topological charge density with 8 ≤ L ≤ 256 as a
function of θ at β = 10.0.

around θ = π with small lattice size of L = 4 essentially
vanishes once we increase the lattice size up to L = 64.
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FIG. 3. Topological charge density with 4 ≤ L ≤ 64 as a
function of θ at β = 0.0. Solid curve denotes the analytic
result of Eq. (20) obtained in the infinite volume limit.

D. Topological susceptibility

We investigate the properties of the phase transition by
applying the finite size scaling analyses to the topological
susceptibility:

χ(L) = − 1
V

∂2 lnZ

∂θ2
. (21)

Figure 4 shows the topological susceptibility as a func-
tion of θ for various lattice sizes. We observe the peak
structure and its height χmax(L) grows as L increases. In
order to determine the peak position θc(L) and the peak
height χmax(L) at each L, we employ the quadratic ap-
proximation of the topological susceptibility around the
peak position:

χ(L) ∼ χmax(L) + R (θ − θc(L))2 (22)

with R a constant.
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FIG. 4. Topological susceptibility χ(L) as a function of θ with
16 ≤ L ≤ 512.

We expect that the peak height scales with L as

χmax(L) ∝ Lγ/ν , (23)

where γ and ν are the critical exponents. The L de-
pendence of the peak height χmax(L) is plotted in Fig. 5.
The solid curve represents the fit result obtained with the
fit function of χmax(L) = A + B lnLγ/ν choosing the fit
range of 128 ≤ L ≤ 1024. The results for the fit parame-
ters are given by A = −3(2) × 10−3, B = 7.12(8) × 10−5

and γ/ν = 1.998(2). The value of the exponent γ/ν =
1.998(2) is consistent with two, which is the expected
critical exponent in the first-order phase transition in the
two-dimensional system.

IV. SUMMARY AND OUTLOOK

We have applied the TRG method to study the 2D pure
U(1) gauge theory with a θ term. We have confirmed that
this model has a first-order phase transition at θ = π as
predicted from the analytical calculation. The successful
analysis of the model with the complex action provides
us additional evidence that the TRG method is free from
the sign problem. It should be interesting to apply the
TRG method to other various models which have been
hardly investigated by the Monte Carlo approach because
of the sign problem.

ACKNOWLEDGMENTS

One of the authors (YK) thanks Yuya Shimizu for pro-
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tion of θ for various lattice sizes. We observe the peak
structure and its height χmax(L) grows as L increases. In
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and γ/ν = 1.998(2). The value of the exponent γ/ν =
1.998(2) is consistent with two, which is the expected
critical exponent in the first-order phase transition in the
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We have applied the TRG method to study the 2D pure
U(1) gauge theory with a θ term. We have confirmed that
this model has a first-order phase transition at θ = π as
predicted from the analytical calculation. The successful
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We investigate the properties of the phase transition by
applying the finite size scaling analyses to the topological
susceptibility:

χ(L) = − 1
V

∂2 lnZ

∂θ2
. (21)

Figure 4 shows the topological susceptibility as a func-
tion of θ for various lattice sizes. We observe the peak
structure and its height χmax(L) grows as L increases. In
order to determine the peak position θc(L) and the peak
height χmax(L) at each L, we employ the quadratic ap-
proximation of the topological susceptibility around the
peak position:

χ(L) ∼ χmax(L) + R (θ − θc(L))2 (22)

with R a constant.

0.990 0.995 1.000 1.005 1.010
 θ/π

10-2

10-1

100

101

 χ
(L
)

L=16
L=32
L=64
L=128
L=256
L=512

FIG. 4. Topological susceptibility χ(L) as a function of θ with
16 ≤ L ≤ 512.

We expect that the peak height scales with L as

χmax(L) ∝ Lγ/ν , (23)

where γ and ν are the critical exponents. The L depen-
dence of the peak height χmax(L) is plotted in Fig. 5.
The solid curve represents the fit result obtained with
the fit function of χmax(L) = A + BLγ/ν choosing the fit
range of 128 ≤ L ≤ 1024. The results for the fit parame-
ters are given by A = −3(2) × 10−3, B = 7.12(8) × 10−5

and γ/ν = 1.998(2). The value of the exponent γ/ν =
1.998(2) is consistent with two, which is the expected
critical exponent in the first-order phase transition in the
two-dimensional system.

IV. SUMMARY AND OUTLOOK

We have applied the TRG method to study the 2D pure
U(1) gauge theory with a θ term. We have confirmed that
this model has a first-order phase transition at θ = π as
predicted from the analytical calculation. The successful
analysis of the model with the complex action provides
us additional evidence that the TRG method is free from
the sign problem. It should be interesting to apply the
TRG method to other various models which have been
hardly investigated by the Monte Carlo approach because
of the sign problem.
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