[
. N
a*si:EXCELLERAT

Crossing the chasm: Accelerating
HPC codes using FPGAS

Dr Nick Brown, Research Fellow
n.brown@epcc.ed.ac.uk ‘ E p< :(:

mailto:n.brown@epcc.ed.ac.uk

Met Office NERC Cloud (MONC) model

* MONC is a model we developed with the Met Office
for simulating clouds and atmospheric flows

* Advection is the most computationally intensive part of
the code at around 40% runtime

e Stencil based code Kintex Ultrascale

. Porting to the advection 603K LUTs, 5520

m [CPCC

%= EXCELLERAT

Halo swap [*

V

Subgrid

!

Dynamics

v

Pressure
solver

!

Finish
timestep

AN

Advection

v

Diffusion

v

Wiscosity

'

Coriolis

!

Buoyancy

!

Step fields

DSPs, 9.4MB
to the ADI\/ISKS board BRAM 3GB
e Advecting over three DDR4
fields (windin x, y, and z
dimensions)
PCle 2GB
Gen3*8 Alpha Data’s ADM-PCIE-8K5 DDRA

04.12.2013 2

m [CPCC
="EXCELLERAT

Advection code sketch

do 1=1, x size

do j=1, y size 1
do k=2, z size
su (k, jl 1) = tecx * (U.(k,j,i—l) * (U-(k/]/l) + g
u(k,j,i-1)) - u(k j,i+1) * (u(k,3,1i) + u(k,3,i+1))) a
su(k, j, i) = su(k, 3, i) + tey * (u(k,j-1,i) * £
(v(k,j-1,1) + vi(k,j-1,i+1)) - u(k,j+1,1i) * E
(v(k,J,1) + vi(k,j,i+1)))
if (k .1lt. z size) then v
su(k, j, i) = su(k, j, i) + tzcl(k) * u(k-1,73,1) *
(w(k-1,3,1i) + w(k=-1,3,1i+1)) - tzc2(k) * u(k+l,j,1i) *
(wi(k,3,1) + w(k,3,1i+1)) ’ g
else ‘ Y dimension '
su(k, j, i) = su(k, j, i) + tzcl(k) * u(k-1,73,1) *
(w(k-1,3,1) + w(k=-1,73,1+1))
end if * 53 double precision floating point operations per grid cell
Sieles st for all three fields in this kernel
enznjodo « 32 double precision floating point multiplications, 21

floating point additions or subtractions

The journey to HLS kernel performance

Descripton | Runtime ims) _

Descition | Runtime(ms)

Sandybridge CPU core 676.4
Broadwell CPU core 540.2

* Following Xilinx’s UltraFast High-Level
Productivity Design Methodology
* Write the kernel(s) using HLS to generate RTL
e Use the block design in Vivado to hook up

=l = soe
3 Mes i Jﬁ;_ i o

= eia ‘:.._;
{ =po i neenn - 8 E
X =5 E

]

m [€PCC|
%= EXCELLERAT

Initial port 51498
Pipeline directive on inner loop 14130
Local BRAM as cache and re-order loops 621.3
Tune double precision cores 584.6
and clock to 310Mhz

Concurrent loading and storing via 189.64
dataflow directive

X dimension of cube in the dataflow 163.43
region

256 bit DRAM connected ports 65.41
Issue 4 doubles per cycle 63.49

These timings are the compute time of a single HLS kernel, ignoring DMA
transfer, for problem size of 16.7 million grid cells

04.12.2013 4

Initial High Level Synthesis kernel m CPCC

-
B .
o :x"EXCELLERAT
. a"E g
int pw advection(double * u, double * su, ..., int size x, int size y, ...) {
#pragma HLS INTERFACE m axi port=u offset=slave * Convert into C and apply

#fpragma HLS INTERFACE m axi port=su offset=slave . . .
#fpragma HLS INTERFACE s:axilite port=size x bundle=CTRL BUS approprlate directives on
#pragma HLS INTERFACE s axilite port=size y bundle=CTRL BUS interface

#pragma HLS INTERFACE s axilite port=return bundle=CTRL BUS

* Pipeline the inner loop with for (unsigned int i=start x;i<end x;i++) {
initiation interval of one for (unsigned int j=start_y;j<end y;j++) {

i ' ' =1; k<si ;kt++
* Decreases runtime from 51 tor (unsigned int k=l;k<size zjk++) |
#pragma HLS PIPELINE II-1

seconds to 14 seconds su(i,d,k)=tex*(u(i-1,3,k) * (u(i,j,k) + u(i-1,5,%)) - u(i+l,j, k) *
e But data ports are the limit (u(i,j, k) + u(i+l,j, k)));
here, maximum two accesses su(i,d,k)=su(i,q,k) + tey*(u(i-1,3,k) *(v(i,i-1,%) + v(i+l,i-1,k)) -

I,.‘}‘l,k ks ',',k * '_|_l,',k ;
(as dual ported) any one clock u (i,]) (v(i,3,k) * v(i+l,3,k)))

cycle and-so HLS identifies }
possible conflict and limits }
pipeline accordingly

04.12.2013

Use BRAM as a cache w = cpCC

a*si:EXCELLERAT

double u vals[MAX VERTICAL SIZE], u xpl vals[MAX VERTICAL size], * Uselocal BRAM to hold data required for
u_vals2[MAX VERTICAL_SIZE], . working with a single column

e Copy all data required for a column

for (unsigned int i=start x;i<end x;i++) {

for (unsigned int j=start y;j<end y;3j++) { from the external data ports, then
memcpy (u_vals, &u(i,j,0), sizeof (double) * size z); process the column
memcpy (u_xpl vals, &u(i+l,3j,0), sizeof(double) * size z); e MAX VERTICAL SIZE is required as an

memc u vals2, &u(i,]j,0), sizeof(double) * size z); . . .
Py (u_ ORIy () = not dynamically size these in HLS

for (unsigned int k=1;k<size z;k++) { Either single or dual ported, but more
#pragma HLS PIPELINE II=1 than 2 accesses can be needed at any
C time — and therefore duplicate them

 Runtime is now 3.2 seconds, having sped kernel up by further four times
e But a major limit is must stop and copy before each column, draining the pipeline
e 71 cycles deep with Il of 2, with column size of 64 elements then each column the pipeline
will run for 199 cycles but for only 28% of cycles is the pipeline full utilised ®

04.12.2013

m [CPOCC

Extending the use of BRAM as a cache .
Ji:EXCELLERAT

for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) {

for (unsigned int i=start x;i<end x;i++) {
for (unsigned int c=0; ¢ < slice size; c++) {
#pragma HLS PIPELINE II=1
// Move data in slice+l and slice down by one in X dimension

} -
for (unsigned int c=0; c¢ < slice size; c++) { i //////
#pragma HLS PIPELINE II=1
// Load data for all fields from DRAM
}

for (unsigned int j=0;j<number in y;Jj++) { Y dimension
for (unsigned int k=1l;k<size in z;k++) {
#pragma HLS PIPELINE II=1
// Do calculations for U, V, W field grid points e Reduces runtime down
su vals[Jjk index]=su x+su y+su z;

sv_vals[jk index]=sv_x+sv_y+sv z; to 0.62 seconds
sw vals[Jjk index]=sw_x+sw y+sw_ z; ° Faster than 3 core
} of Sandybridge

for (unsigned int c¢c=0; c¢ < slice size; c++) { bUt S|OW€I" than P -
#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM Broadwell core

Z dimension

04.12.2013

m [epcC
'..:_.‘5-.EXI:ELLERAT

su(k, j, 1) = tex * (u(k,j,1i-1) * (u(k,J,1) + u(k,j,i-1)) - u(k,j,1+1) * (u(k,3j,1) + u(k,Jj,1+1)))

Tuning double precision FP cores

unsigned int jk index=(size z * j) + k; . .
double u data=u vals[jk index]; * Tuned all HLS double precision cores

double uml_data=uml_vals[jk_index]; * The major benefit here was the
double upl data=upl vals[jk index]; T .
- - - multiplication

double tl=u_data+uml_data; * Using medium DSP reduced DSP

double t2=u data+upl data; th
double t7=uml data * tl1; usage by about 1/5

double t8=upl _data * t2; * Further pipelined the core to 14
doubl =tcx* (t7 - t8); . .

S s stages, provided period of 2.75 ns
#pragma HLS RESOURCE variable=tl core=DAddSub fulldsp meaning we could up the clock
#pragma HLS RESOURCE variable=t2 core=DAddSub fulldsp frequency to 310MHz

#pragma HLS RESOURCE variable=t7 core=DMul meddsp latency=14 . | ivel; d hf 65
#pragma HLS RESOURCE variable=t8 core=DMul meddsp latency=14 ncreases pipeline depth from to
#pragma HLS RESOURCE variable=su x core=DMul meddsp latency=14 72, but latency for a piece of data

has decreased from 2.6e-7 seconds
double tl=u data+uml data; d
double t2=u_datatupl data; to 2.3e-7 seconds.

double t7=uml data * tl; e (.58 Seconds runtime
double t8=upl data * t2;

double su x=tcx* (t7 - t8);

04.12.2013

m [CPCC

Overall performance at this point _
“ar;2:EXCELLERAT

1200

m Optimal performance Four cores

* 67 million grid points
with a standard stratus
cloud test-case

1000

BOO

* Approximately 7
times slower than 18
cores of Broadwell

e DMA transfer time
accounted for over 200
70% of runtime

600

400

Runtime (milliseconds)

12 kernels

Sandybridge Ilvybridge Broadwell FPGA
Technology

04.12.2013 3

m [SPCC
'.':_.a-_EXCELLERAT

Description Total Runtime % in Load data Prepare stencil & Write
(ms) compute (ms) compute results (ms) | data (ms)

Finding out where the bottlenecks are

Current version 584.65 14% 320.82 80.56 173.22

Run concurrent loading and storing 189.64 30% 53.43 57.28 75.65

via dataflow directive

Include X dimension of cube in the 163.43 33% 45.65 53.88 59.86

dataflow region

256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

Issue 4 doubles per cycle 63.49 85% 2.72 53.88 3.60
These timings are the compute time of a single HLS >z PaE —a— = D ok oo
kernel, ignoring DMA transfer, for problem size of N e == ~|§ ¥]“E: “. 1
16.7 million grid cells — || F|

Profile HLS block accumulates timings for different parts |_ Ty :

* Found that 14% of runtime was doing compute f,{, sgitfggiefgg fnggffgf; t7§:s all back to the ==
by the kernel, 86% on memory access! PISERS: ks

04.12.2013

Run concurrent loading and storing via m COCC
dataflow directive 1%,

| :EE;JE}K:t:IEI'I'EEFQIB(]-
for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) {

for (unsigned int i=start x;i<end x;i++) {
for (unsigned int c=0; ¢ < slice size; c++) {
#pragma HLS PIPELINE II=1
// Move data in slice+l and slice down by one in X dimension

} c
for (unsigned int c¢=0; c < slice size; c++) { o //////
#pragma HLS PIPELINE II-=1 ©
// Load data for all fields from DRAM %
} N
for (unsigned int J=0;Jj<number in y;j++) { Y dimension
for (unsigned int k=1l;k<size in z;k++) {
#fpragma HLS PIPELINE II=1 . . .
/7 Do calculations for U, V, W field grid points e But each part runs sequentially for each slice:
su_vals[Jk_index]=su_xtsu_ytsu z; 1. Move data in slice+1 and slice down in X by 1
sv vals[Jjk index]=sv x+sv y+sv z; . .
e e] e e A e e 2. Load data for all fields into DRAM
} 3. Do calculations for U,V,W field grid points
} . .
for (unsigned int c¢c=0; c¢ < slice size; c++) { 4 erte data fOI" fleldS to DRAM
#pragma HLS PIPELINE II=1
// Write data for all fields to DRAM
| * Instead, can we run these concurrently for

each slice?

04.12.2013

Run concurrent loading and storing via m COCC

. o . .
dataflow directive a
For each slice in the X dimension

Three Three Three ”

Read u, v, w | double . . stencil Complfte double Write
—> Shift data in X » advection — results to

from DRAM | precision struct precision

values values results values DRAM

* Using the HLS Dataflow directive create a pipeline of these four activities
* These stage use HLS streams (FIFO queues) to connect them

e Resulted in 2.60 times runtime

re d u Ct i O n Current version
° Re d u Ced com p utatio Nnru nti me by sil;ndic.::;t;azr;:elg:ing and storing 189.64 30% 53.43 57.28 75.65
aroun d 2 5 % antlufc:ex dinjxension of cube in the 163.43 33% 45.65 53.88 59.86
ataliowregion
o REd u CEd d ata access time by OVer 3X 256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

Issue 4 doubles per cycle 63.49 85% 2,72 53.88 3.60

* Time spent in computation now 30%

04.12.2013

m [CPOCC

Where we are.... .
Ji-EXCELLERAT

For every slice in X and block in Y

Three Three Three .
Compute Wri
Read u, v, w | double Shift data in X stencil] dveftion double Ittet
from DRAM | precision struct precision results to
values values results values DRAM

Description Total Runtime % in Load data Prepare stencil & Write
(ms) compute (ms) compute results (ms) | data (ms)

Current version 584.65 14% 320.82 80.56 173.22
Run concurrent loading and storing 189.64 30% 53.43 57.28 75.65
w /" via dataflowdirective
2 / \‘_,\0\\ Include X dimension of cube in the 163.43 33% 45.65 53.88 59.86
9 b\@“\ dataflowregion
= * 256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48
Y dimension Issue 4 doubles per cycle 63.49 85% 2.72 53.88 3.60

04.12.2013

m [CPCC

Include X dimension of cube in dataflow region m =
“ar;2:EXCELLERAT

void retrieve input data(double*u,hls::stream<double>& ids) { Readreq donefor every element 25 cycles
#pragma HLS PIPELINE II=1 u_vals_addr 1. i i s(readreq) i
int read index=start read index+x; u vals addr read{read) 1
= == 1

ids.write (u[read index]); node 165{write)

node 166{write)
node 167(write)

}

for (unsigned int i=start x;i<end x;i++) {
int start read index=....;
T - . . . 1
for (unsigned int c=0;c<slice size;c++) { sum2 i 1 i+) I i i i i i | i

L=l

} A

Read 1 cycle

void perform advection (double * u) { i
for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) { The inner /OOp iS 28 cycles tOtG/

#pragma HLS DATAFLOW
retrieve input data(u, in data stream u, ...);

Sped up the compute slightly, but / / /
data access was 3.6 times slower!

Z dimension
L/

Y dimension

04.12.2013

Include X dimension of cube in dataflow region

void retrieve input data (double*u,hls::stream<double>& ids) {

for (unsigned int i=start x;i<end x;i++) {
int start read index=...;
for (unsigned int c=0;c<slice size;c++) {
#pragma HLS PIPELINE II=1
int read index=start read index+x;
ids.write(ul[read index]);

Readreq moved outside loop and
now only done once per slice

m [epcC
'..:_.E-.EXI:ELLERAT

void retrieve input data(double*u,hls::stream<double>& ids) {
for (unsigned int i=start x;i<end x;i++) {
int start read index=...;
do retrieve(i, u, ids);

}

void do_ retrieve (int i, double*u, hls::stream<double>& ids) {
for (unsigned int c=0;c<slice size;c++) {
#pragma HLS PIPELINE II=1
int read index=start read index+x;
ids.write(ulread index]);

}
The inner loop is 3 cycles total
Reduced data access by

i 8§ 8§ 8§ § 8§ § .\I

u_vals_addr rd req(readreq)

node 32(write)

04.12.2013

! L | L I | L | L I | L | L I | L | L I | L | L I |
j(phi_mux)
tmp(icmp)
i1+
u vals_addr read(read)

4.5 times compared to
readreq in every iteration
e Slight improvement

overall, compute now
33% of runtime

256 bit DRAM connected ports

N
—a
—n

il

m [€PCC|
JiEXCELLERAT

* At the block design level, DRAM
controllers are at 256 bits width

 Which Alpha Data tell us is optimal

pw_advection_1

—n
B—n

il

AAnnondRann a0
ChmC Dot ot ek ek ek P Pl ok ok Dol b o
R i

* But our kernels
work with 64 bit = [e
—g ap_rstn ¢ m_axi_ input 2 + {3

values (double

prEC|S|On) . Pw_advection (Pre-Production)

* Using a data width converter in the

AXI| interconnects

P T
B R et il
C .)

1

04.12.2013

* Are we throwing away bandwidth
and/or creating overhead at the
controller block?

cpCC

256 bit DRAM connected ports oo
“ar;2:EXCELLERAT

struct dram data { void do_retrieve (int i, struct dram data *u,

double vals[4]; hls::stream<double>& ids) {
}; for (unsigned int c=0;c<y size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

void pw_advection(struct dram data * su, struct dram data * sv, #pragma HLS PIPELINE II=1
struct dram data * sw, struct dram data * u, struct dram data * ...
v, struct dram data * w, ..) { struct dram data u dram data=ul[read index];
#pragma HLS DATA PACK variable=su for (unsigned int m=0;m<4;mt++) { Due to
#pragma HLS DATA PACK variable=sv ids.write(u dram data.vals[m]); conflict on ids
#pragma HLS DATA PACK variable=sw } the best Il is 4
#pragma HLS DATA PACK variable=u }
#pragma HLS DATA PACK variable=v }
#pragma HLS DATA PACK variable=w }

e RS
(ms) (ms) results(ms) | data (ms)

* Very significantly reduced DMA data i s84.65 2082 8036 17322

Run concurrent loading and storing 189.64 30% 53.43 57.28 75.65
via dataflowdirective

access time by 13X e — i —

dataflow region

¢ NOW Compute iS 82% Of the Overa” ru ntime 256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

Issue 4 doubles per cycle 63.49 85% 2,72 53.88 3.60

04.12.2013

m [€PCC|
'.':_.;.-_EXCELLERAT

struct dram data *u,
hls::stream<double> ids[4]) {
(unsigned int c=0;c<y size;c++) {
for (unsigned int j=0;7j<z_size/4;j++) {
#pragma HLS PIPELINE II=1

Issue 4 doubles per cycle

void do_ retrieve (int i,
for

double*u, hls::stream<double>& ids) {
(unsigned int c=0;c<y size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

void do retrieve (int i,

for

struct dram data u dram data=ul[read index];
for (unsigned int m=0;m<4;m++) {

struct dram data u dram data=ul[read index];
ids.write(u dram data.vals[m]);

for (unsigned int m=0;m<4;m++) { No conflict on
} ids[m] .write (u_dram data.vals[m]); ids so the Il is

} } now 1

N o N o . 1000 Concurrant load and stare only
* Effectively, once the pipeline is filled, - — e Aggregate HLS
e 256 bits port width and iscue 4 data slaments per cyde kerne/ on/y (no
every cycle we are loading 4 doubles DA transfer)
. . g B ,
per tield into our FIFO queues ;- o A time for
s realom size of
a0, | e [Preparestendt| 7% [“Compute | [[Wit 6.7 milion grid
T] N . _ . oubie
from DRAM | varoes per and s.hlftdata <truct advection Drecision” results to ; pom.ts (Strong
field (12) in X values results values DRAM 1 2 4 s sca/lng)

04.12.2013

Number of advection HLS kernels

m [CPOCC

Addressing DMA transfer "
Ji:EXCELLERAT

* Previously we waited for all PCle data transfer to complete, and then
kernels were started based on a static decomposition. Only once all
computation was completed did results get transferred back

« DMA was responsible for over 70% of the runtime!

 Modified to be far more
dynamic

e Split data into chunks and
when complete start a kernel if

pes00n OOO®®
* As soon as kernel completes “As kernels complete,

result data is copied As data chunks arrive kernels are

begl n results transfer back to Qesufﬁng chunks of computed dafy back via DMA read w::nched to compute on that chuny
the host Host

/Chunks of field data to campufe\ Chunks of field data is / On board DRAM \

copied across in chunks
via DMA write

Device

04.12.2013

m [CPCC

Full performance comparison "
2% EXCELLERAT

* 67 million grid points 1200
with a standard stratus
cloud test-case

* Including DMA transfer

* Now only 8 HLS kernels
as new version required
increased resources

400 12

* We outperform 18 cores | cores| 18] .
* 8 HLS kernels: 148ms L o I l

e 18 Broadwell: 180ms °
Sandybridge lvybridge Broadwell Previous FPGA New FPGA
Technology

B Optimal performance [Four cores

1000

200

600

Runtime (milliseconds)

12 kernels

04.12.2013

m [CPOCC

Performance comparison _m

&
1000 B Broadwell 18-cores runtime ° Sca“ng Size Of the domain
STotal FPGA runtime * We outperform 18 cores of
_. 100 H FPGA Kemel only runtime Broadwell until 268M grid
B FPGA DMA overhead B ooints
(-]
g 10 e 1M: FPGA 2.59 times faster
% a « DMA accounts for 2% of RT
- 1 e 4M: FPGA 1.52 times faster
= o .
£ 16M: Approaches are
0.1 comparable
§ e 67M: FPGA 1.22 times faster
0.01 e 268: Broadwell 1.23 times
1M 16M faster
Number of grid cells * DMA accounts for > 40% of RT
e FPGA draws 28.9 Watts idle and 35.7 Watts under load e Over 12GB of data transferred

* Vivado estimates power draw to be 23 Watts to or from the PCle card

04.12.2013

m [CPCC

~EXCELLERAT

Floor planning to meet timing

04.12.2013

m [CPOCC

Conclusions and further work .
%+ EXCELLERAT

* When accelerating codes on FPGAs have to think dataflow
e But difficult to know if thinking dataflow enough!

* Critically important for us to have a rich profiling environment enabling detailed
performance analysis of kernels.

* Going to experiment with HBM to see if we can increase
our 85% of time in compute even further
* Will different code patterns suit HBM?
* Double the resources of the ADM8k5

* Further developing our DMA streaming approach to be
driven more by the FPGA rather than the host explicitly
starting kernels

* Use of OpenCAPI to avoid data copying in the first place
* Detailed power analysis and comparison on the CPU would be interesting

04.12.2013

Ongoing FPGA efforts at EPCC

)
U Q

CASTEP on FPGAs via MONC, Nek5000, Alya, Two industrial MSc
secondment with AVBP on FPGAs via dissertation projects
Alpha Data EXCELLERAT EU CoE with Xilinx around
financial modelling on
FPGAs

04.12.2013

m [epcC
J=EXCELLERAT

Industrial MSc
dissertation project with
Alpha Data around
machine learning on
FPGAs

