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Met Office NERC Cloud (MONC) model

• MONC is a model we developed with the Met Office 
for simulating clouds and atmospheric flows
• Advection is the most computationally intensive part of 

the code at around 40% runtime

• Stencil based code
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Kintex Ultrascale
663k LUTs, 5520 
DSPs, 9.4MB 
BRAM 8GB 

DDR4

PCIe 
Gen3*8 8GB 

DDR4Alpha Data’s ADM-PCIE-8K5

• Porting to the advection 
to the ADM8K5 board

• Advecting over three 
fields (wind in x, y, and z 
dimensions)



Advection code sketch

do i=1, x_size

do j=1, y_size

do k=2, z_size

su(k, j, i) = tcx * (u(k,j,i-1) * (u(k,j,i) + 

u(k,j,i-1)) - u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))

su(k, j, i) = su(k, j, i) + tcy * (u(k,j-1,i) * 

(v(k,j-1,i) + v(k,j-1,i+1)) - u(k,j+1,i) * 

(v(k,j,i) + v(k,j,i+1)))            

if (k .lt. z_size) then

su(k, j, i) = su(k, j, i) + tzc1(k) * u(k-1,j,i) * 

(w(k-1,j,i) + w(k-1,j,i+1)) - tzc2(k) * u(k+1,j,i) * 

(w(k,j,i) + w(k,j,i+1))      

else

su(k, j, i) = su(k, j, i) + tzc1(k) * u(k-1,j,i) * 

(w(k-1,j,i) + w(k-1,j,i+1))      

end if    

end do  

end do

end do
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• 53 double precision floating point operations per grid cell 
for all three fields in this kernel
• 32 double precision floating point multiplications, 21 

floating point additions or subtractions



The journey to HLS kernel performance
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Description Runtime (ms)

Initial port 51498

Pipeline directive on inner loop 14130

Local BRAM as cache and re-order loops 621.3

Tune double precision cores
and clock to 310Mhz

584.6

Concurrent loading and storing via 
dataflow directive

189.64

X dimension of cube in the dataflow 
region

163.43

256 bit DRAM connected ports 65.41

Issue 4 doubles per cycle 63.49

Description Runtime (ms)

Sandybridge CPU core 676.4

Broadwell CPU core 540.2

These timings are the compute time of a single HLS kernel, ignoring DMA 
transfer, for problem size of 16.7 million grid cells

• Following Xilinx’s UltraFast High-Level 
Productivity Design Methodology
• Write the kernel(s) using HLS to generate RTL

• Use the block design in Vivado to hook up



Initial High Level Synthesis kernel

int pw_advection(double * u, double * su, ..., int size_x, int size_y, ...) {    

#pragma HLS INTERFACE m_axi port=u offset=slave     

#pragma HLS INTERFACE m_axi port=su offset=slave    

#pragma HLS INTERFACE s_axilite port=size_x bundle=CTRL_BUS    

#pragma HLS INTERFACE s_axilite port=size_y bundle=CTRL_BUS    

#pragma HLS INTERFACE s_axilite port=return bundle=CTRL_BUS    

.....

}
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• Convert into C and apply 
appropriate directives on 
interface

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int j=start_y;j<end_y;j++) {

for (unsigned int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

su(i,j,k)=tcx*(u(i-1,j,k) * (u(i,j,k) + u(i-1,j,k)) - u(i+1,j,k) * 

(u(i,j,k) + u(i+1,j,k)));

su(i,j,k)=su(i,j,k) + tcy*(u(i-1,j,k) *(v(i,j-1,k) + v(i+1,j-1,k)) –

u(i,j+1,k) * (v(i,j,k) * v(i+1,j,k)));

………

}

}

}

• Pipeline the inner loop with 
initiation interval of one
• Decreases runtime from 51 

seconds to 14 seconds
• But data ports are the limit 

here, maximum two accesses 
(as dual ported) any one clock 
cycle and-so HLS identifies 
possible conflict and limits 
pipeline accordingly



Use BRAM as a cache
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double u_vals[MAX_VERTICAL_SIZE], u_xp1_vals[MAX_VERTICAL_SIZE], 

u_vals2[MAX_VERTICAL_SIZE], ....;

for (unsigned int i=start_x;i<end_x;i++) {    

for (unsigned int j=start_y;j<end_y;j++) {        

memcpy(u_vals, &u(i,j,0), sizeof(double) * size_z);        

memcpy(u_xp1_vals, &u(i+1,j,0), sizeof(double) * size_z);             

memcpy(u_vals2, &u(i,j,0), sizeof(double) * size_z);        

....        

for (unsigned int k=1;k<size_z;k++) {        

#pragma HLS PIPELINE II=1            

.....        

}    

}

}

• Use local BRAM to hold data required for 
working with a single column
• Copy all data required for a column 

from the external data ports, then 
process the column

• MAX_VERTICAL_SIZE is required as an 
not dynamically size these in HLS

• Either single or dual ported, but more 
than 2 accesses can be needed at any 
time – and therefore duplicate them

• Runtime is now 3.2 seconds, having sped kernel up by further four times
• But a major limit is must stop and copy before each column, draining the pipeline
• 71 cycles deep with II of 2, with column size of 64 elements then each column the pipeline 

will run for 199 cycles but for only 28% of cycles is the pipeline full utilised 



Extending the use of BRAM as a cache
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for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Move data in slice+1 and slice down by one in X dimension

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

}

for (unsigned int j=0;j<number_in_y;j++) {

for (unsigned int k=1;k<size_in_z;k++) {

#pragma HLS PIPELINE II=1

// Do calculations for U, V, W field grid points

su_vals[jk_index]=su_x+su_y+su_z;

sv_vals[jk_index]=sv_x+sv_y+sv_z;

sw_vals[jk_index]=sw_x+sw_y+sw_z;

}

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM

}

}

}

• Reduces runtime down 
to 0.62 seconds
• Faster than a core 

of Sandybridge
but slower than a 
Broadwell core 



Tuning double precision FP cores
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#pragma HLS RESOURCE variable=t1 core=DAddSub_fulldsp

#pragma HLS RESOURCE variable=t2 core=DAddSub_fulldsp

#pragma HLS RESOURCE variable=t7 core=DMul_meddsp latency=14

#pragma HLS RESOURCE variable=t8 core=DMul_meddsp latency=14

#pragma HLS RESOURCE variable=su_x core=DMul_meddsp latency=14

double t1=u_data+um1_data;

double t2=u_data+up1_data;

double t7=um1_data * t1;

double t8=up1_data * t2;

double su_x=tcx*(t7 - t8);

su(k, j, i) = tcx * (u(k,j,i-1) * (u(k,j,i) + u(k,j,i-1)) - u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))

unsigned int jk_index=(size_z * j) + k;

double u_data=u_vals[jk_index];

double um1_data=um1_vals[jk_index];

double up1_data=up1_vals[jk_index];

double t1=u_data+um1_data;

double t2=u_data+up1_data;

double t7=um1_data * t1;

double t8=up1_data * t2;

double su_x=tcx*(t7 - t8);

• Tuned all HLS double precision cores
• The major benefit here was the 

multiplication
• Using medium DSP reduced DSP 

usage by about 1/5th

• Further pipelined the core to 14 
stages, provided period of 2.75 ns 
meaning we could up the clock 
frequency to 310MHz

• Increases pipeline depth from 65 to 
72, but latency for a piece of data 
has decreased from 2.6e-7 seconds 
to 2.3e-7 seconds. 

• 0.58 seconds runtime



Overall performance at this point

• 67 million grid points 
with a standard stratus 
cloud test-case

• Approximately 7 
times slower than 18 
cores of Broadwell
• DMA transfer time 

accounted for over 
70% of runtime
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Finding out where the bottlenecks are

These timings are the compute time of a single HLS 
kernel, ignoring DMA transfer, for problem size of 
16.7 million grid cells

• Found that 14% of runtime was doing compute 
by the kernel, 86% on memory access!
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Description Total Runtime 
(ms)

% in 
compute

Load data 
(ms)

Prepare stencil & 
compute results (ms)

Write 
data (ms)

Current version 584.65 14% 320.82 80.56 173.22

Run concurrent loading and storing 
via dataflow directive

189.64 30% 53.43 57.28 75.65

Include X dimension of cube in the 
dataflow region

163.43 33% 45.65 53.88 59.86

256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

Issue 4 doubles per cycle 63.49 85% 2.72 53.88 3.60



Run concurrent loading and storing via 
dataflow directive
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for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Move data in slice+1 and slice down by one in X dimension

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

}

for (unsigned int j=0;j<number_in_y;j++) {

for (unsigned int k=1;k<size_in_z;k++) {

#pragma HLS PIPELINE II=1

// Do calculations for U, V, W field grid points

su_vals[jk_index]=su_x+su_y+su_z;

sv_vals[jk_index]=sv_x+sv_y+sv_z;

sw_vals[jk_index]=sw_x+sw_y+sw_z;

}

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM

}

}

}

• But each part runs sequentially for each slice:
1. Move data in slice+1 and slice down in X by 1
2. Load data for all fields into DRAM
3. Do calculations for U,V,W field grid points
4. Write data for fields to DRAM

• Instead, can we run these concurrently for 
each slice?



Run concurrent loading and storing via 
dataflow directive
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• Using the HLS Dataflow directive create a pipeline of these four activities
• These stage use HLS streams (FIFO queues) to connect them

Read u, v, w 
from DRAM

Shift data in X
Compute 
advection 

results

Write 
results to 

DRAM

Three 
double 
precision 
values

Three 
stencil 
struct 
values

Three 
double 
precision 
values

For each slice in the X dimension

• Resulted in 2.60 times runtime 
reduction
• Reduced computation runtime by 

around 25%
• Reduced data access time by over 3x
• Time spent in computation now 30%



Where we are….
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Read u, v, w 
from DRAM

Shift data in X
Compute 
advection 

results

Write 
results to 

DRAM

Three 
double 
precision 
values

Three 
stencil 
struct 
values

Three 
double 
precision 
values

For every slice in X and block in Y



Include X dimension of cube in dataflow region
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void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

}

void perform_advection(double * u) {

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

... 

#pragma HLS DATAFLOW

retrieve_input_data(u, in_data_stream_u, ...);

...

} 

}

Sped up the compute slightly, but 
data access was 3.6 times slower!

The inner loop is 28 cycles total

Readreq done for every element 25 cycles

Read 1 cycle



Include X dimension of cube in dataflow region

04.12.2019 15

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

do_retrieve(i, u, ids);

}

}

void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

The inner loop is 3 cycles total

Readreq moved outside loop and 
now only done once per slice

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

}

Reduced data access by 
4.5 times compared to 
readreq in every iteration

• Slight improvement 
overall, compute now 
33% of runtime



256 bit DRAM connected ports

• At the block design level, DRAM 
controllers are at 256 bits width
• Which Alpha Data tell us is optimal
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• But our kernels 
work with 64 bit 
values (double 
precision)
• Using a data width converter in the 

AXI interconnects

• Are we throwing away bandwidth 
and/or creating overhead at the 
controller block?



256 bit DRAM connected ports
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struct dram_data {

double vals[4];

};

void pw_advection(struct dram_data * su, struct dram_data * sv, 

struct dram_data * sw, struct dram_data * u, struct dram_data * 

v, struct dram_data * w, …) {

#pragma HLS DATA_PACK variable=su

#pragma HLS DATA_PACK variable=sv

#pragma HLS DATA_PACK variable=sw

#pragma HLS DATA_PACK variable=u

#pragma HLS DATA_PACK variable=v

#pragma HLS DATA_PACK variable=w

...

}

void do_retrieve(int i, struct dram_data *u, 

hls::stream<double>& ids){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids.write(u_dram_data.vals[m]);

}

}

}

}

• Very significantly reduced DMA data 
access time by 13X
• Now compute is 82% of the overall runtime

Due to 
conflict on ids 
the best II is 4



Issue 4 doubles per cycle
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void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids.write(u_dram_data.vals[m]);

}

}

}

}

void do_retrieve(int i, struct dram_data *u, 

hls::stream<double> ids[4]){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids[m].write(u_dram_data.vals[m]);

}

}

}

}

No conflict on 
ids so the II is 
now 1

• Effectively, once the pipeline is filled, 
every cycle we are loading 4 doubles 
per field into our FIFO queues

Aggregate HLS 
kernel only (no 
DMA transfer) 
time for 
problem size of 
16.7 million grid 
points (strong 
scaling)



Addressing DMA transfer

• Previously we waited for all PCIe data transfer to complete, and then 
kernels were started based on a static decomposition. Only once all 
computation was completed did results get transferred back
• DMA was responsible for over 70% of the runtime!
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• Modified to be far more 
dynamic
• Split data into chunks and 

when complete start a kernel if 
one is idle

• As soon as kernel completes 
begin results transfer back to 
the host



Full performance comparison

• 67 million grid points 
with a standard stratus 
cloud test-case
• Including DMA transfer

• Now only 8 HLS kernels 
as new version required 
increased resources

• We outperform 18 cores 
of Broadwell now
• 8 HLS kernels: 148ms
• 18 Broadwell: 180ms
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Performance comparison

• Scaling size of the domain
• We outperform 18 cores of 

Broadwell until 268M grid 
points

• 1M: FPGA 2.59 times faster
• DMA accounts for 2% of RT

• 4M: FPGA 1.52 times faster
• 16M: Approaches are 

comparable
• 67M: FPGA 1.22 times faster
• 268: Broadwell 1.23 times 

faster
• DMA accounts for > 40% of RT
• Over 12GB of data transferred 

to or from the PCIe card
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• FPGA draws 28.9 Watts idle and 35.7 Watts under load
• Vivado estimates power draw to be 23 Watts



Floor planning to meet timing
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Conclusions and further work

• When accelerating codes on FPGAs have to think dataflow
• But difficult to know if thinking dataflow enough!

• Critically important for us to have a rich profiling environment enabling detailed 
performance analysis of kernels.
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• Going to experiment with HBM to see if we can increase 
our 85% of time in compute even further
• Will different code patterns suit HBM?
• Double the resources of the ADM8k5

• Further developing our DMA streaming approach to be 
driven more by the FPGA rather than the host explicitly 
starting kernels
• Use of OpenCAPI to avoid data copying in the first place

• Detailed power analysis and comparison on the CPU would be interesting
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CASTEP on FPGAs via 
secondment with 

Alpha Data

MONC, Nek5000, Alya, 
AVBP on FPGAs via 
EXCELLERAT EU CoE

Ongoing FPGA efforts at EPCC

Two industrial MSc 
dissertation projects 

with Xilinx around 
financial modelling on 

FPGAs

Industrial MSc 
dissertation project with 

Alpha Data around 
machine learning on 

FPGAs


