
Crossing the chasm: Accelerating
HPC codes using FPGAs

Dr Nick Brown, Research Fellow

n.brown@epcc.ed.ac.uk

1

mailto:n.brown@epcc.ed.ac.uk

Met Office NERC Cloud (MONC) model

• MONC is a model we developed with the Met Office
for simulating clouds and atmospheric flows
• Advection is the most computationally intensive part of

the code at around 40% runtime

• Stencil based code

04.12.2019 2

Kintex Ultrascale
663k LUTs, 5520
DSPs, 9.4MB
BRAM 8GB

DDR4

PCIe
Gen3*8 8GB

DDR4Alpha Data’s ADM-PCIE-8K5

• Porting to the advection
to the ADM8K5 board

• Advecting over three
fields (wind in x, y, and z
dimensions)

Advection code sketch

do i=1, x_size

do j=1, y_size

do k=2, z_size

su(k, j, i) = tcx * (u(k,j,i-1) * (u(k,j,i) +

u(k,j,i-1)) - u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))

su(k, j, i) = su(k, j, i) + tcy * (u(k,j-1,i) *

(v(k,j-1,i) + v(k,j-1,i+1)) - u(k,j+1,i) *

(v(k,j,i) + v(k,j,i+1)))

if (k .lt. z_size) then

su(k, j, i) = su(k, j, i) + tzc1(k) * u(k-1,j,i) *

(w(k-1,j,i) + w(k-1,j,i+1)) - tzc2(k) * u(k+1,j,i) *

(w(k,j,i) + w(k,j,i+1))

else

su(k, j, i) = su(k, j, i) + tzc1(k) * u(k-1,j,i) *

(w(k-1,j,i) + w(k-1,j,i+1))

end if

end do

end do

end do

04.12.2019 3

Z
d

im
en

si
o

n

Y dimension

• 53 double precision floating point operations per grid cell
for all three fields in this kernel
• 32 double precision floating point multiplications, 21

floating point additions or subtractions

The journey to HLS kernel performance

04.12.2019 4

Description Runtime (ms)

Initial port 51498

Pipeline directive on inner loop 14130

Local BRAM as cache and re-order loops 621.3

Tune double precision cores
and clock to 310Mhz

584.6

Concurrent loading and storing via
dataflow directive

189.64

X dimension of cube in the dataflow
region

163.43

256 bit DRAM connected ports 65.41

Issue 4 doubles per cycle 63.49

Description Runtime (ms)

Sandybridge CPU core 676.4

Broadwell CPU core 540.2

These timings are the compute time of a single HLS kernel, ignoring DMA
transfer, for problem size of 16.7 million grid cells

• Following Xilinx’s UltraFast High-Level
Productivity Design Methodology
• Write the kernel(s) using HLS to generate RTL

• Use the block design in Vivado to hook up

Initial High Level Synthesis kernel

int pw_advection(double * u, double * su, ..., int size_x, int size_y, ...) {

#pragma HLS INTERFACE m_axi port=u offset=slave

#pragma HLS INTERFACE m_axi port=su offset=slave

#pragma HLS INTERFACE s_axilite port=size_x bundle=CTRL_BUS

#pragma HLS INTERFACE s_axilite port=size_y bundle=CTRL_BUS

#pragma HLS INTERFACE s_axilite port=return bundle=CTRL_BUS

.....

}

04.12.2019 5

• Convert into C and apply
appropriate directives on
interface

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int j=start_y;j<end_y;j++) {

for (unsigned int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

su(i,j,k)=tcx*(u(i-1,j,k) * (u(i,j,k) + u(i-1,j,k)) - u(i+1,j,k) *

(u(i,j,k) + u(i+1,j,k)));

su(i,j,k)=su(i,j,k) + tcy*(u(i-1,j,k) *(v(i,j-1,k) + v(i+1,j-1,k)) –

u(i,j+1,k) * (v(i,j,k) * v(i+1,j,k)));

………

}

}

}

• Pipeline the inner loop with
initiation interval of one
• Decreases runtime from 51

seconds to 14 seconds
• But data ports are the limit

here, maximum two accesses
(as dual ported) any one clock
cycle and-so HLS identifies
possible conflict and limits
pipeline accordingly

Use BRAM as a cache

04.12.2019 6

double u_vals[MAX_VERTICAL_SIZE], u_xp1_vals[MAX_VERTICAL_SIZE],

u_vals2[MAX_VERTICAL_SIZE],;

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int j=start_y;j<end_y;j++) {

memcpy(u_vals, &u(i,j,0), sizeof(double) * size_z);

memcpy(u_xp1_vals, &u(i+1,j,0), sizeof(double) * size_z);

memcpy(u_vals2, &u(i,j,0), sizeof(double) * size_z);

....

for (unsigned int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

.....

}

}

}

• Use local BRAM to hold data required for
working with a single column
• Copy all data required for a column

from the external data ports, then
process the column

• MAX_VERTICAL_SIZE is required as an
not dynamically size these in HLS

• Either single or dual ported, but more
than 2 accesses can be needed at any
time – and therefore duplicate them

• Runtime is now 3.2 seconds, having sped kernel up by further four times
• But a major limit is must stop and copy before each column, draining the pipeline
• 71 cycles deep with II of 2, with column size of 64 elements then each column the pipeline

will run for 199 cycles but for only 28% of cycles is the pipeline full utilised 

Extending the use of BRAM as a cache

04.12.2019 7

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Move data in slice+1 and slice down by one in X dimension

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

}

for (unsigned int j=0;j<number_in_y;j++) {

for (unsigned int k=1;k<size_in_z;k++) {

#pragma HLS PIPELINE II=1

// Do calculations for U, V, W field grid points

su_vals[jk_index]=su_x+su_y+su_z;

sv_vals[jk_index]=sv_x+sv_y+sv_z;

sw_vals[jk_index]=sw_x+sw_y+sw_z;

}

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM

}

}

}

• Reduces runtime down
to 0.62 seconds
• Faster than a core

of Sandybridge
but slower than a
Broadwell core

Tuning double precision FP cores

04.12.2019 8

#pragma HLS RESOURCE variable=t1 core=DAddSub_fulldsp

#pragma HLS RESOURCE variable=t2 core=DAddSub_fulldsp

#pragma HLS RESOURCE variable=t7 core=DMul_meddsp latency=14

#pragma HLS RESOURCE variable=t8 core=DMul_meddsp latency=14

#pragma HLS RESOURCE variable=su_x core=DMul_meddsp latency=14

double t1=u_data+um1_data;

double t2=u_data+up1_data;

double t7=um1_data * t1;

double t8=up1_data * t2;

double su_x=tcx*(t7 - t8);

su(k, j, i) = tcx * (u(k,j,i-1) * (u(k,j,i) + u(k,j,i-1)) - u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))

unsigned int jk_index=(size_z * j) + k;

double u_data=u_vals[jk_index];

double um1_data=um1_vals[jk_index];

double up1_data=up1_vals[jk_index];

double t1=u_data+um1_data;

double t2=u_data+up1_data;

double t7=um1_data * t1;

double t8=up1_data * t2;

double su_x=tcx*(t7 - t8);

• Tuned all HLS double precision cores
• The major benefit here was the

multiplication
• Using medium DSP reduced DSP

usage by about 1/5th

• Further pipelined the core to 14
stages, provided period of 2.75 ns
meaning we could up the clock
frequency to 310MHz

• Increases pipeline depth from 65 to
72, but latency for a piece of data
has decreased from 2.6e-7 seconds
to 2.3e-7 seconds.

• 0.58 seconds runtime

Overall performance at this point

• 67 million grid points
with a standard stratus
cloud test-case

• Approximately 7
times slower than 18
cores of Broadwell
• DMA transfer time

accounted for over
70% of runtime

04.12.2019 9

4
 c

o
re

s

12
cores

18
cores

1
2

 k
e

rn
e

ls

Finding out where the bottlenecks are

These timings are the compute time of a single HLS
kernel, ignoring DMA transfer, for problem size of
16.7 million grid cells

• Found that 14% of runtime was doing compute
by the kernel, 86% on memory access!

04.12.2019 10

Description Total Runtime
(ms)

% in
compute

Load data
(ms)

Prepare stencil &
compute results (ms)

Write
data (ms)

Current version 584.65 14% 320.82 80.56 173.22

Run concurrent loading and storing
via dataflow directive

189.64 30% 53.43 57.28 75.65

Include X dimension of cube in the
dataflow region

163.43 33% 45.65 53.88 59.86

256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

Issue 4 doubles per cycle 63.49 85% 2.72 53.88 3.60

Run concurrent loading and storing via
dataflow directive

04.12.2019 11

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Move data in slice+1 and slice down by one in X dimension

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

}

for (unsigned int j=0;j<number_in_y;j++) {

for (unsigned int k=1;k<size_in_z;k++) {

#pragma HLS PIPELINE II=1

// Do calculations for U, V, W field grid points

su_vals[jk_index]=su_x+su_y+su_z;

sv_vals[jk_index]=sv_x+sv_y+sv_z;

sw_vals[jk_index]=sw_x+sw_y+sw_z;

}

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM

}

}

}

• But each part runs sequentially for each slice:
1. Move data in slice+1 and slice down in X by 1
2. Load data for all fields into DRAM
3. Do calculations for U,V,W field grid points
4. Write data for fields to DRAM

• Instead, can we run these concurrently for
each slice?

Run concurrent loading and storing via
dataflow directive

04.12.2019 12

• Using the HLS Dataflow directive create a pipeline of these four activities
• These stage use HLS streams (FIFO queues) to connect them

Read u, v, w
from DRAM

Shift data in X
Compute
advection

results

Write
results to

DRAM

Three
double
precision
values

Three
stencil
struct
values

Three
double
precision
values

For each slice in the X dimension

• Resulted in 2.60 times runtime
reduction
• Reduced computation runtime by

around 25%
• Reduced data access time by over 3x
• Time spent in computation now 30%

Where we are….

04.12.2019 13

Read u, v, w
from DRAM

Shift data in X
Compute
advection

results

Write
results to

DRAM

Three
double
precision
values

Three
stencil
struct
values

Three
double
precision
values

For every slice in X and block in Y

Include X dimension of cube in dataflow region

04.12.2019 14

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

}

void perform_advection(double * u) {

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

#pragma HLS DATAFLOW

retrieve_input_data(u, in_data_stream_u, ...);

...

}

}

Sped up the compute slightly, but
data access was 3.6 times slower!

The inner loop is 28 cycles total

Readreq done for every element 25 cycles

Read 1 cycle

Include X dimension of cube in dataflow region

04.12.2019 15

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

do_retrieve(i, u, ids);

}

}

void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

The inner loop is 3 cycles total

Readreq moved outside loop and
now only done once per slice

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

}

Reduced data access by
4.5 times compared to
readreq in every iteration

• Slight improvement
overall, compute now
33% of runtime

256 bit DRAM connected ports

• At the block design level, DRAM
controllers are at 256 bits width
• Which Alpha Data tell us is optimal

04.12.2019 16

• But our kernels
work with 64 bit
values (double
precision)
• Using a data width converter in the

AXI interconnects

• Are we throwing away bandwidth
and/or creating overhead at the
controller block?

256 bit DRAM connected ports

04.12.2019 17

struct dram_data {

double vals[4];

};

void pw_advection(struct dram_data * su, struct dram_data * sv,

struct dram_data * sw, struct dram_data * u, struct dram_data *

v, struct dram_data * w, …) {

#pragma HLS DATA_PACK variable=su

#pragma HLS DATA_PACK variable=sv

#pragma HLS DATA_PACK variable=sw

#pragma HLS DATA_PACK variable=u

#pragma HLS DATA_PACK variable=v

#pragma HLS DATA_PACK variable=w

...

}

void do_retrieve(int i, struct dram_data *u,

hls::stream<double>& ids){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids.write(u_dram_data.vals[m]);

}

}

}

}

• Very significantly reduced DMA data
access time by 13X
• Now compute is 82% of the overall runtime

Due to
conflict on ids
the best II is 4

Issue 4 doubles per cycle

04.12.2019 18

void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids.write(u_dram_data.vals[m]);

}

}

}

}

void do_retrieve(int i, struct dram_data *u,

hls::stream<double> ids[4]){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids[m].write(u_dram_data.vals[m]);

}

}

}

}

No conflict on
ids so the II is
now 1

• Effectively, once the pipeline is filled,
every cycle we are loading 4 doubles
per field into our FIFO queues

Aggregate HLS
kernel only (no
DMA transfer)
time for
problem size of
16.7 million grid
points (strong
scaling)

Addressing DMA transfer

• Previously we waited for all PCIe data transfer to complete, and then
kernels were started based on a static decomposition. Only once all
computation was completed did results get transferred back
• DMA was responsible for over 70% of the runtime!

04.12.2019 19

• Modified to be far more
dynamic
• Split data into chunks and

when complete start a kernel if
one is idle

• As soon as kernel completes
begin results transfer back to
the host

Full performance comparison

• 67 million grid points
with a standard stratus
cloud test-case
• Including DMA transfer

• Now only 8 HLS kernels
as new version required
increased resources

• We outperform 18 cores
of Broadwell now
• 8 HLS kernels: 148ms
• 18 Broadwell: 180ms

04.12.2019 20

4
 c

o
re

s

12
cores 18

cores 1
2

 k
e

rn
e

ls

8
kernels

Performance comparison

• Scaling size of the domain
• We outperform 18 cores of

Broadwell until 268M grid
points

• 1M: FPGA 2.59 times faster
• DMA accounts for 2% of RT

• 4M: FPGA 1.52 times faster
• 16M: Approaches are

comparable
• 67M: FPGA 1.22 times faster
• 268: Broadwell 1.23 times

faster
• DMA accounts for > 40% of RT
• Over 12GB of data transferred

to or from the PCIe card

04.12.2019 21

• FPGA draws 28.9 Watts idle and 35.7 Watts under load
• Vivado estimates power draw to be 23 Watts

Floor planning to meet timing

04.12.2019 22

Conclusions and further work

• When accelerating codes on FPGAs have to think dataflow
• But difficult to know if thinking dataflow enough!

• Critically important for us to have a rich profiling environment enabling detailed
performance analysis of kernels.

04.12.2019 23

• Going to experiment with HBM to see if we can increase
our 85% of time in compute even further
• Will different code patterns suit HBM?
• Double the resources of the ADM8k5

• Further developing our DMA streaming approach to be
driven more by the FPGA rather than the host explicitly
starting kernels
• Use of OpenCAPI to avoid data copying in the first place

• Detailed power analysis and comparison on the CPU would be interesting

04.12.2019 24

CASTEP on FPGAs via
secondment with

Alpha Data

MONC, Nek5000, Alya,
AVBP on FPGAs via
EXCELLERAT EU CoE

Ongoing FPGA efforts at EPCC

Two industrial MSc
dissertation projects

with Xilinx around
financial modelling on

FPGAs

Industrial MSc
dissertation project with

Alpha Data around
machine learning on

FPGAs

