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 有限振幅法による二重ベータ崩壊原子核行列要素の計算 （日野原、Engel（ノースカ

ロライナ大）） 

ニュートリノレス二重ベータ崩壊の半減期から電子ニュートリノの有効質量を決定するた

めには崩壊の原子核行列要素を精密に計算する必要があるが、原子核行列要素は中性子―陽

子対相関によって抑制されることが知られており、対相互作用の結合定数を決定することが

行列要素の精密計算のために重要である。ニュートリノを２つ放出する二重ベータ崩壊には

豊富な実験データが存在し、これを用いて中性子―陽子対相関の結合定数を決定することが

可能である。二重ベータ崩壊の原子核行列要素を準粒子乱雑位相近似で計算する場合、大次

元の行列対角化を行う必要があるが、有限振幅法によって応答関数を反復法で効率的に計算

し、応答関数の二重複素積分によって原子核行列要素の導出が可能である定式化をこれまで

に行った。米国ノースカロライナ大学で開発された中性子―陽子チャネルの有限振幅法のコ

ードを拡張し、二重 Gamow-Teller 遷移強度およびニュートリノを２つ放出する二重ベータ崩

壊原子核行列要素計算の実装を行った。pf 殻領域の原子核に対して系統的な計算を行い、原

子核行列要素の中性子―陽子対相関依存性の分析を行った（図 4）。 
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図 3: 108Mo の四重極変形ポテンシャル曲面（左図）と CHFB+LQRPA による低励起状態

のスペクトル（右図）。 

図 4: 48Ca の二重 Gamow-Teller 遷移（左図）とニュートリノを２つ放出する二重ベー

タ崩壊（右図）の原子核行列要素のアイソスカラー対相関結合定数依存性。 
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Effect of octupole deformation on the fission of actinides (G. Scamps and C. Simenel) 

 

6  Evolution of the fission of 240Pu nuclei. 

 

  Nuclear fission is a process in which a heavy nucleus split into two. Most of the actinides nuclei 

(Plutonium, Uranium, Curium…) fission asymmetrically with one big fragment and one small. 

Empirically, the heavy fragment presents on average a Xenon element (with charge number Z=54) 

independently from the initial fissioning nucleus. To understand the mechanism that determines the 

number of protons and neutrons in each of the two fragments has been a longstanding puzzle. It was 

expected that the deformation of the fragments could play a role. Indeed, the atomic nuclei can have 

different shapes depending on their internal structure. Some of them are spherical, most of them are 

deformed like a rugby ball and a few have a pear-shaped deformation. The internal structure of the nuclei 

varies as a function of the number of protons and neutrons composing the nuclei. The state of the art of 

nuclear theory has been used to describe dynamically the fission process. This simulation of the nuclear 

fission uses the quantum-mechanics to take into account the motion of the nucleons in the nuclei and 

uses adequate simplifications to solve the many-body problem. Using that model, in the case of the 240Pu, 

it has been found that the fission fragments are preferably formed with a pear-shaped deformation (see 

figure 6). This pear-shaped deformation is due to the strong Coulomb repulsion of the two fragments. 

This initial deformation favours nuclei which are pear-shaped in their ground state. This is the case of 

the Xenon due to some internal structure effects associated with a number of proton Z=54. This 

mechanism is strong enough to strongly influence the partition of nucleons in several fissioning systems. 

This mechanism has been found in simulations of the fission of 230Th, 234U, 236U, 246Cm and 250Cf in 

agreement with the experimental observations. These findings may explain in future, surprising recent 

observations of asymmetric fission of lighter than lead nuclei, and improve predictions of fission 
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properties of exotic nuclei which impact the abundance of elements produced in the astrophysical 

processes. 

 

Density-constraint Hartree-Fock-Bogoliubov (G. Scamps and Y. Hashimoto) 

  A new method is developed in order to determine the Nucleus-Nucleus potential for fusion reactions 

for which pairing play an important role, the Density-constraint Hartree-Fock-Bogoliubov theory. Using 

this method, we investigate the splitting of the Nucleus-Nucleus potential with respect to different 

relative gauge angles (figure 7). 

7: Nucleus-Nucleus potential for the 20O+ 20O reaction for 3 gauge-angle. 

 

Self-consistent random phase approximation based on the relativistic Hartree-Fock 

-tensor coupling (Wang  Naito Liang

Long (Lanzhou Univ.))  

  The framework of the random phase approximation (RPA) based on the relativistic Hartree-Fock 

(RHF) theory is extended to achieve a self- -meson tensor coupling. The 

model self-consistency is verified by the check of the isobaric -

-vector-tensor couplings play significant roles in maintaining the self-consistency. Using 

the RHF Lagrangian PKA1, the properties of the Gamow-Teller resonances (GTR) are investigated 

(figure 8), in which the roles played by the particle-hole residual interaction of various meson-nucleon 

couplings are clarified in details. Furthermore, the effects of the tensor force, which is introduced 

naturally via the Fock terms, are analyzed by comparing the calculations with full Lagrangians and the 

ones artificially dropping the tensor force components. It is found that for the RHF Lagrangians PKOi 

(i = 1,2,3) and PKA1, the tensor forces play the role mainly via the RHF mean-field rather than via the 

RPA residual interaction in determining the GTR. Moreover, the tensor-force effects are not as strong 

as those indicated by the Skyrme Hartree-Fock calculations. 
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8: Transition strength distributions of GTR in 208Pb. The calculations are performed by the RHF 

+ RPA approach with the effective interaction PKA1. The unperturbed results (short-dotted line, 
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MeV is used. The horizontal position of the arrow corresponds to the experimental peak energy. 
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