
University	
 of	
 Tsukuba	
 	
 | Center	
 for	
 Computational	
 Sciences

http://www.ccs.tsukuba.ac.jp/

OpenCL-­‐ready	
 High	
 Speed	
 FPGA	
 Networking	
 [1]
lDev.	
 tooI:	
 Intel	
 FPGA	
 for	
 OpneCL
lBoard	
 Support	
 Package	
 (BSP)	
 is	
 a	
 hardware	

component	
 to	
 support	
 multiple	
 different	
 boards
ØWhich	
 FPGA	
 chip	
 is	
 used	
 on	
 the	
 board	

ØWhat	
 kind	
 of	
 peripherals	
 are	
 support	
 by	
 the	

board	

lBasically,	
 only	
 minimum	
 interfaces	
 are	
 supported	

ØTo	
 perform	
 inter	
 FPGA	
 communication,	

implementing	
 network	
 controller	
 and	

integrating	
 it	
 into	
 the	
 BSP	
 are	
 required

Numerical	
 Computation

contact	
 address:	
 pr@ccs.tsukuba.ac.jp

Implementation overview

14

Our FPGA board
(BittWare A10PL4)

DDR4
mem

QSFP+

OpenCL
kernel

In
te
rc
on
ne
ct

PCIe
Controller

DDR4
Controller

DDR4
Controller

FPGA

FPGA board (A10PL4)

DDR4
mem

QSFP+

QSFP+

DDR4
mem

Driver

Host Application

Host PC

BSP

Ethernet IP
Controller
Ethernet IP
Controller

Ethernet
IP Core
Ethernet
IP Core

additionally implemented
I/O channel

specified access
QSFP+ port

calibration is needed

Authentic	
 Radiation	
 Transfer	
 (ART)	
 on	
 FPGA	
 [2]
• Accelerated Radiative transfer on grids Oct-Tree

(ARGOT) has been developer in Center for
Computational Sciences, University of Tsukuba
• ART is one of algorithms used in ARGOT and

dominant part (90% or more of computation
time) of ARGOT program

• ART is ray tracing based algorithm
• problem space is divided

into meshes and reactions
are computed on each mesh

• Memory access pattern
depends on ray direction

• Not suitable for SIMD architecture

0

200

400

600

800

1000

1200

1400

(16,16,16) (32,32,32) (64,64,64) (128,128,128)

Pe
rf

or
m

an
ce

 [M
 m

es
h/

s]

mesh size

CPU(14C)
CPU(28C)
P100(x1)
FPGA

be
tt
er

Table 2: Resource usage and clock frequency of the implementation.

size # of PEs ALMs (%) Registers (%) M20K (%) MLAB DSP (%) Freq. [MHz]
(16, 16, 16) (2, 2, 2) 132,283 31% 267,828 31% 739 27% 14,310 312 21% 193.2
(32, 32, 32) (2, 2, 2) 169,882 40% 344,447 40% 796 29% 21,100 312 21% 173.8
(64, 64, 64) (2, 2, 2) 169,549 40% 344,512 40% 796 29% 21,250 312 21% 167.0

(128, 128, 128) (2, 2, 2) 169,662 40% 344,505 40% 796 29% 21,250 312 21% 170.4

Table 3: Performance comparison between FPGA, CPU and
GPU implementations. The unit is M mesh/sec.

Size CPU(14C) CPU(28C) P100 FPGA
(16,16,16) 112.4 77.2 105.3 1282.8
(32,32,32) 158.9 183.4 490.4 1165.2
(64,64,64) 175.0 227.2 1041.4 1111.0

(128,128,128) 95.4 165.0 1116.1 1133.5

per link) multiple interconnection links (up to 4 channels) on
it. Additionally, HLS such as OpenCL programming envi-
ronment is provided, and there are several tyeps of research
to involve them in FPGA computing. In [3], Kobayashi, et
al. show the basic feature to utilize the high speed intercon-
nection over FPGA driven by OpenCL kernels. Therefore,
although the performance of our implementation is almost
same as NVIDIA P100 GPU, the overall performance with
multiple computation nodes with FPGA to be connected di-
rectly can easily overcome the GPU implementation which
requires host CPU control and kernel switching for inter-
node communication. Networking overhead on FPGAs is
much lower than one on GPUs. To improve current ART
method implementation with such an interconnection fea-
ture on FPGA is our next step toward high performance
parallel FPGA computing.

8. CONCLUSION
In this paper, we optimized ART method used in ARGOT

program which solves a fundamental calculation in early
stage universe with space radiative transfer phenomenon,
on an FPGA using Intel FPGA SDK for OpenCL. We par-
allelized the algorithm using the SDK’s channel extension
in an FPGA. We achieved 4.89 times faster performance
than the CPU implementation using OpenMP as well as al-
most same performance as the GPU implementation using
CUDA.

Although the performance of the FPGA implementation
is comparable to NVIDIA P100 GPU, it has room to im-
prove its performance. The most important optimization
is resource optimization. If we can implement larger num-
ber of PEs than one of the current, we can improve per-
formance. However, it is difficult for us to reduce usage
of ALMs and registers because we do not describe them di-
rectly in OpenCL code. Not only resource but also frequency
is important. We suppose Arria 10 with OpenCL design can
run on 200MHz or higher frequency.

We will implement the network functionality into the ART
design to parallelize it among multiple FPGAs. We con-
sider networking using FPGAs is an important feature for
parallel applications using FPGAs. Although GPUs have
higher computation performance FLOPS and higher mem-
ory bandwidth than FPGAs, I/O including networking is a

weak point for GPUs because they are connected to NICs
through PCIe bus. In addition to networking, we will try to
run our code on Stratix 10 FPGA which is the next gener-
ation Intel FPGA. We expect we can implement more PEs
than Arria 10 FPGA because it has 2.2 times more ALM
blocks and 3.8 times more DPS blocks.

9. REFERENCES
[1] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt,

F. K. Hansen, M. Reinecke, and M. Bartelmann.
Healpix: A framework for high-resolution discretization
and fast analysis of data distributed on the sphere. The
Astrophysical Journal, 622(2):759, 2005.

[2] K. Hill, S. Craciun, A. George, and H. Lam.
Comparative analysis of opencl vs. hdl with
image-processing kernels on stratix-v fpga. In 2015
IEEE 26th International Conference on
Application-specific Systems, Architectures and
Processors (ASAP), pages 189–193, July 2015.

[3] R. Kobayashi, Y. Oobata, N. Fujita, Y. Yamaguchi,
and T. Boku. Opencl-ready high speed fpga network for
reconfigurable high performance computing. In
Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region, HPC
Asia 2018, pages 192–201, New York, NY, USA, 2018.
ACM.

[4] Y. Luo, X. Wen, K. Yoshii, S. Ogrenci-Memik,
G. Memik, H. Finkel, and F. Cappello. Evaluating
irregular memory access on opencl fpga platforms: A
case study with xsbench. In 2017 27th International
Conference on Field Programmable Logic and
Applications (FPL), pages 1–4, Sept 2017.

[5] T. Okamoto, K. Yoshikawa, and M. Umemura. argot:
accelerated radiative transfer on grids using oct-tree.
Monthly Notices of the Royal Astronomical Society,
419(4):2855–2866, 2012.

[6] S. Tanaka, K. Yoshikawa, T. Okamoto, and
K. Hasegawa. A new ray-tracing scheme for 3d diffuse
radiation transfer on highly parallel architectures.
Publications of the Astronomical Society of Japan,
67(4):62, 2015.

[7] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda,
and S. Matsuoka. Evaluating and optimizing opencl
kernels for high performance computing with fpgas. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’16, pages 35:1–35:12, Piscataway, NJ,
USA, 2016. IEEE Press.

���4�
)����4 �����4 (��44��

������

���4�

4���4�����4

	���42���
���4�
���)�

PE Array
(2x2x2)

DDR4
Memory

Memory
Reader

Memory
Writer

Buffer

Buffer

Channel
Memory Network

Fig. 5: Design Outline of ART on FPGA.

each other. Each kernel computes reaction between a mesh and a ray
on its own computation space which is dedicated to each kernel. While
computing, a ray is traversed among multiple compute kernels depend-
ing on its location. If a ray goes out from kernel’s space, its data will be
transferred to a neighbor kernel through a channel.
Figure 5 shows the design outline of our implementation. “Memory Reader”
reads mesh data from DDR4 memory which is seen as a global memory
from OpenCL language. “Memory Writer” is a counterpart to the reader
and updates mesh data by the result of computation. It has both of read
and write memory access because it computes integration of gas reaction.
“Buffer” is a mesh data buffer to improve memory access performance.
“PE Array” is an array of PEs (Processing Element). PE computes the
kernel of ART method. The array is consists of multiple kernels. We show
the detail of PE network in the next subsection.
Since our implementation is work-in-progress, it lacks some features from
the CPU implementation. While computation in an FPGA, all mesh data
must be put into its internal BRAM (Block Random Access Memory).
The FPGA implementation does not support to replace mesh data in-
volved by progression of its computation. Therefore, problem size which
an FPGA can solve is limited by the size of BRAM. The CPU implemen-
tation supports inter-node parallelization using MPI (Message Passing
Interface), but the FPGA implementation does not support any network-
ing functionality and uses only one FPGA.

4.2 Parallelization using Channel in an FPGA

We describe the structure in “PE Array” shown in Figure 5. A PE Array
is consists of PEs and BEs (Boundary Element) as shown in Figure 6.
It shows the PE Array network on the x-y dimension. We do not show
connections for z dimension to keep the figure simple. We also have a
similar connection to x-y dimension for z dimension.

Source
Kernel

Destination
Kernel

FIFO
Channel

Global Memory
(DDR4)

Source
Kernel

Destination
Kernel

Write Read

Off Chip

• Our implementation uses channel based approach
• One of extensions to OpenCL for FPGAs by Intel

• It enables inter kernel communication much faster
• No external memory (DDR) access is required
• Lower resource utilization than DDR access

without channels with channels

(16x16x16) (8x8x8)

mesh

• Problem space is divided into small blocks
• e.g. (16, 16, 16) → 8 � (8, 8, 8)
• PE is assigned to each of small blocks

PE BEBE PE

96bit x2
(read,write)

Channel

PE PE BEBE

BEBE

BEBE

y

x
Ray Data

• PEs are connected by channels each other
• PE: Processing Element
• BE: Boundary Element

• Kernel of PEs and BEs are started automatically by
autorun attribute
• Lower control overhead and resource usage

because of decreasing number of host controlled
kernels

4.9x	
 faster

almost	
 equal	
 performance

Development	
 of	
 Parallel	
 Sparse	

Eigensolver Package:	
 z	
 -­‐ Pares

Hierarchical	
 Parallel	
 Structure Numerical	
 Example	
 on	
 the	
 K	
 Computer

The aim of this research project is to develop numerical software for
large-­‐ scale eigenvalue problems for post-­‐petascale computing
environment. An eigensolver based on contour integral (the SS
method) has been proposed by Sakurai and Sugiura [3]. This method
has a hierarchical structure and is suitable for massively parallel
supercomputers [2]. Moreover, the SS method can be applicable for
nonlinear eigenvalue problem [1]. Block Krylov method [4] improves
the performance of the method. Based on these newly designed
algorithms, we have developed a massively parallel software z-­‐Pares
freely-­‐available from http://zpares.cs.tsukuba.ac.jp/. MATLAB version
is also available in our webpage. We have also developed CISS
eigensolver in SLEPc.

Hardware is grouped according to
a hierarchical structure of the
algorithm.

Application for band calculation with real
space density functional theory (RSDFT) [2].

Band	
 structure	
 of	
 silicon	
 nanowire	
 of	
 9,924	
 atoms.
(matrix	
 size	
 =	
 8,719,488,	
 	
 Number	
 of	
 cores	
 =	
 6,144)	

*The	
 results	
 are	
 tentative	
 since	
 they	
 are	
 obtained	
 by	
 early	
 access	
 to	
 the	
 K	
 computer.	

Reference	

[1]	
 J.	
 Asakura,	
 T.	
 Sakurai,	
 H.	
 Tadano,	
 T.	
 Ikegami	
 and	
 K.	
 Kimura,	
 A	
 numerical	
 method	
 for	
 nonlinear	
 eigenvalue	
 problems	
 using	
 contour	
 integrals, JSIAM	
 Letters,	

1	
 (2009)	
 52-­‐55.	

[2]	
 Y.	
 Futamura,	
 T.	
 Sakurai,	
 S.	
 Furuya and	
 J.-­‐I.	
 Iwata,	
 Efficient	
 algorithm	
 for	
 linear	
 systems	
 arising	
 in	
 solutions	
 of	
 eigenproblems and	
 its	
 application	
 to	

electronic-­‐structure	
 calculations,	
 Proc.	
 10th	
 International	
 Meeting	
 on	
 High-­‐Performance	
 Computing	
 for	
 Computational	
 Science	
 (VECPAR	
 2012),	
 7851	
 (2013),	

226-­‐235.	

[3]	
 T.	
 Sakurai	
 and	
 H.	
 Sugiura,	
 A	
 projection	
 method	
 for	
 generalized	
 eigenvalue	
 problems,	
 J.	
 Comput.	
 Appl.	
 Math.,	
 159	
 (2003)	
 119-­‐128.	

[4]	
 H.	
 Tadano,	
 T.	
 Sakurai	
 and	
 Y.	
 Kuramashi,	
 Block	
 BiCGGR:	
 A	
 new	
 block	
 Krylov subspace	
 method	
 for	
 computing	
 high	
 accuracy	
 solutions,	
 JSIAM	
 Letters,	
 1	

(2009)	
 44-­‐47.	

Acknowledgment
This	
 research	
 was	
 partially	
 supported	
 by	
 the	
 Core	
 Research	
 for	
 Evolutional	
 Science	
 and	
 Technology	
 (CREST)	
 Project	
 of	
 JST	
 and	
 the Grant-­‐in-­‐Aid	
 for	
 Scientific	

Research	
 of	
 Ministry	
 of	
 Education,	
 Culture,	
 Sports,	
 Science	
 and	
 Technology,	
 Japan,	
 Grant	
 number:	
 23105702.	

Algorithm Hardware
Top	
 level

Middle	
 level

Bottom	
 level

Γ1 Γ2 Γ3

z1

z2

zN

T (zj)Xj = V

Automatic	
 Tuning	
 of	
 Parallel	
 1-­‐D	
 FFT	

on	
 Cluster	
 of	
 Intel	
 Xeon	
 Phi	
 Processors

Background
The fast Fourier transform (FFT) is widely used in science and
engineering. Parallel FFTs on distributed-­‐memory parallel
computers require intensive all-­‐to-­‐all communication, which
affects their performance. How to overlap the computation and
the all-­‐to-­‐all communication is an issue that needs to be
addressed for parallel FFTs.

Overview
We proposed an automatic tuning (AT) of computation-­‐
communication overlap for parallel 1-­‐D FFT. We used a
computation-­‐communication overlap method that introduces a
communication thread with OpenMP. An automatic tuning facility

Performance of parallel 1-­D FFTs
（Oakforest-­PACS，1024 nodes）

0
500
1000
1500
2000
2500
3000
3500
4000

16
M
64
M
25
6M 1G 4G 16

G
64
G

Length of transform N

G
Fl
op
s

FFTE
6.2alpha (no
overlap)
FFTE
6.2alpha
(NDIV=4)
FFTE
6.2alpha with
AT
FFTW 3.3.7

implementation of a
parallel 1-­‐D FFT with
automatic tuning is
efficient for improving
the performance on
cluster of Intel Xeon
Phi processors.

Reference	

[1]	
 Ryohei Kobayashi,	
 Yuma	
 Oobata,	
 Norihisa Fujita,	
 Yoshiki Yamaguchi,	
 and	
 Taisuke Boku,	
 OpenCL-­‐ready	
 High	
 Speed	
 FPGA	
 Network	
 for	
 Reconfigurable	
 High	
 Performance	
 Computing,	
 HPC	
 Asia	
 2018,	
 pp.192-­‐201,	
 January	
 2018
[2]	
 Norihisa Fujita,	
 Ryohei Kobayashi,	
 Yoshiki Yamaguchi,	
 Yuuma Oobata,	
 Taisuke Boku,	
 Makito Abe,	
 Kohji	
 Yoshikawa,	
 and	
 Masayuki	
 Umemura:	
 Accelerating	
 Space	
 Radiate	
 Transfer	
 on	
 FPGA	
 using	
 OpenCL	
 (Accepted),	
 International	
 Symposium	
 on	
 Highly-­‐Efficient	
 Accelerators	
 and	
 Reconfigurable	
 Technologies	
 (HEART	
 2018)
Acknowledgment	

This	
 research	
 is	
 a	
 part	
 of	
 the	
 project	
 titled	
 “Development	
 of	
 Computing-­‐Communication	
 Unified	
 Supercomputer	
 in	
 Next	
 Generation”	
 under	
 the	
 program	
 of	
 “Research	
 and	
 Development	
 for	
 Next-­‐Generation	
 Supercomputing	
 Technology”	
 by	
 MEXT.	
 We	
 thank	
 Intel	
 University Program	
 for	
 providing	
 us	
 both	
 of	
 hardware	
 and	
 software.

for selecting the optimal parameters of the computation-­‐
communication overlap, the radices, and the block size was
implemented.

Performance
To evaluate the parallel 1-­‐D FFT with AT, we compared its
performance against those of FFTE 6.2alpha
(http://www.ffte.jp/) , FFTE 6.2alpha with AT, and FFTW
3.3.7.
The performance results demonstrate that the proposed
implementation

�

�

�

 ������ �	��

 ��		�

3D-­‐Poisson	
 Equation	
 Solver,	
 19-­‐point	
 stencil	
 computation

Size	
 XS,	
 S	
 and	
 M	
 on	
 1,	
 2	
 and	
 4	
 FPGAs
(Strong	
 Scaling)

