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OpenCL-­‐ready	
  High	
  Speed	
  FPGA	
  Networking	
  [1]
lDev.	
  tooI:	
  Intel	
  FPGA	
  for	
  OpneCL
lBoard	
  Support	
  Package	
  (BSP)	
  is	
  a	
  hardware	
  
component	
  to	
  support	
  multiple	
  different	
  boards
ØWhich	
  FPGA	
  chip	
  is	
  used	
  on	
  the	
  board	
  
ØWhat	
  kind	
  of	
  peripherals	
  are	
  support	
  by	
  the	
  
board	
  

lBasically,	
  only	
  minimum	
  interfaces	
  are	
  supported	
  
ØTo	
  perform	
  inter	
  FPGA	
  communication,	
  
implementing	
  network	
  controller	
  and	
  
integrating	
  it	
  into	
  the	
  BSP	
  are	
  required

Numerical	
  Computation

contact	
  address:	
  pr@ccs.tsukuba.ac.jp

Implementation overview
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calibration is needed

Authentic	
  Radiation	
  Transfer	
  (ART)	
  on	
  FPGA	
  [2]
• Accelerated Radiative transfer on grids Oct-Tree 

(ARGOT)  has been developer in Center for 
Computational Sciences, University of Tsukuba
• ART is one of algorithms used in ARGOT and 

dominant part (90% or more of computation 
time) of ARGOT program

• ART is ray tracing based algorithm
• problem space is divided 

into meshes and reactions 
are computed on each mesh

• Memory access pattern 
depends on ray direction

• Not suitable for SIMD architecture

0

200

400

600

800

1000

1200

1400

(16,16,16) (32,32,32) (64,64,64) (128,128,128)

Pe
rf

or
m

an
ce

 [M
 m

es
h/

s]

mesh size

CPU(14C)
CPU(28C)
P100(x1)
FPGA

be
tt
er

Table 2: Resource usage and clock frequency of the implementation.

size # of PEs ALMs (%) Registers (%) M20K (%) MLAB DSP (%) Freq. [MHz]
(16, 16, 16) (2, 2, 2) 132,283 31% 267,828 31% 739 27% 14,310 312 21% 193.2
(32, 32, 32) (2, 2, 2) 169,882 40% 344,447 40% 796 29% 21,100 312 21% 173.8
(64, 64, 64) (2, 2, 2) 169,549 40% 344,512 40% 796 29% 21,250 312 21% 167.0

(128, 128, 128) (2, 2, 2) 169,662 40% 344,505 40% 796 29% 21,250 312 21% 170.4

Table 3: Performance comparison between FPGA, CPU and
GPU implementations. The unit is M mesh/sec.

Size CPU(14C) CPU(28C) P100 FPGA
(16,16,16) 112.4 77.2 105.3 1282.8
(32,32,32) 158.9 183.4 490.4 1165.2
(64,64,64) 175.0 227.2 1041.4 1111.0

(128,128,128) 95.4 165.0 1116.1 1133.5

per link) multiple interconnection links (up to 4 channels) on
it. Additionally, HLS such as OpenCL programming envi-
ronment is provided, and there are several tyeps of research
to involve them in FPGA computing. In [3], Kobayashi, et
al. show the basic feature to utilize the high speed intercon-
nection over FPGA driven by OpenCL kernels. Therefore,
although the performance of our implementation is almost
same as NVIDIA P100 GPU, the overall performance with
multiple computation nodes with FPGA to be connected di-
rectly can easily overcome the GPU implementation which
requires host CPU control and kernel switching for inter-
node communication. Networking overhead on FPGAs is
much lower than one on GPUs. To improve current ART
method implementation with such an interconnection fea-
ture on FPGA is our next step toward high performance
parallel FPGA computing.

8. CONCLUSION
In this paper, we optimized ART method used in ARGOT

program which solves a fundamental calculation in early
stage universe with space radiative transfer phenomenon,
on an FPGA using Intel FPGA SDK for OpenCL. We par-
allelized the algorithm using the SDK’s channel extension
in an FPGA. We achieved 4.89 times faster performance
than the CPU implementation using OpenMP as well as al-
most same performance as the GPU implementation using
CUDA.

Although the performance of the FPGA implementation
is comparable to NVIDIA P100 GPU, it has room to im-
prove its performance. The most important optimization
is resource optimization. If we can implement larger num-
ber of PEs than one of the current, we can improve per-
formance. However, it is difficult for us to reduce usage
of ALMs and registers because we do not describe them di-
rectly in OpenCL code. Not only resource but also frequency
is important. We suppose Arria 10 with OpenCL design can
run on 200MHz or higher frequency.

We will implement the network functionality into the ART
design to parallelize it among multiple FPGAs. We con-
sider networking using FPGAs is an important feature for
parallel applications using FPGAs. Although GPUs have
higher computation performance FLOPS and higher mem-
ory bandwidth than FPGAs, I/O including networking is a

weak point for GPUs because they are connected to NICs
through PCIe bus. In addition to networking, we will try to
run our code on Stratix 10 FPGA which is the next gener-
ation Intel FPGA. We expect we can implement more PEs
than Arria 10 FPGA because it has 2.2 times more ALM
blocks and 3.8 times more DPS blocks.
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Fig. 5: Design Outline of ART on FPGA.

each other. Each kernel computes reaction between a mesh and a ray
on its own computation space which is dedicated to each kernel. While
computing, a ray is traversed among multiple compute kernels depend-
ing on its location. If a ray goes out from kernel’s space, its data will be
transferred to a neighbor kernel through a channel.
Figure 5 shows the design outline of our implementation. “Memory Reader”
reads mesh data from DDR4 memory which is seen as a global memory
from OpenCL language. “Memory Writer” is a counterpart to the reader
and updates mesh data by the result of computation. It has both of read
and write memory access because it computes integration of gas reaction.
“Buffer” is a mesh data buffer to improve memory access performance.
“PE Array” is an array of PEs (Processing Element). PE computes the
kernel of ART method. The array is consists of multiple kernels. We show
the detail of PE network in the next subsection.
Since our implementation is work-in-progress, it lacks some features from
the CPU implementation. While computation in an FPGA, all mesh data
must be put into its internal BRAM (Block Random Access Memory).
The FPGA implementation does not support to replace mesh data in-
volved by progression of its computation. Therefore, problem size which
an FPGA can solve is limited by the size of BRAM. The CPU implemen-
tation supports inter-node parallelization using MPI (Message Passing
Interface), but the FPGA implementation does not support any network-
ing functionality and uses only one FPGA.

4.2 Parallelization using Channel in an FPGA

We describe the structure in “PE Array” shown in Figure 5. A PE Array
is consists of PEs and BEs (Boundary Element) as shown in Figure 6.
It shows the PE Array network on the x-y dimension. We do not show
connections for z dimension to keep the figure simple. We also have a
similar connection to x-y dimension for z dimension.
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• Our implementation uses channel based approach
• One of extensions to OpenCL for FPGAs by Intel

• It enables inter kernel communication much faster
• No external memory (DDR) access is required
• Lower resource utilization than DDR access

without channels with channels
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• Problem space is divided into small blocks
• e.g. (16, 16, 16) → 8 � (8, 8, 8)
• PE is assigned to each of small blocks
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• PEs are connected by channels each other
• PE: Processing Element
• BE: Boundary Element

• Kernel of PEs and BEs are started automatically by 
autorun attribute
• Lower control overhead and resource usage 

because of decreasing number of host controlled 
kernels

4.9x	
  faster

almost	
  equal	
  performance

Development	
  of	
  Parallel	
  Sparse	
  
Eigensolver Package:	
  z	
  -­‐ Pares

Hierarchical	
  Parallel	
  Structure Numerical	
  Example	
  on	
  the	
  K	
  Computer

The aim of this research project is to develop numerical software for
large-­‐ scale eigenvalue problems for post-­‐petascale computing
environment. An eigensolver based on contour integral (the SS
method) has been proposed by Sakurai and Sugiura [3]. This method
has a hierarchical structure and is suitable for massively parallel
supercomputers [2]. Moreover, the SS method can be applicable for
nonlinear eigenvalue problem [1]. Block Krylov method [4] improves
the performance of the method. Based on these newly designed
algorithms, we have developed a massively parallel software z-­‐Pares
freely-­‐available from http://zpares.cs.tsukuba.ac.jp/. MATLAB version
is also available in our webpage. We have also developed CISS
eigensolver in SLEPc.

Hardware is grouped according to
a hierarchical structure of the
algorithm.

Application for band calculation with real
space density functional theory (RSDFT) [2].

Band	
  structure	
  of	
  silicon	
  nanowire	
  of	
  9,924	
  atoms.
(matrix	
  size	
  =	
  8,719,488,	
  	
  Number	
  of	
  cores	
  =	
  6,144)	
  

*The	
  results	
  are	
  tentative	
  since	
  they	
  are	
  obtained	
  by	
  early	
  access	
  to	
  the	
  K	
  computer.	
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Automatic	
  Tuning	
  of	
  Parallel	
  1-­‐D	
  FFT	
  
on	
  Cluster	
  of	
  Intel	
  Xeon	
  Phi	
  Processors

Background
The fast Fourier transform (FFT) is widely used in science and
engineering. Parallel FFTs on distributed-­‐memory parallel
computers require intensive all-­‐to-­‐all communication, which
affects their performance. How to overlap the computation and
the all-­‐to-­‐all communication is an issue that needs to be
addressed for parallel FFTs.

Overview
We proposed an automatic tuning (AT) of computation-­‐
communication overlap for parallel 1-­‐D FFT. We used a
computation-­‐communication overlap method that introduces a
communication thread with OpenMP. An automatic tuning facility

Performance  of  parallel  1-­D  FFTs
（Oakforest-­PACS，1024  nodes）
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implementation of a
parallel 1-­‐D FFT with
automatic tuning is
efficient for improving
the performance on
cluster of Intel Xeon
Phi processors.
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for selecting the optimal parameters of the computation-­‐
communication overlap, the radices, and the block size was
implemented.

Performance
To evaluate the parallel 1-­‐D FFT with AT, we compared its
performance against those of FFTE 6.2alpha
(http://www.ffte.jp/) , FFTE 6.2alpha with AT, and FFTW
3.3.7.
The performance results demonstrate that the proposed
implementation
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3D-­‐Poisson	
  Equation	
  Solver,	
  19-­‐point	
  stencil	
  computation

Size	
  XS,	
  S	
  and	
  M	
  on	
  1,	
  2	
  and	
  4	
  FPGAs
(Strong	
  Scaling)


