

## Super asymmetric fission in super heavy nuclei

Michał Warda

Uniwersytet Marii Curie-Skłodowskiej Lublin, Poland

#### TSUKUBA, 10.12.2018



www.umcs.lublin.pl

- 4 回 ト 4 ヨ ト 4 ヨ ト



## Collaboration:

- L.M. Robledo, UAM, Madrid
- A. Zdeb, UMCS, Lublin / CEA, Bruyères-le-Châtel



www.umcs.lublin.pl

・ロト ・回 ト ・ヨト ・ヨト















## Discovery of cluster radioactivity



Fig. 1 Contents of the two-dimensional array  $\Delta E$  versus  $E_{total}$ after a run of 189 days. The dotted line indicates the allowed region for carbon ions and the arrows indicate the total energies expected for 12C and 14C emissions in the decay of 223Ra. The lower of the two crosses represents a quadruple pile-up. Below the total energy displayed, large numbers of triple and double a-pile-ups were recorded. Single a-events (and, in part, even double  $\alpha$ -pile-ups) were biased out on the analogue side to avoid deadtime problems on the digital side. The upper cross is an event which was recorded during a thunderstorm which affected the mains badly. A run of 194 days was made before this one, yielding 8 events and, in addition, a run of approximately half a year was performed to investigate possible cosmic ray-induced events. Channel 77 in  $\Delta E = 6.7$  MeV, which is exactly as expected for 30 MeV <sup>14</sup>C. Detector characteristics: The dead layer of the  $\Delta E$  detector (200 mm<sup>2</sup> active area, 8.2 µm sensitive thickness) was determined to lie between 0.3 and 0.8 µm. In addition a protective laver of gold of thickness 20 ug cm<sup>-2</sup> was evaporated on the source and 15  $\mu$ g cm<sup>-2</sup> carbon film inserted between the source and the  $\Delta E$ detector. An extra 30-40 up cm<sup>-2</sup> of gold is present on the Edetector (300 mm<sup>2</sup> active area). This gives a total of 150-250 µg cm-2 of effective dead layer (Si equivalent) and an energy loss of 14C ions of 0.5-0.8 MeV. The source of strength 3.3 µCi gave a counting rate of =4,000 s<sup>-1</sup>, corresponding to an effective solid angle of detection of ~1/3 sr.





H.J. Rose and G.A. Jones, *Nature* **307**, 245 (1984) Sandulescu, Poenaru and Greiner, *Sov. J. Part Nucl.* **11**, 528 (1980)

A B > A B >

www.umcs.lublin.pl

- ∢ ⊒ →





FIG. 1. Photomicrograph showing one etch pit due to a 56 MeV  $^{24}Ne$  ion striking a Cronar detector nearly head on. About  $3\times10^6$  alpha particles passed through this field of view.



FIG. 2. Comparison of average signal of <sup>24</sup>Ne nuclei (•) emitted from <sup>232</sup>U with calibrations (dashed lines) obtained with <sup>18</sup>O ( $\nabla$ ) an <sup>23</sup>Ne (a) ions at Lawrence Berkeley Laboratory accelerators. Ratio of etching rate along track to general etching rate  $v_T/v_G$ , is plotted as a function of residual range.

Barwick et al., PRC 31, 1984 (1985)

・ロト ・回ト ・ヨト ・ヨト

www.umcs.lublin.pl



- Emitters: <sup>221</sup><sub>87</sub> Fr <sup>242</sup><sub>96</sub> Cm experimental evidence in 12 even-even, 9 odd nuclei
- Clusters: <sup>14</sup>C <sup>34</sup>Si
- Heavy mass residue: doubly magic  $^{208}\mathrm{Pb}$   $\pm4$  nucleons "Lead radioactivity"
- Half lives: 10<sup>11</sup> s 10<sup>26</sup> s
- $\alpha$  branching ratio:  $10^{-9} 10^{-16}$



www.umcs.lublin.pl

(ロ) (同) (E) (E) (E)



- Emitters: <sup>221</sup><sub>87</sub> Fr <sup>242</sup><sub>96</sub> Cm experimental evidence in 12 even-even, 9 odd nuclei
- Clusters: <sup>14</sup>C <sup>34</sup>Si
- Heavy mass residue: doubly magic  $^{208}\mathrm{Pb}$   $\pm4$  nucleons "Lead radioactivity"
- Half lives: 10<sup>11</sup> s 10<sup>26</sup> s
- $\alpha$  branching ratio:  $10^{-9} 10^{-16}$



イロン イ部ン イヨン イヨン 三日



- Emitters: <sup>221</sup><sub>87</sub> Fr <sup>242</sup><sub>96</sub> Cm experimental evidence in 12 even-even, 9 odd nuclei
- Clusters: <sup>14</sup>C <sup>34</sup>Si
- Heavy mass residue: doubly magic  $^{208}\mathrm{Pb}$   $\pm4$  nucleons "Lead radioactivity"
- Half lives: 10<sup>11</sup> s 10<sup>26</sup> s
- $\alpha$  branching ratio:  $10^{-9} 10^{-16}$



www.umcs.lublin.pl

イロン イ部ン イヨン イヨン 三日



- Emitters: <sup>221</sup><sub>87</sub> Fr <sup>242</sup><sub>96</sub> Cm experimental evidence in 12 even-even, 9 odd nuclei
- Clusters: <sup>14</sup>C <sup>34</sup>Si
- Heavy mass residue: doubly magic  $^{208}\mathrm{Pb}$   $\pm4$  nucleons "Lead radioactivity"
- Half lives: 10<sup>11</sup> s 10<sup>26</sup> s
- $\alpha$  branching ratio:  $10^{-9} 10^{-16}$



イロト イポト イラト イラト 一日



- Emitters: <sup>221</sup><sub>87</sub> Fr <sup>242</sup><sub>96</sub> Cm experimental evidence in 12 even-even, 9 odd nuclei
- Clusters: <sup>14</sup>C <sup>34</sup>Si
- Heavy mass residue: doubly magic  $^{208}\mathrm{Pb}$   $\pm4$  nucleons "Lead radioactivity"
- Half lives:  $10^{11} \text{ s} 10^{26} \text{ s}$
- $\alpha$  branching ratio:  $10^{-9} 10^{-16}$



イロト イポト イヨト イヨト



- Emitters: <sup>221</sup><sub>87</sub> Fr <sup>242</sup><sub>96</sub> Cm experimental evidence in 12 even-even, 9 odd nuclei
- Clusters: <sup>14</sup>C <sup>34</sup>Si
- Heavy mass residue: doubly magic  $^{208}\mathrm{Pb}$   $\pm4$  nucleons "Lead radioactivity"
- Half lives:  $10^{11} \text{ s} 10^{26} \text{ s}$
- $\alpha$  branching ratio:  $10^{-9} 10^{-16}$



イロト イポト イヨト イヨト









#### • Extrapolation of Gamov model of alpha emission

- Modified Geiger-Nuttall formula for half-lives
- Very asymmetric fission
- Potential energy surfaces are determined in the self-consistent procedure in HFB theory with Gogny D1S force



www.umcs.lublin.pl

- 4 同 ト 4 ヨ ト 4 ヨ ト



- Extrapolation of Gamov model of alpha emission
- Modified Geiger-Nuttall formula for half-lives
- Very asymmetric fission
- Potential energy surfaces are determined in the self-consistent procedure in HFB theory with Gogny D1S force



www.umcs.lublin.pl

- 4 同 ト 4 ヨ ト 4 ヨ ト



- Extrapolation of Gamov model of alpha emission
- Modified Geiger-Nuttall formula for half-lives
- Very asymmetric fission
- Potential energy surfaces are determined in the self-consistent procedure in HFB theory with Gogny D1S force



www.umcs.lublin.pl

- 4 回 ト 4 ヨ ト 4 ヨ ト



- Extrapolation of Gamov model of alpha emission
- Modified Geiger-Nuttall formula for half-lives
- Very asymmetric fission
- Potential energy surfaces are determined in the self-consistent procedure in HFB theory with Gogny D1S force



www.umcs.lublin.pl

(日本) (日本) (日本)







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl





M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl

\* 臣







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl

< E







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

www.umcs.lublin.pl

< E







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

www.umcs.lublin.pl

< E







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl







M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

・ロト ・回ト ・ヨト

www.umcs.lublin.pl





www.umcs.lublin.pl





#### Half-lives



www.umcs.lublin.pl

A 3 >

< 🗇 🕨

• 3 >



## Fission fragments - N/Z ratio



http://lablemminglounge.blogspot.com/2011/03/why-fuel-rods-are-radioactive.html

www.umcs.lublin.pl

・ロト ・回ト ・ヨト ・ヨト





## Fission fragments - N/Z ratio



![](_page_29_Picture_3.jpeg)

http://lablemminglounge.blogspot.com/2011/03/why-fuel-rods-are-radioactive.html

www.umcs.lublin.pl

・ロン ・回 と ・ヨン ・ヨン

# Cluster radioactivity - chart of nuclides

![](_page_30_Figure_1.jpeg)

www.umcs.lublin.pl

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

# Cluster radioactivity - chart of nuclides

![](_page_31_Figure_1.jpeg)

www.umcs.lublin.pl

![](_page_32_Picture_0.jpeg)

### Chart of SH nuclides

・ロト ・日子・ ・ヨト

![](_page_32_Figure_2.jpeg)

M. Warda, J.L. Egido, Phys. Rev. C 86 (2012) 014322 A. Baran, M. Kowal, P.G. Reinhard, L.M. Robledo, A. Staszczak, M. Warda, Nucl. Phys. A 944 (2015) 442

www.umcs.lublin.pl

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

www.umcs.lublin.pl

・ロト ・回ト ・ヨト ・ヨト

![](_page_34_Picture_0.jpeg)

Fission and  $\alpha$ -decay half-lives

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

M. Warda

Super asymmetric fission

![](_page_35_Picture_0.jpeg)

#### Previous approach

![](_page_35_Figure_2.jpeg)

FIG. 1 (color online). Time spectra of different cluster emissions from <sup>222</sup>Ra (left panel) and from the superheavy nucleus <sup>288</sup>114 (right panel). The most probable emitted clusters from <sup>222</sup>Ra and <sup>288</sup>114 are <sup>14</sup>C and <sup>80</sup>Ge, respectively, both leading to <sup>208</sup>Pb daughter nucleus.

D. N. Poenaru, R. A. Gherghescu, and W. Greiner Phys. Rev. Lett. 107, 062503 (2011); Phys. Rev. C 85, 034615 (2012)

A B > A B >

![](_page_35_Figure_5.jpeg)

ublin.pl

э

# Cluster radioactivity - chart of nuclides

![](_page_36_Figure_1.jpeg)

www.umcs.lublin.pl

![](_page_37_Picture_0.jpeg)

 $^{224}Ra$ 

![](_page_37_Figure_2.jpeg)

www.umcs.lublin.pl ∢ ≣ ▶ ≣ ∽⊙q

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

![](_page_38_Picture_0.jpeg)

<sup>228</sup>Th

![](_page_38_Figure_2.jpeg)

www.umcs.lublin.pl ∢ ≣ ▶ ≣ ∽⊙q

![](_page_39_Picture_0.jpeg)

<sup>234</sup>U

![](_page_39_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_40_Picture_0.jpeg)

<sup>238</sup>Pu

![](_page_40_Figure_2.jpeg)

www.umcs.lublin.pl

・ロト ・回ト ・ヨト ・ヨト

![](_page_41_Picture_0.jpeg)

<sup>244</sup>Cm

![](_page_41_Figure_2.jpeg)

www.umcs.lublin.pl

・ロト ・回ト ・モト ・モト

![](_page_42_Picture_0.jpeg)

<sup>248</sup>Cf

![](_page_42_Figure_2.jpeg)

www.umcs.lublin.pl

・ロト ・回ト ・モト ・モト

![](_page_43_Picture_0.jpeg)

<sup>254</sup>Fm

![](_page_43_Figure_2.jpeg)

www.umcs.lublin.pl

Super asymmetric fission

・ロト ・回ト ・ヨト ・ヨト

![](_page_44_Picture_0.jpeg)

<sup>258</sup>No

![](_page_44_Figure_2.jpeg)

www.umcs.lublin.pl

・ロト ・回ト ・ヨト ・ヨト

![](_page_45_Picture_0.jpeg)

<sup>264</sup>Rf

![](_page_45_Figure_2.jpeg)

www.umcs.lublin.pl

< ∃⇒

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_2.jpeg)

www.umcs.lublin.pl

・ロト ・回ト ・ヨト ・ヨト

![](_page_47_Picture_0.jpeg)

<sup>274</sup>Hs

![](_page_47_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_48_Picture_0.jpeg)

<sup>278</sup>Ds

![](_page_48_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_49_Picture_0.jpeg)

<sup>284</sup>Cn

![](_page_49_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_50_Picture_0.jpeg)

<sup>290</sup>FI

![](_page_50_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_51_Picture_0.jpeg)

<sup>294</sup>Lv

![](_page_51_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_52_Figure_0.jpeg)

![](_page_53_Picture_0.jpeg)

#### **Cluster barriers**

Э

![](_page_53_Figure_2.jpeg)

![](_page_54_Picture_0.jpeg)

#### **Cluster barriers**

Э

![](_page_54_Figure_2.jpeg)

![](_page_55_Picture_0.jpeg)

#### Pre-scission shapes

![](_page_55_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_56_Picture_0.jpeg)

₽

#### Post-scission shapes

![](_page_56_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_57_Picture_0.jpeg)

#### **Cluster barriers**

![](_page_57_Figure_2.jpeg)

M. Warda Super asymmetric fission

![](_page_58_Picture_0.jpeg)

### Half-Ilives

![](_page_58_Figure_2.jpeg)

┙ ┏╀┐╹<u></u>□□

www.umcs.lublin.pl E

< ∃→

< ≥ >

![](_page_59_Picture_0.jpeg)

## Experimental evidence in <sup>284</sup>Cn:

• GSI: 9 events

Ch. Düllmann, at al., Phys.Rev.Lett. 104, 252701 (2010)

• Dubna: 19 events

Yu. Oganessian, Radiochim.Acta 99, 429 (2011)

lifetimes: 30 ms - 400 ms

![](_page_59_Picture_7.jpeg)

www.umcs.lublin.pl

![](_page_60_Picture_0.jpeg)

<sup>284</sup>Cn

![](_page_60_Figure_2.jpeg)

www.umcs.lublin.pl

![](_page_61_Figure_0.jpeg)

![](_page_62_Picture_0.jpeg)

<sup>284</sup>Cn

![](_page_62_Figure_2.jpeg)

www.umcs.lublin.pl

< ∃→

・ロト ・日子・ ・ヨト

![](_page_63_Picture_0.jpeg)

Chart of SH nuclides

・ロト ・回ト ・ヨト ・ヨト

![](_page_63_Figure_2.jpeg)

![](_page_64_Picture_0.jpeg)

#### Isobars 284

![](_page_64_Figure_2.jpeg)

www.umcs.lublin.pl

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

![](_page_65_Figure_0.jpeg)

www.umcs.lublin.pl

╔┲╧┙┎╸

![](_page_66_Figure_0.jpeg)

www.umcs.lublin.pl

![](_page_67_Figure_0.jpeg)

![](_page_67_Figure_1.jpeg)

![](_page_67_Picture_2.jpeg)

イロン イヨン イヨン イヨン

www.umcs.lublin.pl

# **UMCS** Fragment mass distribution - preliminary

![](_page_68_Figure_1.jpeg)

![](_page_68_Figure_2.jpeg)

www.umcs.lublin.pl æ

4 3 b

![](_page_69_Picture_0.jpeg)

### Conclusions

- Asymmetric fission in super heavy nuclei region has the same nature as cluster radioactivity in actinides
- This decay may be dominant in some super heavy nuclei
- Sharp fragment mass distribution with <sup>208</sup>Pb fragment is predicted

M. Warda, A. Zdeb, L.M. Robledo *Cluster Radioactivity in Super Heavy Nuclei* Phys. Rev. **C 98** 041602(R) (2018)

![](_page_69_Picture_6.jpeg)