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Introduction

Experimental approach of nuclear fission at high excitation energy has been performed by
proton induced fission and fusion fission.

Nuclear fission is an extremely complex reaction, and still not understood completely.
It has been considered that high excitation energy fission can be described by liquid drop
model.

(The yield in the valley of the mass distributions \
for symmetric divisions increase with increasing
excitation energy, and that the peaks move slightly

toward symmetry.
4 / The double humped shape is understood as strong

10 Vi shell effects of doubly magic 132Sn. J
g [
E 10" // y
Pl Motivation
& / . * Treatment of shell structure at high excitation energy
Y80 %0 10 10 120 130 140 150 * To understand fusion-fission process at super heavy
FRAGMENT MASS i
element synthesis
FIG. Incident energy dependence of mass yield « Evaluation of nuclear data for development of

curve measured in proton-induced fission of 237Np.

Accelerator Driven System (ADS)
T. Ohtsuki, et al., Phys. Rev. C 44, 4 (1991) 1



Experimental Approach at JAEA

Recently, we observed fission-fragment mass
distributions (FFMDs) for Th, Pa, U, Np, and Pu
1sotopes populated in the excitation energy range
from 10 to 60 MeV by multinucleon transfer
channels in the reaction 80O + 232Th and 80 + 233U
at the Japan Atomic Energy Agency tandem

facility.

Multi-nucleon transfer reaction (MNT) JAEA tandem accelerator facility
150 232Th 160, MNT can produce many nuclei in one reaction
o — ‘ ./ depending on different transfer channels

*0... / / including neutron-rich nuclei which cannot be

accessed by fusion reaction.
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Another unique feature is that the excitation
Fission Fragment | energy of the fission system distributes widely,
(Ty/2 = 21.8 min) so that the excitation energy dependence of the
fission properties can be obtained.

Compound nuclei

R. Leguillon et al., Physics Letters B 761 125-130 (2016).
K. Hirose, K. Nishio, S. Tanaka, et al., Phys. Rev. Lett. 119, 222501 (2017).



Nuclear Fission at High Excitation Ener

A schematic representation of multichance fission
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The highly excited compound nucleus can decay either by first-chance fission, or by
single neutron emission, leading to the less excited one-neutron less nucleus.
The competition between neutron evaporation and fission continues until the excited
residual nucleus cannot fission anymore.



Outlook of Calculation Method
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1. Fraction for each fission chance is calculated by statistical model using the GEF code [1].
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2. FFMD for each fission chance is calculated by Langevin calculation.

FFMDs for each fission chance (1) which multiplied by the fraction (2) are summed to obtain

the distribution to be compared with the experimental data. K-H. Schmidt, B. Jurado, C. Amouroux and
C. Schmitt Nuclear Data Sheets 131 (2016).

E, = 1.9 MeV (Calculated by PACE2 code)  A. Gavron, Phys. Rev. C 21, 230 (1980).
Mass table: P. Mdller, A.J. Sierk,, T. Ichikawa, H.Sagawac Atomic Data and Nuclear Data Tables 109-110 (2016) 1-204,



Outlook of Langevin Approach

Multi-dimensional Langevin Equation
aq;
dt

dt ~  dq; 20q; (™) jkpjPe — iy (™) jiPic + 91 R; (1)
1 l

= (m™Yyjp; Friction Random Force
Dissipation Fluctuation

Potential Energy , z gikdjx = Tvij Einstein relation
aT K
V ) l, T) =YV, + EO ex _ m;; - Hydrodynamical mass
(q ) Lb (q) shell (q) P E d yyj Wall and Window (one-body) dissipation

(Ri(£)) = 0,(R;(t)R;(t2)) = 26;;6(ty — t3)
: white noise (Markovian process)
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Time evolution of nuclear shape 1s traced from
the compound state to the scission point by
solving the Langevin equations.
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Temperature dependence of PES

Potential Energy A simplified Fermi-gas form
V(@ LT) = V,n(a) + EO. (q)ex _a_TZ Shell damping energy:
q,t, = Vip\q shell\q4 p Ed Ed — 20 MeV
(a) At low excitation energy (b) At high excitation energy

Compound Nt

Deexcite

Liquid drop model : Liquid drop model
30 5 ¥ + Shell correction 3907 o T only
2 =

B The asymmetric mass distribution is attributed to the influence of strong shell effects of
doubly magic 132Sn. With increasing excitation energy, due to a reduced importance of shell

effects, the transition to predominant symmetric (liquid-drop) type fission should occur. 6



Results and Discussion
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B Observation result contains the components of various nuclear fission with
reduced excitation energy originated from multichance fission.



Excitation energy dependence of >3U
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Atomic number and
Neutron number dependence
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Summary of calculation results

Calculated FFMDs of the Th, Pa, U, Np, and Pu isotopes and their dependence of excitation
energy in the range of E* = 15 — 55 MeV. + Experimental data

Calculation result
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The calculation taking into account the MCF (red curves) shows good agreement with the experimental
data for mass asymmetry and peak-to-valley (P/V) ratio.
All experimental data are observed in tandem accelerator facility at Japan Atomic Energy Agency [5,6].
[5] R. Leguillon et al., Physics Letters B 761 125-130 (2016). [6] K. Hirose, K. Nishio, S. Tanaka, et al., Phys. Rev. Lett. 119, 222501 (2017). 10



Summary

B Fission fragment mass distributions (FFMDs) are affected by multi-chance fission,
and this shape changes significantly at high excitation energy. This result suggests
that the consideration of multi-chance fission is essential to interpret and evaluate
fission observables.

B A persistence of predominantly asymmetric FFMDs at high excitation energy is not a
signature of survival of shell effects in the initial compound.

B We indicate change of FFMDs in peak-to-valley ratio toward atomic number and
neutron number by multi-chance fission for the first time.

B For systematic understanding of nuclear fission from highly excited states, we aim to
clarify effects of multi-chance fission for other fission observables (e.g. total kinetic
energy of fission fragments and neutron multiplicity), and discussion with
experimentalists has been started.
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Present study is supported by “Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high
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