

Center for Computational Sciences

December 10-12, 2018

CCS workshop

Impact of pear-shaped fission fragments on mass-asymmetric fission

Guillaume SCAMPS

Collaboration : C. Simenel

Empirical behavior of actinide nuclei

J.P. Unik, J.E. Gindler, J.E. Glendenin et al. : Proc. Phys. and Chem. of Fission IAEA Vienna , Vol II, 20 (1974)

Data from D. A. Brown et al., Endf/b-viii.0, Nucl. Data Sheets 148, 1 (2018), (spontaneous and thermal neutron-capture).

Systematic comparison for actinide

C. Böckstiegel et al. / Nuclear Physics A 802 (2008) 12-25

Motivation

How can we understand this behavior? Interplay between structure and reaction?

Guillaume SCAMPS

Impact of pear-shaped fission fragments on mass-asy

Mean-field theory with pairing

TDHF

- Independent particle
- Initialisation : $\hat{h}_{MF} \ket{\phi_i} = \epsilon_i \ket{\phi_i}$
- Evolution : $i\hbar \frac{d\rho}{dt} = [h_{MF}, \rho]$

TDHFB

- Pairing correlation
- Quasi-particles : $|\omega_{\alpha}\rangle = \begin{pmatrix} U_{\alpha} \\ V_{\alpha} \end{pmatrix}$

• Evolution :
$$i\hbar \frac{d|\omega_{\alpha}\rangle}{dt} = \begin{pmatrix} h & \Delta \\ -\Delta^* & -h^* \end{pmatrix} |\omega_{\alpha}\rangle$$

TDHF+BCS

• Based on TDHFB with the approximation : $\Delta_{ij} = \delta_{ij} \Delta_i$

• Evolution :
$$i\hbar \frac{d\phi_i}{dt} = (\hat{h}_{MF} - \epsilon_i)\phi_i$$

 $i\hbar \frac{dn_i}{dt} = \Delta_i^* \kappa_i - \Delta_i \kappa_i^*$
 $i\hbar \frac{d\kappa_i}{dt} = \kappa_i (\epsilon_i - \epsilon_i) + \Delta_i (2n_i - 1)$

Why does we need pairing?

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

Why does we need pairing?

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

Why does we need pairing?

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

New systematic study

Details of the calculation

- Skyrme functionnal Sly4d
- Surface pairing interaction
- $\Delta x = 0.8 \text{ fm}$

Guillaume SCAMPS In 2 In 2 In 2 In 2 In 2 fm^3

December 10-12, 2018 7 / 40

New systematic study

Details of the calculation

- Skyrme functionnal Sly4d
- Surface pairing interaction
- $\Delta x = 0.8 \text{ fm}$
- Lattice : $L_x \times L_y \times 2L_z = 40 \times 19.2 \times 19.2 \text{ fm}^3$

New systematic study

Second : TDHF+BCS

Details of the calculation

- Skyrme functionnal Sly4d
- Surface pairing interaction
- $\Delta x = 0.8 \text{ fm}$
- Lattice : $L_x \times L_y \times 2L_z = 40 \times 19.2 \times 19.2 \text{ fm}^3$

TDHF+BCS systematics results

Comparison with experimental data

TDHF+BCS systematics results

Conclusion :

The TDHF+BCS calculation reproduces well the Z=54 behavior. But why?

Guillaume SCAMPS

Impact of pear-shaped fission fragments on mass-as

Nucleon localization function

Fermion localization function

$$C_{q\sigma}(\mathbf{r}) = \left[1 + \left(\frac{\tau_{q\sigma}\rho_{q\sigma} - \frac{1}{4}|\nabla\rho_{q\sigma}|^2 - \mathbf{j}_{q\sigma}^2}{\rho_{q\sigma}\tau_{q\sigma}^{TF}}\right)^2\right]^{-1}$$

A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

Physical meaning :

 $\mathcal{C} \in [0:1]$

 $C_{q\sigma}(\mathbf{r}) = 1$ Probability to find another particle with the same q and σ very low.

 $C_{q\sigma}(\mathbf{r}) = 0.5$ Limit of uniform-density Fermi gas.

Mask function :

$$\rightarrow \frac{\mathcal{C}_{q\sigma}(\mathbf{r})\rho_{q\sigma}}{\rho_{q\sigma}^{\max}}$$

Nucleon localization function

Fermion localization function

$$C_{q\sigma}(\mathbf{r}) = \left[1 + \left(\frac{\tau_{q\sigma}\rho_{q\sigma} - \frac{1}{4}|\nabla\rho_{q\sigma}|^2 - \mathbf{j}_{q\sigma}^2}{\rho_{q\sigma}\tau_{q\sigma}^{TF}}\right)^2\right]^{-1}$$

A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

Physical meaning :

 $\mathcal{C} \in [0:1]$

 $C_{q\sigma}(\mathbf{r}) = 1$ Probability to find another particle with the same q and σ very low.

 $C_{q\sigma}(\mathbf{r}) = 0.5$ Limit of uniform-density Fermi gas.

Mask function :

$$ightarrow rac{\mathcal{C}_{q\sigma}(\mathbf{r})
ho_{q\sigma}}{
ho_{q\sigma}^{\max}}$$

P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett. **120**, 053001 (2018).

Nucleon localization function

Fermion localization function

$$C_{q\sigma}(\mathbf{r}) = \left[1 + \left(\frac{\tau_{q\sigma}\rho_{q\sigma} - \frac{1}{4}|\nabla\rho_{q\sigma}|^2 - \mathbf{j}_{q\sigma}^2}{\rho_{q\sigma}\tau_{q\sigma}^{TF}}\right)^2\right]^{-1}$$

A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

Physical meaning :

$$\mathcal{C} \in [0:1]$$

 $C_{q\sigma}(\mathbf{r}) = \mathbf{1}$ Probability to find another particle with the same q and σ very low.

 $C_{q\sigma}(\mathbf{r}) = 0.5$ Limit of uniform-density Fermi gas.

Mask function :

$$\rightarrow \frac{\mathcal{C}_{q\sigma}(\mathbf{r})\rho_{q\sigma}}{\rho_{q\sigma}^{\max}}$$

Example of ²⁴⁰Pu

Hypothesis

The octupole shell effects are important in the fission fragment

Guillaume SCAMPS

Impact of pear-shaped fission fragments on mass-as

Why the fragments have octupole deformation?

Similar effect on fusion reaction

C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013).

Why the fragments have octupole deformation?

Similar effect on fusion reaction

C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013).

Guillaume SCAMPS

Octupole deformation systematics

Results from systematic calculation

In both calculations, the region Z \simeq 54 , N \simeq 88 is favorable for octupole deformation .

Experimental results

¹⁴⁴Ba is found to be octupole in its groud state. Burcher et al. PRL 116 (2016).

Guillaume SCAMPS

Constraint HF+BCS octupole deformation with Sly4d

Structure, ¹⁴⁴Ba, Z=56, N=88

Single particle energy

Structure

Experimental results

Deformation energy at the scission. Simple scission point model

$$E(N,Z) = E_{\beta_3=0.35}(N,Z) + E_{\beta_2=0.8}(N_{\rm tot} - N, Z_{\rm tot} - Z) + e^2 \frac{Z(Z_{\rm tot} - Z)}{D_{sc}}$$
(1)

With D_{sc} =17 fm. On the map, $E(N,Z) - E_{min}$ is shown. For ²⁴⁰Pu, N_{tot} =146 and Z_{tot} =94

The energies have been calculated with the CHF+BCS theory Sly4d

Guillaume SCAMPS

Deformation energy at the scission. Simple scission point model

$$E(N,Z) = E_{\beta_3=0.35}(N,Z) + E_{\beta_2=0.8}(N_{\rm tot} - N, Z_{\rm tot} - Z) + e^2 \frac{Z(Z_{\rm tot} - Z)}{D_{sc}}$$
(1)

With D_{sc} =17 fm. On the map, $E(N,Z) - E_{min}$ is shown. For ²⁴⁰Pu, N_{tot} =146 and Z_{tot} =94

The energies have been calculated with the CHF+BCS theory Sly4d

Guillaume SCAMPS

Identification method with the nucleon localisation function

This method assumes that the pre-fragments have reflexion symmetry. J. Sadhukhan, C. Zhang, W. Nazarewicz, and N. Schunck, PRC 96, 061301(R) (2017).

Identification with density

Technique of : M. Warda, A. Staszczak, and W. Nazarewicz, PRC 86, 024601 (2012).

Green contour line : density of a ¹⁴⁴Ba with a constraint β_3 =0.42 Red contour line : density of a fissioning ²⁵⁸Fm (asymmetric mode)

Guillaume SCAMPS

Identification with nucleon localisation function

Top : NLF of a ^{144}Ba with a constraint $\beta_3{=}0.42$ Bottom : NLF of a fissioning ^{258}Fm (asymmetric mode)

Identification with nucleon localisation function

Identification method with octupole degree of freedom

Identification of the fragments as a function of time for the fission of ²⁵⁸Fm

All of the systems are identified as 144 Ba with different β_3 values (resp. 0.14, 0.39, 0.39 and 0.42)

Guillaume SCAMPS

Identification method with octupole degree of freedom

Identification of the fragments at the scission for the different elements.

All systems are identified as ¹⁴⁴Ba with different β_3 values (resp. 0.28, 0.28, 0.27 and 0.44)

Guillaume SCAMPS

Conclusion

Mechanism

- The Nucleus-Nucleus interaction at the scission configuration favors the octupole shapes
- $\bullet\,$ Shell structure favors octupole shape in the region Z \simeq 52-56, N \simeq 84-88
- $\bullet\,$ Actinide fission fragments are driven in the region Z \simeq 54, N \simeq 86

G. Scamps, C. Simenel, arXiv :1804.03337 (2018).

Similar effect for other systems?

J. Phys. G: Nucl. Part. Phys. 43 (2016) 073002

Topical Review

Experimental data of ¹⁸⁰Hg

A. N. Andreyev, et al., PRL 105, 252502 (2010)

Experimental data of ¹⁷⁸Pt

Similar effect of the octupole deformation?

CHF+BCS calculation

CHF+BCS calculations : Hg isotopic chain

Deformation energy of the fragments

Guillaume SCAMPS

Conclusion

The fission process magnify the octupole shell structure

Guillaume SCAMPS

Impact of pear-shaped fission fragments on mass-as

Preliminary Gogny-TDHFB calculation

- x and y direction : Harmonic oscillator basis $n_x + n_y \le N_{shell}$
- z direction : Cartesian mesh nz= 55

- $N_{\rm base}\simeq 3000$
- full cartesian mesh about 100 000 degrees of freedom

Y. Hashimoto

TDHFB (Gogny D1S)

TDHF+BCS (Sly4d)

TDHFB (Gogny D1S)

TDHF+BCS (Sly4d)

Guillaume SCAMPS

TDHFB (Gogny D1S)

TDHF+BCS (Sly4d)

TDHFB (Gogny D1S)

TDHF+BCS (Sly4d)

Outlook : Fission recycling

Region where BCS approximation is forbidden (due to continuum)

Guillaume SCAMPS

Thank you

Comparison TDHFB - TDHF+BCS

TDHF+BCS

• Based on TDHFB with the approximation : $\Delta_{ij} = \delta_{ij} \Delta_i$

• Evolution :
$$i\hbar \frac{d\varphi_i}{dt} = (\hat{h}_{MF} - \epsilon_i)\varphi_i$$

 $i\hbar \frac{dn_i}{dt} = \Delta_i^* \kappa_i - \Delta_i \kappa_i^*$
 $i\hbar \frac{d\kappa_i}{dt} = \kappa_i (\epsilon_i - \epsilon_{\overline{i}}) + \Delta_i (2n_i - 1)$

Theoretical difference

- Numerical cost : TDHFB requires 1000 times more numerical resources
- Treatment of continuum states : BCS gas problem
- Continuity equation
- Number of pairing degrees of freedom (HFB $\Delta(r)$, BCS : $\Delta_{i\bar{i}}$)
- Spatial dependence of the pairing correlation

Comparison

A. Bulgac, P. Magierski, K. J. Roche, and I. Stetcu, PRL 116, 122504 (2016).

S no.	η	E^*	E_n	q_{zz}	q_{zzz}	$t_{\rm SS}$	TKE ^{syst}	TKE	$A_L^{\rm syst}$	A_L	$N_L^{\rm syst}$	N_L	$Z_L^{\rm syst}$	Z_L
<i>S</i> 1	0.75	8.05	1.52	1.78	-0.742	14 419	177.27	182	100.55	104.0	61.10	62.8	39.45	41.2
<i>S</i> 2	0.5	7.91	1.38	1.78	-0.737	4360	177.32	183	100.56	106.3	60.78	64.0	39.78	42.3
<i>S</i> 3	0	8.08	1.55	1.78	-0.737	14010	177.26	180	100.55	105.5	60.69	63.6	39.81	41.9
<u>S4</u>	0	6.17	-0.36	2.05	-0.956	12 751	177.92	181		103.9		62.6		41.3

TABLE – TDHF+BCS results for 240 Pu

#	Q ₀ [b]	E ₀ *[MeV]	$T_{\rm fis}$ [fm/c]	ZL	N _L	TKE [MeV]
1	45.4	1.46	6480	40.21	60.77	171.5
2	46.7	0.8	4830	40.83	62.68	181.8
3	50.5	-1.16	26970	42.2	64.83	181.8
4	53.0	-2.13	6750	41.39	63.05	177.9
5	56.8	-3.5	4800	40.99	62.85	177.2
6	59.3	-4.3	5400	40.45	62.17	178.4
7	63.1	-5.31	6630	39.55	59.58	162.7
8	71.9	-7.8	1020	41.8	63.28	179.9