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Exact solution(s) of the pairing Hamiltonian

within numerical error
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Does finite size effect matter?
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Accuracy of BCS-based approximations for pairing in small Fermi systems
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‘We analyze the accuracy of BCS-based approximations for calculating correlation energies and odd-even
energy differences in two-component fermionic systems with a small number of pairs. The analysis is focused on
comparing BCS and projected BCS treatments with the exact solution of the pairing Hamiltonian, considering
parameter ranges appropriate for nuclear pairing energies. We find that the projected BCS is quite accurate over
the entire range of coupling strengths in spaces of up to about ~20 doubly degenerate orbitals. It is also quite
accurate for two cases we considered with a more realistic Hmmei around ''7Sn
and 2°7Pb. However, the projected BCS significantly underestimates the energies for much larger spaces when
the pairing is weak.
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FIG. 3. (Color online) Errors for the correlation energies calcu-
lated in the PBCS approximation.




Half-filled degenerate systems
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FIG. 1. Left: Comparison between the correlation energies
from the BCS model and exact solution for a half-occupied
system with N =4 pairs and two O = 4 orbitals separated by
one unit. Right: The corresponding occupancy of the lower
level from the two calculations.




Two-body clustering and alpha clustering

ration mixing from higher lying orbits is

important for clustering at the surface | 571
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FIG. 10: (color online). The square of the two-neutron wave function |Wa, (ry, r2,9)|2 with 7y = 9 fm as a function of ro and
6. Left: the leading configuration; Right: 4 major shells
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can be evaluated through the dispersion relation

25 +1
GZ e, — L — 2 (10)

The corresponding wave function amplitudes are given by
27 +1
X, =N, —— 11

The correlation energy induced by the monopole pairing corresponds to the difference

1
A = &5 — —E; T

°®7 2
where § denotes the lowest orbital. As the gap A increases
the amplitude X,; becomes more dispersed, resulting in

stronger two-particle correlation. This difference, or more

For two particles in a non-degenerate system with a constant pairing, the energy




Exact diagonalization:
Seniority-zero coupling for many shells
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Exact diagonalization

« Shell model calculations restricted to the v=0 subspace

« There are as many independent solutions as states in the v=0 space.
« Valid for any forms of pairing.

 Abridge between DFT and ClI



Efficient ED algorithm

> Avoid zero matrix element; OpenMP
(Xiaoyu Liu, KTH), OpenAcc (bachelor
project KTH)

*>0One can readily solve a half-filled
system with upto 36-38 doubly-
degenerate orbitals and 18-19 pairs (Dim:
9*10°2-3.5*101°, shell-model dimension:
4*1020-7*1021),
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Figure 7. Correlation energies calculated by using the Lanczos approach, power
iteration and the mixed approach as a function of iteration for a half-occupied system
with n = 10 pairs and 20 doubly degenerate orbitals separated by one unit. For the
pairing Hamiltonian we take the coupling constant as G = 0.2. The left and right
panels correspond to calculations starting with a random vector and the Hartree—-Fock
vector, respectively. Four trial vectors are kept for the mixed calculation at each
iteration.
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Richardson’s approach
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Richardson equation

‘A set of M nonlinear coupled equations with M unknowns (E,) and it is very
difficult to solve.

*The pair energies are either real or complex conjugated pairs (but do not have
clear physical meaning)

*The wave function is not given directly but can be constructed

wd 1

1 M
1+g2 +2g =0, E=NE,
=0 ng —Eq B(=a)=1 E, —E/g ;

For two pairs in a single-j shell
E, =—(Q-Dg=iV/Q-1g
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F1c. 1. Qualitative behavior of the pair energies in the ground
state. The single-particle levels e, are labeled by the value of z on
the left. The points where two pair energies come together are the
singular points. The two corresponding pair energies are real or
complex as the interaction strength is less than or greater than - :
its value at this point. 0 02 04 06 08 1 12 1.4 1.6 1.8 2
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FIG. 1. (Color online) The real (a) and imaginary (b) parts of the
RG variables of the “picket-fence” model, employed in Ref. [20],
as a function of the interaction strength |g|. The critical interaction
strengths are highlighted by means of dashed lines.
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Gaudin models solver based on the correspondence between Bethe ansatz
and ordinary differential equations

Alexandre Faribault,! Omar El Araby,? Christoph Striter,! and Vladimir Gritsev?
1 Physics Department, ASC, and CeNS, Ludwig-Maximilians-Universitdt, D-80333 Miinchen, Germany
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We present a numerical approach which allows the solving of Bethe equations whose solutions define the
eigenstates of Gaudin models. By focusing on a different set of variables, the canceling divergences which occur
for certain values of the coupling strength no longer appear explicitly. The problem is thus reduced to a set
of quadratic algebraic equations. The required inverse transformation can then be realized using only linear
operations and a standard polynomial root-finding algorithm. The method is applied to Richardson’s fermionic
pairing model, the central spin model, and the generalized Dicke model.

DOI: 10.1103/PhysRevB.83.235124 PACS number(s): 02.60.Cb, 02.30.1k, 71.10.Li
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Heine-Stieltjes correspondence

Thrgh the Heine-Stieltjes correspondence, one can find solutions by
solving the second-order Fuchsian equation:

A(X)P (x) + B(x)P (x) =V (x)P(x) =0

Kk n—1
P(x) = Eaﬂx“ V(x) = Ebﬂx“
=0 #=0
k
E ,=—a._, = 1N

Xin Guan, Kristina D. Launey, Mingxia Xie, Lina Bao, Feng Pan, and Jerry P. Draayer, Phys. Rev. C 86 (2012) 024313
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Exact solution of the pairing problem for spherical and deformed systems
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Our (ultimate) iterative solver
k

P(x) = ]_[<x x) = ) a%

(P'(285)) - Qd)(P'(Zga)) - (1; (P'(286))

P(2¢&5) P(2¢5) P(2¢5)
_ Z Q; [( P’(285)) - (P’(ZEJ))]
Py 2e5 — 2¢; |\ P(2¢;5) P(2¢;)
* Number of non-linear equations = number of pairs
» works for both deformed and spherlcal systems (N of shells>= N of pairs)

» Super effi
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FIG. 5: (Color online) The real part of the two surface pair energies
x9 and x;9 (in MeV), for a doubly-degenerate equally spaced model
with the number of pairs k£ = 10, as a function of the orbital number
n as well as the pairing interaction strength G.
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Pair structure tractable

N
1 Z
Ec(:oz'r = Lq — (262 - G)’
those of the HFE coniiguration at small (& values. FOr two
pairs in a single-j shell, '’ are complex numbers

58’1,2 == (2 — QJ)G + \/ Qj — 1G7:. (12)

For two pairs in two doubly-degenerate orbitals separated
by one unit, one has

T, =1 —/1-— G2, (13)

which become complex with G > 1.

Correlation energy

FIG. 2. Left: Correlation energies for each pair, z; = z=; —
2e; + G, as a function of the pairing strenghth, G, within the
Richardson model for a half-occupied system with /N = 4 pairs
and two €2 = 4 orbitals separated by one unit. The dashed
lines correspond to the solutions when only one €2 = 4 orbital
is considered (i.e., fully occupied) where z’ cancel each other.
Right: Same as left panel but for a system with N = 4 pairs
in eight equally-spaced doubly-degenerate orbitals separated
by one unit.




Total energy ‘predictable’

E(n) = "(”4_ Vg [g] G + 1)G, (9)

- [B1(5) - [3le+ 3]

E(n) g] ([ ] _ 1) G + 6u.1(g6 + 6)
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10 pairs in deformed system
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FIG. 1: (Color online) The ground-state energy (in MeV) as a func-
tion of the orbital number n as well as the number of pairs k£ = 10 for
a doubly-degenerate system with ; = 1 (j = 1/2) and the pairing
strength G = 0.001, 0.008, 0.025 and 0.032 MeV under the present
model.




10 pairs In spherical system
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FIG. 2: (Color online) The ground-state energy (in MeV) as a func-
tion of the orbital number » as well as the number of pairs k = 10 for
a high degenerate system with Q; = 1,...,k (j = 1/2,...,k/2) and
the pairing strength G = 0.001, 0.008, 0.025 and 0.032 MeV under
the present model.




Total energy vs space and G
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FIG. 3: (Color online) The ground-state energy (in MeV) for a model with the number of pairs k = 10, as function of the orbital
doubly-degenerate equally spaced model with the number of pairs number 7 as well as the pairing interaction strength G.

k = 10, as a function of the orbital number » as well as the pairing
interaction strength G.




Sm isotopes
Two valence shell from 82 to 184 G=0.06 MeV

The odd-even mass difference

I | I | | I | L | A |
2r 4 Sm -
i 4
Lo B & o 4 -
R @ A P o
ll ! "‘ 1’ “ 2 1 " A
—~ 1 \ Y !
« o 4 ', || [ Lo N "
< °r “ 'I ‘l Vi \ \ AI “ ' ‘o i
\ H ‘e v hl *) ‘\" ¥
i 4 o
F 2 1] o 1
i @ Exp.
--&--W.S. Th.

2k -

148 150 152 154 156 158 160 162 164 166

A




Binding energies of Ca isotopes
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FIG. 6. (Color online) Experimental [34, 37] and calculated u i
ground-state energies of Ca isotopes, relative to that of 0Ca, 9<= 1 E =
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Neutron Number N

A. T. Gallant et al., PRL 109, 032506 (2012)

Calculations with three-body interaction




=] Summary and outlook

» Exact diagonalization vs Richardson approach

»Numerical challenges and polynomial approach for solving the
Richardson equation

» Applications

» Future

*HF+Exact pairing for the whole nuclear chart (w/o self-consistence,
done; w. self-consistence, code to be implemented, ev8/Sky3D)
*Applications in alpha decay, pair-transfer reaction (and fission)
*Benchmark MC/CC solutions of the pairing Hamiltonian

*Starting point for MC+CI calculations (with both pairing and full
Hamiltonian)->MC(P)CI




Seniority coupling and binding energy

Semi-magic_nuclei
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