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Ø  Exact/Lanczos diagonalization 
Ø  Richardson approach: An iterative solver 

CQ, T Chen Phys. Rev. C 92, 051304(R) (2015);  
X. Guan, X. Ai, CQ, to be submitted 

§  Quasi-exact solutions can be derived 
§  Both methods can be generalized to T=1 pairing 



Does finite size effect matter? 



Half-filled degenerate systems 



210Pb 

206Pb 

Configuration mixing from higher lying orbits is 
important for clustering at the surface 

r1=9fm 

Two-body clustering and alpha clustering 



For two particles in a non-degenerate system with a constant pairing, the energy 
can be evaluated through the dispersion relation 

The correlation energy induced by the monopole pairing corresponds to the difference 

E2 

2e+G 



Exact diagonalization: 
Seniority-zero coupling for many shells 
 

102 in seniority space 
Extension to more shells 

Exact diagonalization 
•  Shell model calculations restricted to the v=0 subspace 
•  There are as many independent solutions as states in the v=0 space. 
•  Valid for any forms of pairing. 
•  A bridge between DFT and CI 
•  Starting point for local CI calculations. 



C Qi, Journal of Physics G: Nuclear and 
Particle Physics 44 (4), 045107 (2017) 

Efficient ED algorithm 
> Avoid zero matrix element; OpenMP 
(Xiaoyu Liu, KTH), OpenAcc (bachelor 
project KTH) 
• >One can readily solve a half-filled 
system with upto 36-38 doubly- 
degenerate orbitals and 18-19 pairs (Dim: 
9*109-3.5*1010, shell-model dimension: 
4*1020-7*1021).  
 

 



Richardson’s approach 
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Richardson equation 

(Phys.	Le*.	3	(1963)	277;			5	(1963)	82;	Nucl.	Phys.	52	(1964)	221；52	(1964)253 ) 



Richardson equation 
• A set of M nonlinear coupled equations with M unknowns (Eα) and it is very 
difficult to solve. 

• The pair energies are either real or complex conjugated pairs (but do not have 
clear physical meaning) 

• The wave function is not given directly but can be constructed 
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For two pairs in a single-j shell 



S. De Baerdemacker, PRC 86, 044332 (2012) 
J. Dukelsky, S. Pittel, and G. Sierra 
Rev. Mod. Phys. 76, 643 (2004) 



•  Number of non-linear equations = number of shells 
•  Only works for doubly-degenerate systems 



Heine-Stieltjes correspondence 
Through the Heine-Stieltjes correspondence, one can find solutions by 
solving the second-order Fuchsian equation: 
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Xin Guan, Kristina D. Launey, Mingxia Xie, Lina Bao, Feng Pan,  and Jerry P. Draayer, Phys. Rev. C 86 (2012) 024313 
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•  Number of non-linear equations = number of shells + number of pairs + 1 
•  works for both spherical and deformed systems 
•  Non-solution exists; Very time consuming and only applicable to small systems 



•  Number of non-linear equations = number of pairs 
•  works for both deformed and nearly spherical systems; Extendable to spherical 
•  Very efficient! But limited by the stability of the NLE solver for very large 

systems 



Our (ultimate) iterative solver 

•  Number of non-linear equations = number of pairs 
•  works for both deformed and spherical systems (N of shells>= N of pairs) 
•  Super efficient and stable!; Initial guess, Monte Carlo + Newton- Raphson 



Pair structure tractable 

Ø  Start with 1 pair in 1 orbital 
and small G, x1=2ε1-G+r, 
derive P1 

Ø  Add the second pair x2=2ε2-
G+r, derive P2 -<P1*x2 

Ø  …., N pair in N (doubly 
degenerate) shells 

Ø  Add remaining shells; 
Increase G to desired value  



Pair structure tractable 



S.A. Changizi, C. Qi, R. Wyss, Nucl. Phys. A (2015) 

Total energy ‘predictable’ 



10 pairs in deformed system 

εi=i/10 



10 pairs in spherical system 

εi=i/10 



Total energy vs space and G 



Sm isotopes 
Two valence shell from 82 to 184  G=0.06 MeV 
The odd-even mass difference  



WS + constant pairing 
Binding energies of Ca isotopes 

A. T. Gallant et al., PRL 109, 032506 (2012) 
Calculations with three-body interaction 
J.D. Holt, T. Otsuka, A. Schwenk, and T. Suzuki, J. Phys. G 39, 085111 (2012). 
G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt,  
T. Papenbrock, Phys.Rev.Lett. 109, 032502 (2012). 
 
 
 
	

Z.X. Xu and C. Qi, Phys. Lett. B 724, 247 (2013). 



Ø Exact diagonalization vs Richardson approach 
Ø Numerical challenges and polynomial approach for solving the 
Richardson equation 
Ø Applications  
Ø Future 
*HF+Exact pairing for the whole nuclear chart (w/o self-consistence, 
done; w. self-consistence, code to be implemented, ev8/Sky3D) 
*Applications in alpha decay, pair-transfer reaction (and fission) 
*Benchmark MC/CC solutions of the pairing Hamiltonian 
*Starting point for MC+CI calculations (with both pairing and full 
Hamiltonian)->MC(P)CI 

Thank you! 
 

Summary and outlook 
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configuration 

Neutron separation energies from Ca 
isotopes 

Proton separation energies from N=28 
isotones  

I. Talmi, Simple models of complex nuclei  (Harwood, Chur, Switzerland, 1993) 

Seniority coupling and binding energy 
Semi-magic nuclei 


