∂TRIUMF

Nuclear structure and dynamics from chiral two- and three-nucleon forces

Tsukuba-CCS workshop on "microscopic theories of nuclear structure and dynamics"

Center for Computational Sciences (CCS), University of Tsukuba, Japan, December 10-12, 2018

Petr Navratil

TRIUMF

Collaborators: S. Quaglioni (LLNL), G. Hupin (Orsay), M. Vorabbi, A. Calci (TRIUMF), P. Gysbers (UBC/TRIUMF), M. Gennari (U Waterloo), J. Dohet-Eraly (ULB)

1

- Introduction to *ab initio* nuclear theory
- No-Core Shell Model with Continuum (NCSMC)
- ¹¹Be parity inversion in low-lying states, photo-dissociation
- Structure of the halo sd-shell nucleus ¹⁵C

First principles or ab initio nuclear theory

First principles or *ab initio* nuclear theory – what we do at present

Ab initio

•

- ♦ Degrees of freedom: Nucleons
- ♦ All nucleons are active
- ♦ Exact Pauli principle
- Realistic inter-nucleon interactions
 Accurate description of NN (and 3N) data

4

♦ Controllable approximations

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

7

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

8

Λ_x~1 GeV : Chiral symmetry breaking scale

From QCD to nuclei

Conceptually simplest *ab initio* method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

(A)
$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

(A)
$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

Review Ab initio no core shell model Bruce R. Barrett ^a, Petr Navrátil ^b, James P. Vary^{c,*}

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

...using the Resonating Group Method (RGM) ideas

Unified approach to bound & continuum states; to nuclear structure & reactions

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonicoscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion, clusters described by NCSM
 - proper asymptotic behavior
 - Iong-range correlations
- Most efficient: *ab initio* no-core shell model with continuum (NCSMC)

Binary cluster basis

• Working in partial waves ($v = \{A - a \alpha_1 I_1^{\pi_1} T_1; a \alpha_2 I_2^{\pi_2} T_2; s\ell\}$)

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \hat{A}_{\nu} \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{g_{\nu}^{J^{\pi}T}(r_{A-a,a})}{r_{A-a,a}}$$
Target
Projectile

• Introduce a dummy variable \vec{r} with the help of the delta function

$$\psi^{J^{\pi}T} \rangle = \sum_{v} \int \frac{g_{v}^{J^{\pi}T}(r)}{r} \hat{A}_{v} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \, \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \, r^{2} dr \, d\hat{r}$$

Allows to bring the wave function of the relative motion in front of the antisymmetrizer

$$\sum_{v} \int d\vec{r} \, \gamma_{v}(\vec{r}) \, \hat{A}_{v} \bigg| \underbrace{\overset{\vec{r}}{\overset{\mathbf{a}}{\Rightarrow}}}_{(A-a)} (a), v \bigg\rangle$$

Coupled NCSMC equations

Solved by Microscopic R-matrix theory on a Lagrange mesh – efficient for coupled channels

Norm kernel (Pauli principle): Single-nucleon projectile

Target wave functions expanded in the SD basis, the CM motion exactly removed

Neutron-rich halo nucleus¹¹Be

Z=4, N=7

- In the shell model picture g.s. expected to be J^π=1/2⁻
 - Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have J^π=1/2⁻ g.s.
- In reality, ¹¹Be g.s. is J^π=1/2⁺ parity inversion
- Very weakly bound: E_{th}=-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

17

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400, NNLOsat)
 - n-¹⁰Be + ¹¹Be
 - ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

17

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400, NNLOsat)
 - n-¹⁰Be + ¹¹Be
 - ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3N400, NNLOsat)
 - n-¹⁰Be + ¹¹Be

19

- ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
- ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

¹¹Be within NCSMC: Discrimination among chiral nuclear forces

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

¹¹Be within NCSMC: Discrimination among chiral nuclear forces

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

21

¹¹Be within NCSMC: Discrimination among chiral nuclear forces

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

E1 transitions in NCSMC

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\underbrace{}}_{(A-a)}^{\bullet}(a), \nu \right\rangle$$

$$\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(A-a)} \right) + e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(a)} \right) + e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r_{A-a,a}}$$

$$\begin{split} M_{fi}^{E1} &= \sum_{\lambda\lambda'} c_{\lambda'}^{*f} \langle A\lambda' J_f^{\pi_f} T_f ||\vec{E1}||A\lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i \\ &+ \sum_{\lambda'\nu} \int dr r^2 c_{\lambda'}^{*f} \langle A\lambda' J_f^{\pi_f} T_f ||\vec{E1} \hat{\mathcal{A}}_{\nu}|| \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r} \\ &+ \sum_{\lambda\nu'} \int dr' r'^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^f ||\hat{\mathcal{A}}_{\nu'} \vec{E1}||A\lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i \\ &+ \sum_{\nu\nu'} \int dr' r'^2 \int dr r^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^f ||\hat{\mathcal{A}}_{\nu'r'}||\hat{\mathcal{A}}_{\nu'} \vec{E1} \hat{\mathcal{A}}_{\nu}|| \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r} \end{split}$$

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

PRL 117, 242501 (2016)	PHYSICAL REVIEW LETTERS	week ending 9 DECEMBER 2016				
Can <i>Ab Initio</i> Theory Explain the Phenomenon of Parity Inversion in ¹¹ Be?						
Angelo Calci, ^{1,*} Petr Navrátil, ^{1,†} Robert Roth, ² Jérémy Dohet-Eraly, ^{1,‡} Sofia Quaglioni, ³ and Guillaume Hupin ^{4,5}						

NCSMC phenomenology $\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\clubsuit} , \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \stackrel{r}{\clubsuit} \\ \stackrel{(A)}{\clubsuit} , \nu \right\rangle$ $H\Psi^{(A)} = E\Psi^{(A)}$ E_{λ}^{NCSM} $\delta_{\scriptscriptstyle{\lambda\lambda'}}$ $\delta_{\lambda\lambda'}$ $E_{\lambda}^{\text{NCSM}}$ energies treated as H_{NCSM} h 1_{NCSM} adjustable parameters *g* (\mathcal{C}) C Cluster excitation energies *= E* $H_{\rm RGM}$ set to experimental values N_{RGM} h g Ŷ $\hat{A}_{v'}H\hat{A}_{v}$ *(a)* (a)

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

NCSMC wave functions of ¹¹Be used as input for other studies

Reliable extraction of the dB(E1)/dE for ¹¹Be from its breakup at 520 MeV/nucleon

Laura Moschini^{1, *} and Pierre Capel^{2, 1, †}

arXiv:1807.07537

NCSMC wave functions of ¹¹Be used as input for other studies

arXiv:1805.04477; accepted in JPG

Halo sd-shell nucleus ¹⁵C and its unbound mirror ¹⁵F

- Calculations in progress all results preliminary
- Technical details
 - Step 1: NN and 3N matrix elements
- NN matrix elements N³LO Entern & Machleidt 2003, SRG evolved with λ = 2.0 fm⁻¹
 - ncsmv2b Fortran90 with OpenMP
- 3N matrix elements N²LO with local/non-local regulator, SRG evolved with λ = 2.0 fm⁻¹
 - manyeff, v3trans Fortran90 with OpenMP

- Technical details
 - Step 2: NCSM diagonalization eigenvalues and wave functions
- ncsd Lanczosh algorithm, bit operations, hashing, partial or full storing of non-zero matrix elements in memory, Fortran 90 with MPI, ~12,000 MPI tasks
 - NN, NN+3N or NN+3N(NO2b) interactions
 - Calculations of N_{max} sequence (0(1),2(3),...N_{max})
 - Importance truncation

¹⁴C ground state and 2⁺ state up to N_{max}=6 full space (m-scheme dim=33,710,135) Importance truncation in N_{max}=8 (largest m-scheme dim=46,126,926) Complete 3N force (no normal ordering) 6144 MPI tasks with 16 GB/task Titan@ORNL

- Technical details
 - Step 2: NCSM diagonalization eigenvalues and wave functions
- ncsd Lanczosh algorithm, bit operations, hashing, partial or full storing of non-zero matrix elements in memory, Fortran 90 with MPI, ~12,000 MPI tasks
 - NN, NN+3N or NN+3N(NO2b) interactions
 - Calculations of N_{max} sequence (0(1),2(3),...N_{max})
 - Importance truncation

- Technical details
 - Step 2: NCSM diagonalization eigenvalues and wave functions
- ncsd Lanczosh algorithm, bit operations, hashing, partial or full storing of non-zero matrix elements in memory, Fortran 90 with MPI, ~12,000 MPI tasks
 - NN, NN+3N or NN+3N(NO2b) interactions
 - Calculations of N_{max} sequence (0(1),2(3),...N_{max})
 - Importance truncation

¹⁵C positive and negative-parity states up to N_{max} =5 full space (m-scheme dim=21,182,475) Importance truncation in N_{max} =6,7,8 (largest m-scheme dim=105,023,779) Complete 3N force (no normal ordering) 8192 MPI tasks with 16 GB/task Titan@ORNL

- Technical details
 - Step 2: NCSM diagonalization eigenvalues and wave functions
- ncsd Lanczosh algorithm, bit operations, hashing, partial or full storing of non-zero matrix elements in memory, Fortran 90 with MPI, ~12,000 MPI tasks
 - NN, NN+3N or NN+3N(NO2b) interactions
 - Calculations of N_{max} sequence (0(1),2(3),...N_{max})
 - Importance truncation

- Technical details
 - Step 3: **RGM and coupling kernels**
- trdens code bit operations, hashing, Fortran90 with MPI, ~16,000 MPI tasks
 - New algorithm

$$\begin{split} {}_{\mathrm{SD}} \langle \Phi_{\nu'n'}^{J^{\pi}T} | \hat{P}_{A-1,A} \hat{V}_{A-3A-2A-1}^{3\mathrm{N}} | \Phi_{\nu n}^{J^{\pi}T} \rangle_{\mathrm{SD}} \\ &= \frac{1}{6(A-1)(A-2)(A-3)} \sum_{jj'} \hat{s} \hat{s}' \hat{j} \hat{j}' \\ &\times (-1)^{2J+I_1+I_1'+j+j'} \begin{cases} I_1 & \frac{1}{2} & s \\ \ell & J & j \end{cases} \begin{cases} I_1' & \frac{1}{2} & s' \\ \ell' & J & j' \end{cases} \\ &\times \sum_{M_1 m_j M_{T_1} m_t M_1' m_j' M_{T_1}' m_t' \\ &\times \sum_{M_1 m_j M_{T_1} m_t M_1' m_j' M_{T_1}' m_t' \\ &\times \sum_{M_1 M_1 j m_j} \sum_{T_1 M_{T_1} \frac{1}{2} m_t} \sum_{T_1' M_1' j' m_j'} C_{T_1' M_{T_1}' j' m_t'}^{TM_T'} \\ &\times \sum_{Abdef} \langle ab \ n' \ell' j' m_j' \frac{1}{2} m_t' | \hat{V}^{3\mathrm{N}} \ | def \rangle \\ &\times \sum_{\mathrm{SD}} \langle A - 1 \ \alpha_1 I_1'^{\pi_1'} M_1' T_1' M_1' I_1 M_{T_1} M_1 T_1 M_{T_1} \rangle_{\mathrm{SD}}, \end{split}$$

(C)

RGM and coupling kernels calculated for N_{max}=6/7 Complete 3N force (no normal ordering) RGM kernels - ¹⁴C 0⁺, 2⁺ - 25 contributions 16384 MPI tasks with 4 GB/task Titan@ORNL Coupling kernels -¹⁴C 0⁺, 2⁺ - 5 contributions 1024 MPI tasks on Eos@ORNL

- Technical details
 - Step 4: NCSMC calculation
- ncsmc Fortran90 with OpenMP and MPI
 - RGM and coupling kernels either input or calculated from densities
 - Solves NCSMC coupled equations, calculates the S-matrix and scattering/reaction observables

- Technical details
 - Step 4: NCSMC calculation
- ncsmc Fortran90 with OpenMP and MPI
 - RGM and coupling kernels either input or calculated from densities
 - Solves NCSMC coupled equations, calculates the S-matrix and scattering/reaction observables

- Technical details
 - Step 4: NCSMC calculation
- ncsmc Fortran90 with OpenMP and MPI
 - RGM and coupling kernels either input or calculated from densities
 - Solves NCSMC coupled equations, calculates the S-matrix and scattering/reaction observables

- Technical details
 - Step 4: NCSMC calculation
- ncsmc Fortran90 with OpenMP and MPI
 - RGM and coupling kernels either input or calculated from densities
 - Solves NCSMC coupled equations, calculates the S-matrix and scattering/reaction observables

Table 15.1 from (1991AJ01): Energy levels of ${}^{15}C$ a

$E_{\rm x}~({\rm MeV}\pm{\rm keV})$	$J^{\pi}; T$	$ au$ or $\Gamma_{ m c.m.}$ (keV)	Decay	Reactions
g.s.	$\frac{1}{2}^+; \frac{3}{2}$	$\tau_{1/2} = 2.449 \pm 0.005 \; \mathrm{s}$	β^{-}	1, 2, 3, 4, 6, 7, 9
		$ g = 2.63 \pm 0.14$		
0.7400 ± 1.5	$\frac{5}{2}^{+}$	$\tau_{\rm m}=3.76\pm0.10~{\rm ns}$	γ	2, 3, 4, 7, 8
		$g = -0.703 \pm 0.012$		
3.103 ± 4	$\frac{1}{2}^{-}$	$\Gamma_{\rm c.m.} \leq 40$		2, 3, 9
4.220 ± 3	$\frac{5}{2}^{-}$	< 14		2,3
4.657 ± 9	$\frac{3}{2}^{-}$			2,3
4.78 ± 100	$\frac{3}{2}^{+}$	1740 ± 400		6
5.833 ± 20	$(\frac{3}{2}^+)$	64 ± 8		2,6
5.866 ± 8	$\frac{1}{2}^{-}$			2,3
6.358 ± 6	$(\frac{5}{2}, \frac{7}{2}^+, \frac{9}{2}^+)$	< 20		2,3
6.417 ± 6	$\left(\frac{3}{2} \rightarrow \frac{7}{2}\right)$	≈ 50		2,3
6.449 ± 7	$(\frac{9}{2}^{-},\frac{11}{2})$	< 14		2,3
6.536 ± 4	а	< 14		2,3
6.626 ± 8	$(\frac{3}{2})$	20 ± 10		2,3
6.841 ± 4	а	< 14		2,3
6.881 ± 4	$(\frac{9}{2})^{a}$	< 20		2,3
7.095 ± 4	$(\frac{3}{2})$	< 15		2,3
7.352 ± 6	$(\frac{9}{2}, \frac{11}{2})$	20 ± 10		2,4
7.414 ± 20				2
7.75 ± 30 $^{\rm b}$				2
8.01 ± 30				2

Conclusions

- Ab initio calculations of nuclear structure and reactions with predictive power becoming feasible beyond the lightest nuclei
- These calculations make connections between the low-energy QCD, many-body systems, and nuclear astrophysics
- ¹⁵C NCSMC calculations in progress
 - Capture cross section, cluster form factor, ANCs
- Study of the unbound ¹⁵F (mirror of ¹⁵C) in progress
 - Structure of resonances

% TRIUMF

Thank you! Merci! ありがとうございました

Discovery, accelerated

40