Multi-reference EDF theory alternative to GCM Application to the pairing model

Fang Ni, Nobuo Hinohara, and Takashi Nakatsukasa

University of Tsukuba

Contents:

- Problems of GCM
- Alternative method based on TDHFB: ASCC + SPA
- Application to pairing model

GCM; success and failures

Generator Coordinate Method (GCM) is a powerful tool to investigate correlations beyond the mean field.

Generalized eigenvalue problem (Hill-Wheeler eq.)

$$|\Psi\rangle = \int d\alpha f(\alpha) |\phi(\alpha)\rangle$$

$$d\alpha f^*(\alpha)\langle \phi(\alpha)|H-E|\phi(\alpha')\rangle=0$$

Quantum mechanical method applicable to LACM

- Problems
 - Continuum limit
 - Bonche, et al., NPA510, 466 (1990)
 - Singular behaviors for EDFs with fractional power of ρ
 - Anguiano, Egido, Robledo, NPA696, 467 (2001)
 - Dobaczewski et al., PRC76, 054315 (2007)
 - Choice of (complex) generator coordinates
 - Holzwarth, Yukawa, NPA219, 125 (1974) : Double projection
 - Peierls, Thouless, NP 38, 154 (1962) : Necessity of time-odd fields
 - 1D, 2D, complex GCM, ... where should we stop?

Quantization of TDHF(B)

- Advantages
 - Dynamics with time-odd mean fields
 - Small amplitude limit is guaranteed to be (Q)RPA
- Disadvantages
 - Missing quantum correlations/fluctuations
 - Energy eigenstates beyond (Q)RPA
 - Requantization requires periodic trajectories

$$\sum_{\alpha}\oint p_{\alpha}dq^{\alpha}=2\pi\hbar n$$

Stationary phase approximation (SPA)

Path integral expression

$$\begin{aligned} |\psi(t)\rangle &= e^{-iHt/\hbar} |\psi(t=0)\rangle \\ &= \int d\mu(Z) |Z\rangle \int D\mu(Z) e^{iS[Z]/\hbar} \end{aligned}$$

(Gen.) Slater det. $|Z(t)\rangle \propto \prod_{k < k'} e^{Z_{kk'}(t)\beta_k^+\beta_{k'}^+} |\phi_0\rangle$

 $d\mu(Z)$: invariant measure with $\int d\mu(Z) |Z\rangle \langle Z| = 1$

Phase space

SPA (classical trajectory) is nothing but TDHF(B) $\delta S_{cl} = 0$

$$\left|\tilde{\psi}(t)\right\rangle = \int d\mu(Z) \left|Z\right\rangle e^{iS_{cl}(Z)/\hbar}$$

 $S_{cl}(Z)$: Classical (TDHFB) action

Stationary states (energy eigenstates) correspond to periodic trajectories.

Integrable systems

Separable with invariant tori

$$|\tilde{\psi}_k\rangle = \oint d\mu(Z_k) |Z_k\rangle e^{iT(Z_k)/\hbar}$$

Integration over a closed trajectory on invariant tori

• EBK quantization condition

$$T_{\circ} = \oint_{C_k} \langle Z(t') | i\hbar \frac{\partial}{\partial t'} | Z(t') \rangle dt' = \oint_{C_k} \sum_{\alpha} p_{\alpha} dq^{\alpha} = 2\pi\hbar k \qquad k: \text{ integer}$$

Kuratsuji, Suzuki, PLB 92, 19 (1980) Kuratsuji, PTP 65, 224 (1981) Suzuki, Mizobuchi PTP 79, 480 (1988)

ASCC + SPA method

Adiabatic self-consistent collective coordinate (ASCC) Method

 $C_{\rm NG}$

NG mode

(Q,P)

 C_k

Determine a separable decoupled collective subspace Solutions of ASCC provide a decoupled collective subspace associated with constants of motion (NG modes), and "non-trivial" collective variables, (Q, P).

SPA of the path integral quantization

EBK quantization and a wave function of a collective state A closed trajectory on tori gives the energy E_k , action $T(Z_k)$, and wave functions, $|\tilde{\psi}_k\rangle$ $|\tilde{\psi}_k\rangle = \oint d\mu(Z_k)|Z_k\rangle e^{iT(Z_k)/\hbar}$

Pairing (Richardson) model

• TDHFB dynamics

$$\begin{cases} \dot{\chi}^{\alpha} = \frac{\partial \mathcal{H}}{\partial j_{\alpha}} & |Z(t)\rangle = \prod_{\alpha} \frac{1}{(1+|Z_{\alpha}(t)|^{2})^{S_{\alpha}}} e^{Z_{\alpha}(t)S_{\alpha}^{+}} |0\rangle \\ \dot{j}_{\alpha} = -\frac{\partial \mathcal{H}}{\partial \chi^{\alpha}} & Z_{\alpha} \to (\chi^{\alpha}, j_{\alpha}) \quad \langle Z|H|Z\rangle = \mathcal{H}(\chi(t), j(t)) \end{cases}$$

Tow-level pairing model is integrable. Conserved quantities: *E* and *N*

Other quantization methods

Canonical quantization

Collective Hamiltonian $H_{coll}(q,p) = \frac{(N-N_0)^2}{2\Im} + \frac{1}{2\overline{B}(q)}p^2 + \overline{V}(q)$ Pauli's prescription with $p = -i\partial_q$ Solve the collective Schroedinger eq.

Fourier decomposition

Energy given by the EBK quantization, the same as SPA Time dependent expectation value; $F(t) = \langle \psi(t) | F | \psi(t) \rangle$ $\langle k + \Delta k | F | k \rangle = F_{\Delta k}^k(\omega) = \frac{1}{T} \oint_0^T F(t) e^{i\omega t} dt$ with $\omega = \frac{2\pi}{T} \Delta k$

Two-level pairing model

F. Ni and TN, PRC 97, 044310 (2018)

• Pair-additional transition $B(P_{ad}) = |\langle N = 8, \alpha | S_+ | N = 6, \beta \rangle|^2$

Three-level pairing model

F. Ni, N.Hinohara, TN, arXiv:1811.02352

• Excitation energy (in units of ϵ_0)

		N=14	N=16	N=18	N=20	N=22	N=24
One-phonon (0_2^+)	Exact	4.09	4.13	4.20	4.30	4.44	4.60
	ASCC+SPA	3.87	3.90	3.97	4.09	4.23	4.33
Two-phonon (0_4^+)	Exact	7.65	7.71	7.88	8.15	8.49	8.74
	ASCC+SPA	7.42	7.42	7.60	7.92	8.26	8.47

• Two-particle addition transition $B(Pad) = |\langle N + 2, \alpha | S_+ | N, \beta \rangle|^2$

Neutron pairing vibrations in Pb isotopes

Pairing vibration of neutron in Pb isotope

Input:

12

26				
	s.p.	Energy		
	level	(MeV)		
utron	p1/2	-7.45		
	f5/2	-8.16		
Ne	p3/2	-8.44		
	i13/2	-8.74		
	f7/2	-10.69		
	h9/2	-10.94		
(2)				

F. Ni, N.Hinohara, TN, arXiv:1811.02352

• g = 0.138 (MeV) is adopted so as to reproduce experimental pairing gap of 192 Pb in three-point formula

• Results: Excitation energy of $|0_2^+\rangle$

	Exact	ASCC+SPA
¹⁸⁸ Pb	2.44	2.31
¹⁹⁰ Pb	2.34	2.21
¹⁹² Pb	2.25	2.12
¹⁹⁴ Pb	2.2	2.04

Pair transfer transition strengths

F. Ni, N.Hinohara, TN, arXiv:1811.02352

For $|0_2^+\rangle \rightarrow |0_2^+\rangle$, 20% smaller than exact solution.

<u>Summary</u>

- Requantization of TDHFB can be a possible alternative to GCM.
- Problems
 - The quantization is feasible only for integrable systems.
 - Realistic nuclei are non-integrable (of course).
- Possible solution
 - ASCC + SPA
 - Derive a collective subspace which is approximately "integrable".
- Application of the ASCC + SPA to multi-level pairing model
- Advantages of the method
 - Microscopic wave functions, like the GCM
 - No diagonalization needed, unlike the GCM
 - Applicable to states with weak collectivity
 - (Possiblely) Solutions to the problems of GCM