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GCM; success and failures
Generator Coordinate Method (GCM) is a powerful tool to 
investigate correlations beyond the mean field.
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• Problems
• Continuum limit 

• Bonche, et al., NPA510, 466 (1990)
• Singular behaviors for EDFs with fractional power of 2

• Anguiano, Egido, Robledo, NPA696, 467 (2001)
• Dobaczewski et al., PRC76, 054315 (2007)

• Choice of (complex) generator coordinates
• Holzwarth, Yukawa, NPA219, 125 (1974)  : Double projection
• Peierls, Thouless, NP 38, 154 (1962)  :  Necessity of time-odd fields

• 1D, 2D, complex GCM, ... where should we stop?

Quantum mechanical method applicable to LACM



Quantization of TDHF(B)

• Advantages
• Dynamics with time-odd mean fields
• Small amplitude limit is guaranteed to be (Q)RPA

• Disadvantages
• Missing quantum correlations/fluctuations
• Energy eigenstates beyond (Q)RPA
• Requantization requires periodic trajectories
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Stationary phase approximation �SPA)
Path integral expression
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SPA (classical trajectory) is nothing but TDHF(B)
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23(4): invariant measure with ∫ 23(4)|4⟩⟨4| = 1

Stationary states (energy eigenstates) correspond to periodic trajectories.



Integrable systems

2D Phase space
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Integration over a closed trajectory 
on invariant tori
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• EBK quantization condition
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Kuratsuji, Suzuki, PLB 92, 19 (1980)
Kuratsuji, PTP 65, 224 (1981)
Suzuki, Mizobuchi PTP 79, 480 (1988)Separable with invariant tori
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ASCC + SPA method

Determine a separable decoupled collective subspace
Solutions of ASCC provide a decoupled collective subspace 
associated with constants of motion (NG modes), and 
“non-trivial” collective variables, (", $). 
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Adiabatic self-consistent collective coordinate (ASCC) Method

NG mode

(Q,P)

EBK quantization and a wave function of a collective state
A closed trajectory on tori gives the energy 9(, action : 2( , and

wave functions, &'(

SPA of the path integral quantization ;(
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Tow-level pairing model is integrable.
Conserved quantities: E and N

• TDHFB dynamics
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Pairing (Richardson) model
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Other quantization methods

Canonical quantization
Collective Hamiltonian
Pauli’s prescription with ! = −$%&
Solve the collective Schroedinger eq.

Fourier decomposition
Energy given by the EBK quantization, the same as SPA
Time dependent expectation value;  ' ( = )(() ' )(()
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Two-level pairing model

Canonical Quantization Fourier Decomposition SPA
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Ω�8 (16 particle)

System

• Pair-additional transition
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Dashed line: exact

Pairing collectivity is relatively weak.

à Superiority of SPA

F. Ni and TN, PRC 97, 044310 (2018)



Three-level pairing model
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Ω�8 (16 particles)

• Pairing strength
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Three-level pairing model

• Two-particle addition transition    ! "#$ = ⟨' + 2, + ,- ', .⟩ 0

• Excitation energy (in units of 12)

N=14 N=16 N=18 N=20 N=22 N=24
One-phonon 

(00-)

Exact 4.09 4.13 4.20 4.30 4.44 4.60

ASCC+SPA 3.87 3.90 3.97 4.09 4.23 4.33

Two-phonon 

(04-)

Exact 7.65 7.71 7.88 8.15 8.49 8.74

ASCC+SPA 7.42 7.42 7.60 7.92 8.26 8.47

F. Ni, N.Hinohara, TN, arXiv:1811.02352



Neutron pairing vibrations in Pb isotopes

s.p. 
level

Energy 
(MeV)

p1/2 -7.45
f5/2 -8.16
p3/2 -8.44
i13/2 -8.74
f7/2 -10.69
h9/2 -10.94

Pairing vibration of 
neutron in Pb isotope

Input:

• ' = 0.138 (MeV) is adopted so as to 
reproduce experimental pairing gap of 
./0Pb in three-point formula

• Results: Excitation energy of |004⟩
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on Exact ASCC+SPA

67789 2.44 2.31
6:;89 2.34 2.21
6:<89 2.25 2.12
6:=89 2.2 2.04

F. Ni, N.Hinohara, TN, arXiv:1811.02352



• Two-neutron additional transition 
! "#$ = ⟨'()Pb, - .( 'Pb, /⟩ )

Pair transfer transition strengths

For |0)(⟩ → |0)(⟩, 20% smaller than exact solution.

F. Ni, N.Hinohara, TN, arXiv:1811.02352



Summary

• Requantization of TDHFB can be a possible alternative to GCM.

• Problems
• The quantization is feasible only for integrable systems.
• Realistic nuclei are non-integrable (of course).

• Possible solution
• ASCC + SPA
• Derive a collective subspace which is approximately “integrable”.

• Application of the ASCC + SPA to multi-level pairing model

• Advantages of the method
• Microscopic wave functions, like the GCM
• No diagonalization needed, unlike the GCM
• Applicable to states with weak collectivity
• (Possiblely) Solutions to the problems of GCM


