Coulomb Energy Density Functionals for Nuclear Systems

内藤 智也 (Tomoya Naito)

Department of Physics, Graduate School of Science, the University of Tokyo, JAPAN RIKEN Nishina Center, JAPAN

December 12, 2018

Tsukuba-CCS workshop on "microscopic theories of nuclear structure and dynamics"

Center for Computational Sciences, University of Tsukuba, Japan

- Nuclear force for T = 1 has little T₃ dependence
 i.e., that for p-p, n-n, and n-p (T = 1) are almost the same
 Nuclear force has almost isospin symmetry
- If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charde-independence-breaking (CIB) force

$$V_{\text{CSB}} = V_{nn} - V_{pp}, \qquad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas

- Nuclear force for T = 1 has little T₃ dependence
 i.e., that for p-p, n-n, and n-p (T = 1) are almost the same
 Nuclear force has almost isospin symmetry
- If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charde-independence-breaking (CIB) force

$$V_{\text{CSB}} = V_{nn} - V_{pp}, \qquad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas $V_{\text{CSB}} \neq 0$ and $V_{\text{CIB}} \neq 0$ are known

- Nuclear force for T = 1 has little T₃ dependence
 i.e., that for p-p, n-n, and n-p (T = 1) are almost the same
 Nuclear force has almost isospin symmetry
- If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charde-independence-breaking (CIB) force

$$V_{\text{CSB}} = V_{nn} - V_{pp}, \qquad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas $V_{\text{CSB}} \neq 0$ and $V_{\text{CIB}} \neq 0$ are known

 Amount of isospin symmetry breaking (ISB) of nuclear force is related to flavor symmetry breaking for quarks (CKM matrix V_{ud})

- Nuclear force for T = 1 has little T₃ dependence
 i.e., that for p-p, n-n, and n-p (T = 1) are almost the same
 Nuclear force has almost isospin symmetry
- If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charde-independence-breaking (CIB) force

$$V_{\text{CSB}} = V_{nn} - V_{pp}, \qquad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas $V_{\text{CSB}} \neq 0$ and $V_{\text{CIB}} \neq 0$ are known

- Amount of isospin symmetry breaking (ISB) of nuclear force is related to flavor symmetry breaking for quarks (CKM matrix V_{ud})
- However, electromagnetic (EM) force also breaks isospin symmetry

- Nuclear force for T = 1 has little T₃ dependence
 i.e., that for p-p, n-n, and n-p (T = 1) are almost the same
 Nuclear force has almost isospin symmetry
- If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charde-independence-breaking (CIB) force

$$V_{\text{CSB}} = V_{nn} - V_{pp}, \qquad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas $V_{\text{CSB}} \neq 0$ and $V_{\text{CIB}} \neq 0$ are known

- Amount of isospin symmetry breaking (ISB) of nuclear force is related to flavor symmetry breaking for quarks (CKM matrix V_{ud})
- However, electromagnetic (EM) force also breaks isospin symmetry
- EM force and ISB of nuclear force are entangled to each other, for example, in mirror nuclei and in isobaric analog states

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Isospin Symmetry Breaking of Nuclear Force No Electromagnetic Force Off

Atomic Number: *Z* Neutron Number: *N*

Atomic Number: *N* Neutron Number: *Z*

Isospin Symmetry Breaking of Nuclear Force Yes Electromagnetic Force Off

Atomic Number: *Z* Neutron Number: *N*

Atomic Number: *N* Neutron Number: *Z*

Isospin Symmetry Breaking of Nuclear Force Yes Electromagnetic Force On

Atomic Number: *N* Neutron Number: *Z*

Motivations

Importance of Electromagnetic Force

In order to understand isospin symmetry breaking of nuclear force, high-accuracy evaluation of electromagnetic force is required

Electromagnetic Force in Condensed Matter Physics

Most phenomena are caused by the Coulomb force High-accuracy calculations have been developed for decades

- In Density Functional Theory (DFT), Correlation is considered Correlation is not considered in nuclear DFT
- Density gradient effect is considered as GGA Surface effect is important for nuclei

Our Work

Motivations

Importance of Electromagnetic Force

In order to understand isospin symmetry breaking of nuclear force, high-accuracy evaluation of electromagnetic force is required

Electromagnetic Force in Condensed Matter Physics

Most phenomena are caused by the Coulomb force High-accuracy calculations have been developed for decades

- In Density Functional Theory (DFT), Correlation is considered Correlation is not considered in nuclear DFT
- Density gradient effect is considered as GGA Surface effect is important for nuclei

Our Work

Coulomb correlation and Density gradient effect (GGA) in Coulomb term are considered in nuclear DFT

Energy Density Functional for Electron Systems

$$E_{gs} = T_0 \left[\rho_{gs} \right] + \int V_{ext} \left(\boldsymbol{r} \right) \rho_{gs} \left(\boldsymbol{r} \right) d\boldsymbol{r} + E_d \left[\rho_{gs} \right] + E_x \left[\rho_{gs} \right] + E_c \left[\rho_{gs} \right]$$
$$= \sum_j \varepsilon_j - \int V_{xc} \left(\boldsymbol{r} \right) \rho_{gs} \left(\boldsymbol{r} \right) d\boldsymbol{r} - E_d \left[\rho_{gs} \right] + E_x \left[\rho_{gs} \right] + E_c \left[\rho_{gs} \right]$$

 T_0 : kinetic energy of non-interacting system, ε_j : single-particle energy of KS-system, E_d : direct (Hartree) functional, E_x : exchange functional, E_c : correlation functional

- *E*_d is exactly known
- Once E_x and E_c are known, the exact E_{gs} can be calculated
- Unfortunately, exact forms of E_x and E_c are unknown
- Approximation of *E*_x and *E*_c are required

Local Density Approximation (LDA)

- *E*_x and *E*_c are approximated to those of homogeneous systems
 → LDA gives the exact energy for homogeneous systems
- *E*_x in LDA is the known as Hartree-Fock-Slater approximation
- Energy density ε depends only on $\rho(\mathbf{r})$

$$E_{i}[\rho] = \int \varepsilon_{i}(\rho(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad (i = x, c)$$

Generalized Gradient Approximation (GGA)

• Energy density ε depends on $|\nabla \rho(\mathbf{r})|$ as well as $\rho(\mathbf{r})$

$$E_{i}[\rho] = \int \varepsilon_{i}(\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|) \rho(\mathbf{r}) d\mathbf{r} \quad (i = x, c)$$

Energy Density Functional for Electron Systems

$$E_{\rm gs} = T_0 \left[\rho_{\rm gs} \right] + \int V_{\rm ext} \left(\boldsymbol{r} \right) \rho_{\rm gs} \left(\boldsymbol{r} \right) \, d\boldsymbol{r} + E_{\rm d} \left[\rho_{\rm gs} \right] + E_{\rm x} \left[\rho_{\rm gs} \right] + E_{\rm c} \left[\rho_{\rm gs} \right]$$

Energy Density Functional in Nuclear Physics

$$E_{\rm gs} = T_0 \left[\rho_p, \rho_n \right] + E_{\rm nucl} \left[\rho_p, \rho_n \right] + E_{\rm Cd} \left[\rho_{\rm ch} \right] + E_{\rm Cx} \left[\rho_{\rm ch} \right]$$

 T_0 : kinetic energy of non-interacting system, E_{nucl} : nuclear part functional, E_{Cd} : direct Coulomb functional, E_{Cx} : exchange Coulomb functional,

 $V_{\text{ext}} \equiv 0$ since nuclear systems are self-bound systems

- Coulomb correlation functional E_{Cc} is not included explicitly
- Since exact effective nuclear force is still under discussion, E_{nucl} is given by fitting to experimental data \rightarrow
- Usually, protons are assumed to be point particles ($\rho_{ch} = \rho_p$)

Energy Density Functional for Electron Systems

$$E_{\rm gs} = T_0 \left[\rho_{\rm gs} \right] + \int V_{\rm ext} \left(\boldsymbol{r} \right) \rho_{\rm gs} \left(\boldsymbol{r} \right) \, d\boldsymbol{r} + E_{\rm d} \left[\rho_{\rm gs} \right] + E_{\rm x} \left[\rho_{\rm gs} \right] + E_{\rm c} \left[\rho_{\rm gs} \right]$$

Energy Density Functional in Nuclear Physics

$$E_{\rm gs} = T_0 \left[\rho_p, \rho_n \right] + E_{\rm nucl} \left[\rho_p, \rho_n \right] + E_{\rm Cd} \left[\rho_{\rm ch} \right] + E_{\rm Cx} \left[\rho_{\rm ch} \right]$$

 T_0 : kinetic energy of non-interacting system, E_{nucl} : nuclear part functional, E_{Cd} : direct Coulomb functional, E_{Cx} : exchange Coulomb functional,

 $V_{\text{ext}} \equiv 0$ since nuclear systems are self-bound systems

- Coulomb correlation functional E_{Cc} is not included explicitly
- Since exact effective nuclear force is still under discussion, *E*_{nucl} is given by fitting to experimental data
 → Coulomb correlation is included implicitly
- Usually, protons are assumed to be point particles (ρ_{ch} = ρ_p)

Density Gradient Effect in Atomic Nuclei

Evaluation of ²⁰⁸Pb by Using Experimental ρ_{ch}

Density gradient effect is visible in surface region

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Coulomb Correlation Functional

T. Naito, R. Akashi, and H. Liang. Phys. Rev. C 97, 044319 (2018)

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

December 12, 2018 9 / 22

Previous Work

Coulomb correlation energy is calculated for some specific nuclei by using the responce function

Nuclei	$E_{\rm Cx}$ (MeV)	$E_{\rm Cc}$ (MeV)	$E_{\rm Cc}/E_{\rm Cx}$
¹⁶ O	-2.99	0.99	-33.1 %
⁴⁰ Ca	-7.92	3.18	-40.2~%
²⁰⁸ Pb	-31.29	6.88	-22.0%

Bulgac and Shaginyan. Nucl. Phys. A 601, 103 (1996), Phys. Lett. B 469, 1 (1999)

Our Work

In order to consider Coulomb correlation energy $E_{\rm Cc}$ in self-consistent step, $E_{\rm Cc}$ as a functional form is required

Previous Work

Coulomb correlation energy is calculated for some specific nuclei by using the responce function

Nuclei	$E_{\rm Cx}$ (MeV)	$E_{\rm Cc}$ (MeV)	$E_{\rm Cc}/E_{\rm Cx}$
¹⁶ O	-2.99	0.99	-33.1 %
⁴⁰ Ca	-7.92	3.18	-40.2~%
²⁰⁸ Pb	-31.29	6.88	-22.0%

Bulgac and Shaginyan. Nucl. Phys. A 601, 103 (1996), Phys. Lett. B 469, 1 (1999)

Our Work

In order to consider Coulomb correlation energy $E_{\rm Cc}$ in self-consistent step, $E_{\rm Cc}$ as a functional form is required

 $\rightarrow E_{\rm Cc}$ is calculated as a test by functionals used in electron systems

Evaluated from Analytical Formulae in LDA

$$\xi = \frac{\alpha mc}{\hbar} \left(\frac{3}{4\pi\rho}\right)^{1/3}$$

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

December 12, 2018 11 / 22

Energy (MeV)

Nuclei	LDA E _{Cx}	LDA $E_{\rm Cc}$	$E_{\rm Cc}^{\rm LDA}/E_{\rm Cx}^{\rm LDA}$
⁴ He	-0.6494	-0.01296	1.996 %
${}^{12}C$	-1.962	-0.03904	1.990 %
¹⁶ O	-2.638	-0.05218	1.978%
⁴⁰ Ca	-7.087	-0.1329	1.875 %
⁴⁸ Ca	-7.113	-0.1332	1.873 %
⁵⁸ Ni	-10.28	-0.1879	1.828 %
¹¹⁶ Sn	-18.41	-0.3361	1.826 %
124 Sn	-18.24	-0.3356	1.840%
²⁰⁶ Pb	-30.38	-0.5527	1.820%
²⁰⁸ Pb	-30.31	-0.5524	1.823 %

Hartree-Fock-Slater Approx.

Energy (MeV)

Nuclei	LDA E _{Cx}	LDA $E_{\rm Cc}$	$E_{\rm Cc}^{\rm LDA}/E_{\rm Cx}^{\rm LDA}$
⁴ He	-0.6494	-0.01296	1.996 %
¹² C	-1.962	-0.03904	1.990%
¹⁶ O	-2.638	-0.05218	1.978%
⁴⁰ Ca	-7.087	-0.1329	1.875 %
⁴⁸ Ca	-7.113	-0.1332	1.873 %
⁵⁸ Ni	-10.28	-0.1879	1.828 %
¹¹⁶ Sn	-18.41	-0.3361	1.826 %
¹²⁴ Sn	-18.24	-0.3356	1.840%
²⁰⁶ Pb	-30.38	-0.5527	1.820%
²⁰⁸ Pb	-30.31	-0.5524	1.823 %

Evaluation by Experimental ρ_{cb} Hartree-Fock-Slater Approx. Consistent with $\varepsilon_{Cc}/\varepsilon_{Cx}$

Energy (MeV)

Nuclei	LDA E _{Cx}	LDA $E_{\rm Cc}$	$E_{\rm Cc}^{\rm LDA}/E_{\rm Cx}^{\rm LDA}$
⁴ He	-0.6494	-0.01296	1.996 %
^{12}C	-1.962	-0.03904	1.990 %
¹⁶ O	-2.638	-0.05218	1.978 %
⁴⁰ Ca	-7.087	-0.1329	1.875 %
⁴⁸ Ca	-7.113	-0.1332	1.873 %
⁵⁸ Ni	-10.28	-0.1879	1.828 %
¹¹⁶ Sn	-18.41	-0.3361	1.826 %
¹²⁴ Sn	-18.24	-0.3356	1.840%
²⁰⁶ Pb	-30.38	-0.5527	1.820 %
²⁰⁸ Pb	-30.31	-0.5524	1.823 %

Evaluation by Experimental $\rho_{\rm ob}$

Hartree-Fock-Slater Approx. Consitent with $\varepsilon_{Cc}/\varepsilon_{Cx}$

Energy (MeV)

Nuclei	LDA E_{Cx}	LDA $E_{\rm Cc}$	$E_{\rm Cc}^{\rm LDA}/E_{\rm Cx}^{\rm LDA}$
⁴ He	-0.6494	-0.01296	1.996 %
^{12}C	-1.962	-0.03904	1.990%
¹⁶ O	-2.638	-0.05218	1.978 %
⁴⁰ Ca	-7.087	-0.1329	1.875 %
⁴⁸ Ca	-7.113	-0.1332	1.873 %
⁵⁸ Ni	-10.28	-0.1879	1.828 %
¹¹⁶ Sn	-18.41	-0.3361	1.826 %
¹²⁴ Sn	-18.24	-0.3356	1.840%
²⁰⁶ Pb	-30.38	-0.5527	1.820 %
²⁰⁸ Pb	-30.31	-0.5524	1.823 %

Non-negligible!

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Short Conclusion

- Coulomb correlation energy is considered as a functional in our work
- Nuclear force is strong attractive, Coulomb force is weak repulsive
 → nuclear force causes main part of Coulomb correlation

Our Work does not include effects from the nuclear force $E_{\rm Cc}$ is around 2 % of $E_{\rm Cx}$

Previous Work included effects from the nuclear force $E_{\rm Cc}$ is around -20~% of $E_{\rm Cx}$

Short Conclusion

- Coulomb correlation energy is considered as a functional in our work
- Nuclear force is strong attractive, Coulomb force is weak repulsive
 → nuclear force causes main part of Coulomb correlation

Our Work does not include effects from the nuclear force $E_{\rm Cc}$ is around 2 % of $E_{\rm Cx}$

- Previous Work included effects from the nuclear force $E_{\rm Cc}$ is around -20% of $E_{\rm Cx}$
- This difference shows that the nuclear force should be considered in the Coulomb correlation functional
- Thus, E_{Cc} in this work is not applicable for nuclear systems directly
- The way to derive E_{Cc} in nuclear systems should be considered again

Coulomb Exchange Functional

T. Naito, R. Akashi, and H. Liang. *Phys. Rev. C* **97**, 044319 (2018) T. Naito, X. Roca-Maza, G. Colò, and H. Liang. arXiv:1810.02500 [nucl-th]

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

December 12, 2018 14 / 22

Energy (MeV)

Nuclei	LDA E_{Cx}	GGA E_{Cx}	$E_{\rm Cx}^{\rm GGA} - E_{\rm Cx}^{ m LDA}$	$E_{\rm Cx}^{\rm GGA}/E_{\rm Cx}^{ m LDA}$
⁴ He	-0.6494	-0.7281	-0.0787	112.1 %
^{12}C	-1.962	-2.105	-0.143	107.3 %
¹⁶ O	-2.638	-2.806	-0.168	106.4 %
⁴⁰ Ca	-7.087	-7.381	-0.294	104.1 %
⁴⁸ Ca	-7.113	-7.409	-0.296	104.2%
⁵⁸ Ni	-10.28	-10.65	-0.37	103.6 %
¹¹⁶ Sn	-18.41	-18.92	-0.51	102.8~%
124 Sn	-18.24	-18.75	-0.51	102.8~%
²⁰⁶ Pb	-30.38	-31.06	-0.68	102.2%
²⁰⁸ Pb	-30.31	-30.99	-0.68	102.2 %

GGA: PBE functional (Perdew, Burke, and Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996))

Hartree-Fock-Slater Approx.

Energy (MeV)

Nuclei	LDA E_{Cx}	GGA E_{Cx}	$E_{\rm Cx}^{\rm GGA} - E_{\rm Cx}^{\rm LDA}$	$E_{\rm Cx}^{\rm GGA}/E_{\rm Cx}^{\rm LDA}$
⁴ He	-0.6494	-0.7281	-0.0787	112.1 %
^{12}C	-1.962	-2.105	-0.143	107.3 %
¹⁶ O	-2.638	-2.806	-0.168	106.4 %
⁴⁰ Ca	-7.087	-7.381	-0.294	104.1 %
⁴⁸ Ca	-7.113	-7.409	-0.296	104.2 %
⁵⁸ Ni	-10.28	-10.65	-0.37	103.6 %
¹¹⁶ Sn	-18.41	-18.92	-0.51	102.8 %
¹²⁴ Sn	-18.24	-18.75	-0.51	102.8 %
²⁰⁶ Pb	-30.38	-31.06	-0.68	102.2 %
²⁰⁸ Pb	-30.31	-30.99	-0.68	102.2 %

GGA: PBE functional (Perdew, Burke, and Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996))

Hartree-Fock-Slater Approx.

Enerç	gy (MeV)			1	2 % enhanced!!	
	Nuclei	LDA E _{Cx}	GGA E _{Cx}	$E_{\rm Cx}^{\rm GGA} - E_{\rm Cx}^{\rm LDA}$	$E_{\rm Cx}^{\rm GGA}/E_{\rm Cx}^{\rm LDA}$	
	⁴ He	-0.6494	-0.7281	-0.0787	112.1 %	
	^{12}C	-1.962	-2.105	-0.143	107.3 %	
	¹⁶ O	-2.638	-2.806	-0.168	106.4 %	
	⁴⁰ Ca	-7.087	-7.381	-0.294	104.1 %	
	⁴⁸ Ca	-7.113	-7.409	-0.296	104.2 %	
	⁵⁸ Ni	-10.28	-10.65	-0.37	103.6 %	
	¹¹⁶ Sn	-18.41	-18.92	-0.51	102.8 %	
	¹²⁴ Sn	-18.24	-18.75	-0.51	102.8 %	
	²⁰⁶ Pb	-30.38	-31.06	-0.68	102.2 %	
	²⁰⁸ Pb	-30.31	-30.99	-0.68	102.2 %	

GGA: PBE functional (Perdew, Burke, and Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996))

Hartree-Fock-Slater Approx.

Enerç	gy (MeV)			1	2 % enhanced!!	
	Nuclei	LDA E _{Cx}	GGA E _{Cx}	$E_{\rm Cx}^{\rm GGA} - E_{\rm Cx}^{\rm LDA}$	$E_{\rm Cx}^{\rm GGA}/E_{\rm Cx}^{\rm LDA}$	
	⁴ He	-0.6494	-0.7281	-0.0787	112.1 %	
	^{12}C	-1.962	-2.105	-0.143	107.3 %	
	¹⁶ O	-2.638	-2.806	-0.168	106.4 %	
	⁴⁰ Ca	-7.087	-7.381	-0.294	104.1 %	
	⁴⁸ Ca	-7.113	-7.409	-0.296	104.2 %	
	⁵⁸ Ni	-10.28	-10.65	-0.37	103.6 %	
	¹¹⁶ Sn	-18.41	-18.92	-0.51	102.8 %	
	¹²⁴ Sn	-18.24	-18.75	-0.51	102.8 %	
	²⁰⁶ Pb	-30.38	-31.06	-0.68	102.2 %	
	²⁰⁸ Pb	-30.31	-30.99	-0.68	102.2 %	

GGA: PBE functional (Perdew, Burke, and Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996))

Difference (600 keV): Non-negligible!

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Comparison to Exact Hartree-Fock Calculation

$$\Delta E_{\rm Cx} = \frac{E_{\rm Cx}^{\rm GGA} - E_{\rm Cx}^{\rm LDA}}{E_{\rm Cx}^{\rm GGA}} \qquad \Delta E_{\rm Cx} = \frac{E_{\rm Cx}^{\rm exactHF} - E_{\rm Cx}^{\rm LDA}}{E_{\rm Cx}^{\rm exactHF}}$$

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Short Conclusion

- GGA exchange functionals may work in nuclear system, where choice of functionals is not critical
- GGA exchange enhanced from LDA 12 % (-80 keV) in ⁴He, 2.3 % (-600 keV) in ²⁰⁸Pb
- However, there are still some error

 → let us discuss modification for GGA functional

PBE-GGA Coulomb Exchange Functional

$$\mathcal{E}_{Cx}^{GGA}[\rho] = \int \varepsilon_{Cx}^{LDA}(\rho(\mathbf{r})) F(s) \rho(\mathbf{r}) d\mathbf{r}, \qquad s = \frac{|\nabla \rho|}{2(3\pi^2)^{1/3} \rho^{4/3}},$$
$$F(s) = 1 + \kappa - \frac{\kappa}{1 + \mu s^2/\kappa}, \qquad \mu = 0.21951, \qquad \kappa = 0.804$$

Perdew, Burke, and Ernzerhof. *Phys. Rev. Lett.* **77**, 3865 (1996)
κ is determined from Lieb-Oxford bound (analytical evaluation)

• μ is determined from RPA calculation of homogeneous electron gas

PBE-GGA Coulomb Exchange Functional

$$\mathcal{E}_{Cx}^{GGA}[\rho] = \int \mathcal{E}_{Cx}^{LDA}(\rho(\mathbf{r})) F(s) \rho(\mathbf{r}) d\mathbf{r}, \qquad s = \frac{|\nabla \rho|}{2 (3\pi^2)^{1/3} \rho^{4/3}},$$
$$F(s) = 1 + \kappa - \frac{\kappa}{1 + \mu s^2/\kappa}, \qquad \mu = 0.21951, \qquad \kappa = 0.804$$

Perdew, Burke, and Ernzerhof. *Phys. Rev. Lett.* **77**, 3865 (1996)
κ is determined from Lieb-Oxford bound (analytical evaluation)
→ κ must be kept in any systems

• μ is determined from RPA calculation of homogeneous electron gas

PBE-GGA Coulomb Exchange Functional

$$\mathcal{E}_{Cx}^{GGA}[\rho] = \int \mathcal{E}_{Cx}^{LDA}(\rho(\mathbf{r})) F(s) \rho(\mathbf{r}) d\mathbf{r}, \qquad s = \frac{|\nabla \rho|}{2(3\pi^2)^{1/3} \rho^{4/3}},$$
$$F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}, \qquad \mu = 0.21951, \qquad \kappa = 0.804$$

Perdew, Burke, and Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996)

- κ is determined from Lieb-Oxford bound (analytical evaluation)
 → κ must be kept in any systems
- μ is determined from RPA calculation of homogeneous electron gas $\rightarrow \mu$ in nuclei can be different from in original one

Setup for Self-consistent Skyrme Hartree-Fock Calculation

Nuclear Part SAMi Functional

(However, choice of functional of nuclear part is not critical)

Coulomb Part LDA exchange is replaced to PBE Functional (GGA)

Correlation Part Coulomb correlation part is not considerd

Pairing Correlation Neglected

Calculation

Code Modified skyrme_rpa for GGA

Colò, Cao, Van Giai, and Capelli. *Comput. Phys. Commn.* **184**, 142 (2013) Box Size 0.1 fm × 150

Self-Consistent Calculation

• λ does not have an obvious isospin dependence

$$F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}$$

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Self-Consistent Calculation

- λ does not have an obvious isospin dependence
- $\lambda = 1.25$ will reproduce well in mid/heavy-mass region

$$F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}$$

Tomoya Naito (U. Tokyo/RIKEN)

Coulomb EDF for Nuclear Physics

Self-Consistent Calculation

- λ does not have an obvious isospin dependence
- $\lambda = 1.25$ will reproduce well in mid/heavy-mass region
- For whole nuclear chart, $\lambda = 1.25$ is the most suitable
- In light nuclei, $\lambda = 1.25$ has still a little error \rightarrow shell effect?

$$F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}$$

Short Conclusion

 \rightarrow

- "Modified" PBE-GGA Coulomb exchange functional with $\lambda = 1.25$ reproduces the exact-Fock energy almost whole nuclear chart
- Numerical cost

Exact-Fock $O(N^4)$ LDA $O(N^3)$ GGA Still $O(N^3)$

Short Conclusion

- "Modified" PBE-GGA Coulomb exchange functional with $\lambda = 1.25$ reproduces the exact-Fock energy almost whole nuclear chart
- Numerical cost

Exact-Fock $O(N^4)$ LDA $O(N^3)$ GGA Still $O(N^3)$

→ Modified PBE-GGA should be used instead of the LDA!

Final Conclusion

- GGA Coulomb exchange functionals in electron systems reproduces the exact-Fock energy, while numerical cost in GGA is almost the same as in LDA
- Coulomb correlation functionals in electron systems are not applicable to atomic nuclei directly

Next Step for More Higher Accuracy Coulomb Energy

Considering finite-size effect of proton (ρ_{ch} is used in each SCF step instead of ρ_p) since finite-size effect of proton is sometimes non-negligible Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) Naito, Roca-Maza, Colò, and Liang. *In Progress*

Application to the measurable quantities, for example

Mirror nuclei mass difference, Isobaric Analog State, Superallowed β -decay

Final Conclusion

- GGA Coulomb exchange functionals in electron systems reproduces the exact-Fock energy, while numerical cost in GGA is almost the same as in LDA
- Coulomb correlation functionals in electron systems are not applicable to atomic nuclei directly

Next Step for More Higher Accuracy Coulomb Energy

Considering finite-size effect of proton (ρ_{ch} is used in each SCF step instead of ρ_p) since finite-size effect of proton is sometimes non-negligible Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) Naito, Roca-Maza, Colò, and Liang. *In Progress*

Application to the measurable quantities, for example

Mirror nuclei mass difference, Isobaric Analog State, Superallowed β -decay