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Introduction

Motivation: to build a consistent and predictive approach to describe the entire 
nuclear chart (ideally, an arbitrary strongly-correlated many-body system), 
numerically executable and useful for applications (Not only astrophysics :) 

Challenges: the nuclear hierarchy problem, complexity of NN-interaction. 

Accurate non-perturbative solutions: Relativistic Nuclear Field Theory (RNFT). 
Emerged as a synthesis of Landau-Migdal Fermi-liquid theory, Copenhagen-Milano 
NFT and Quantum Hadrodynamics (QHD); now put in the context of a systematic 
equation of motion (EOM) formalism and linked to ab-initio interactions. 

n-body correlation functions: complete characteristics of strongly-coupled many-
body systems. Define all dynamical and geometrical properties of nuclear and 
condensed matter systems, in quantum chemistry, quantum gravity & dualities.  
  
 Nuclear 2-body correlation functions = observable nuclear response to major neutral 
and charge-exchange probes: giant EM resonances, Gamow-Teller, spin dipole etc. 
(neutron capture, gamma and beta decays, pair transfer, …).  

 Nuclear response at finite temperature: thermal RNFT for transitions between 
nuclear excited states.  

 Conclusions and perspectives.   



t-dependent (dynamical) term:

Particle-hole response 
(correlation function):

Equation of motion (EOM) for particle-hole response 

(ph) spectra of excitations,  
masses, decays, …

contains the full solution of (*) including the dynamical term!

Mean field F(0), where

(*)

S. Adachi and P. Schuck, NPA496, 485 (1989). 
J. Dukelsky, G. Roepke, and P. Schuck, NPA 625, 14 (1995). 
P. Schuck and M. Tohyama, PRB 93, 165117 (2016). Etc.

Irreducible kernel:

EOM:

instantaneous term (“bosonic” mean field):

Free propagator

Many-body Hamiltonian: (or relativistic)

EOM:



Expansion of the dynamics kernel F(r;12)irr: truncation on the 2-body level

(i) Uncorrelated terms (“Second RPA”):

(iii) Doubly-correlated terms, up to phases 
(generalized QVC):

(ii) Singly-correlated terms, up to phases (PVC, QVC, …):

Irreducible part of G(4) is decomposed 
into uncorrelated, singly-correlated and 
doubly-correlated terms (approximation,  
but very accurate):



Mapping to the (Quasi)particle-Vibration Coupling (QVC, PVC)

Model-independent mapping to the QVC-TBA:

“phonon” vertex

“phonon” 
propagator

Original QVC (NFT, R(Q)TBA): non-correlated 
and main singly-correlated terms:

Generalized  R(Q)TBA (E.L. PRC91, 034332 (2015):  
meets EOM: ALL correlated terms 

Self-consistent closed system of equations 
All channels 
are coupled in 
W[R(ω)] 

E.L., P. Schuck, 
in progress

v vR(ph)=

v v(pp)= G



The underlying NN-interaction: meson exchange (ME)

 

Neutral mesons σ, ω, π, ρ…:
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Charged mesons: π, ρ,…
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The full many-body scheme has 
not been (yet) executed neither 
for the bare meson-exchange 
(ME) interaction nor for any 
other bare interaction. 

A good starting point - the use of 
effective ME interactions 
adjusted to nuclear bulk 
properties on the mean-field 
level (J. Walecka, M. Serot, …, 
P. Ring) and to supplement the 
many-body correlation theory 
with proper subtraction 
techniques (V. Tselyaev), in the 
covariant framework.



Response of medium-mass and heavy nuclei 
within Relativistic (Quasiparticle) Time Blocking Approximation (R(Q)TBA)

GDR in neutron-rich SnGiant dipole resonance (GDR) in stable nuclei 

**E. L., P. Ring, and V. Tselyaev et 
al.,   
Phys. Rev.  C 78, 014312 (2008). 
Phys. Rev. C 79, 054312 (2009). 
Phys. Rev. Lett. 105, 022502 
(2010). 
Phys. Rev. C 88, 044320 (2013). 

J. Endres, E. Litvinova, D. Savran et 
al.,  Phys. Rev. Lett. 105, 212503 
(2010). 
…
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Gamow-Teller resonance

E.L., B.A. Brown, D.-L. Fang, T. 
Marketin, R.G.T. Zegers,  
Phys. Lett. B  730, 307 (2014).  

T. Marketin, E.L., D. Vretenar,  
P. Ring,  
Phys. Lett. B 706, 477 (2012). 

C. Robin and E. Litvinova,  
Eur. Phys. J. A 52, 205 (2016). 

E. Litvinova, C, Robin, and I.A. 
Egorova,  
Phys. Lett. B 776, 72 (2018).

Spin-dipole resonance

The dynamical part of the interaction kernel (quasiparticle-vibration coupling) brings a significant overall 
improvement to the description of both high-frequency and low-lying strengths.



Gamow-Teller resonance in open-shell nuclei: spectra of odd-odd systems. 
 Interplay of superfluid pairing and phonon coupling (pn-RQTBA)

C. Robin, E.L.,  
Eur. Phys. J. A 52, 205 (2016)

Overall strength

pn-RQRPA
pn-RQTBA

∞

Low-energy part

Beta decay half-lives

No fits, no artificial quenching,  
no adjustable proton-neutron pairing



Recent developments: coupling to charge-exchange (CE) phonons

The role of coupling to charge-exchange (CE) vibrations

C. Robin, E.L. PRC 98, 051301(R) (2018) 

Neutral phonons:
Both phonon-exchange 

and self-energy 
contributions

Charge-exchange  phonons:
no phonon-exchange counterparts

=> larger than expected contribution!

Gamow-Teller response
3p3h-
configurations
are needed
for a consistent
description 
without applying 
quenching 
factors
(in progress)

Data: J. Yasuda et al., Phys. Rev. Lett. 121, 132501  (2018) 



Time blocking (diagram ordering) at T>0
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“Soft” time blocking at T>0 
leads to a single-frequency  
variable equation  
for the response function 

T = 0:T > 0: Dynamical kernel:



Giant Dipole Resonance in 48Ca and 120,132Sn at T>0

New transitions due to the thermal unblocking effects 

More collective and non-collective modes contribute in the 
PVC self-energy (~400 modes at T=5-6 MeV) 

Broadening of the resulting GDR spectrum 

Development of the low-energy part => a feedback to GDR

The spurious translation mode is properly decoupled as the 
mean field is modified consistently 
The role of the new terms in the Φ amplitude increases with 
temperature 
A very little fragmentation of the low-energy peak (possibly 
due to the absence of GSC/PVC)

Thermal unblocking:

Uncorrelated
propagator: 



Evolution of the pygmy dipole resonance (PDR) at T>0

The low-energy peak (PDR) gains the strength from the 
GDR with the temperature growth: EWSR ~ const 

The total width Γ ~ Τ2 (as in the Landau theory) 

The PDR develops a new type of collectivity originated from 
the thermal unblocking 

The same happens with other low-lying modes (2+, 3-, …) 
=> strong PVC => “destruction” of the GDR at high 
temperatures  

 E.L., H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018). 
H. Wibowo, E.L., arXiv:1810.01456. 

Low-energy strength distribution in 68Ni Transition density for the low-energy peak in 68Ni, 100Sn

GDR’s width Energy-weighted sum rule



The role of the exponential factor: low-energy strength 

Averaging over the initial state energies,
Detailed balance at T>0

The final strength 
function at T>0:

The exponential factor:

The exponential factor brings an additional enhancement in E<T energy region and provides the finite  
zero-energy limit of the strength (regardless its spin-parity) 

~

Dipole strength: absorption at T>0:



Continuum effects

Theory: E. Litvinova, N. Belov, PRC 88, 031302(R)(2013)  

Exp.: Oslo data  M. Guttormsen et al., PRC 71, 044307 (2005),  
S. Goriely et al., PRC 78, 064307 (2008) 

Low-energy limit of the 
radiative dipole strength functionsTheory including the continuum, QVC  

and superfluid pairing at T=0:  
E.L., V.I. Tselyaev, PRC 75, 054318 (2007): 

Continuum is mostly important for light nuclei 

However, the continuum effects become important 
also in heavy systems at finite temperatures: 
excited compound nuclei (CN), for instance,  after  
the thermal neutron capture 

Thermal  
unblocking

Exponential factor not included; 
QVC not included; work in progress



Temperature dependence of the Gamow-Teller Resonance (GTR):  
the case of 48Ca

The GTR shows a stronger sensitivity to temperature than the non-charge-exchange GDR.
The strength gets “pumped” into the low-energy peak with the temperature increase.
New states appear in the lowest-energy sector due to the thermal unblocking => beta instability enhancement
PVC fragmentation effects remain strong at T>0.

Qβ



Gamow-Teller Resonance: 78Ni and 132Sn

Beta decay half-life T1/2

E.L., C. Robin, H. Wibowo, arXiv:1808.07223

The thermally unblocked transitions enhance the GTR 
strength within the Qβ window. This causes the decrease of 
the T1/2 with temperature.

At the typical r-process temperatures T~0.2-0.3 MeV the 
thermal unblocking is still suppressed by the large shell gaps, 
however, the situation should change in the open-shell nuclei.

ΔnH = 0.78 MeV;  gA = 1.27  (unquenched)

Qβ



Temperature dependence of the Spin Dipole (SD) Resonance: 
First forbidden transitions in 78Ni 

ΔL = 1 
ΔT = 1     
ΔS = 1 
λ = 0,1,2 

Response to the operator: Angular momentum: 
Isospin: 

Spin: 
3 components:

Qβ

The SD strength changes noticeably already at temperatures T< 0.5 MeV 
=> a non-negligible impact on T1/2 and beta  decay rates which increases with temperature

Further consequences for astrophysics: electron capture, neutrino transport

0.001

0.01

0.1

1

10

T
1
/2

 [
s]

T [MeV]

0.001

0.01

0.1

1

10

100

1000

T
1
/2

 [
s]

FT-RRPA; GT
FT-RRPA; GT+FF
FT-RTBA; GT
FT-RTBA; GT+FF
Exp

78
Ni

132
Sn

0 0.5 0.75 1.0 2.0

32

6

81

21
43

33
36 34

20 40

20
14

2 3

2 2 23 55

Beta decay half-lives in a hot  
stellar environment, lg(ρYe) = 7:



Outlook

Summary: 

 Relativistic NFT offers a powerful framework for a high-precision solution of the nuclear 
many-body problem. 

 The non-perturbative response theory based on QHD and including high-order correlations is 
available now for a large class of nuclear excited states in even-even and odd-odd nuclei. 

The time blocking approximation to the nuclear response beyond RPA is generalized to finite 
temperature snd applied to GDR, GTR and SDR. 

Current and future developments: 

An approach to nuclear response including both continuum and PVC at finite temperature, for 
both neutral and charge-exchange excitations; 

Inclusion of the superfluid pairing at T>0 to extend the application range (r-process);  

 Inclusion of 3p3h-configurations (ongoing for T=0); 

 Applications to neutron stars and other QFT cases; 

Toward an “ab initio” description: realization of the approach based on the bare relativistic 
meson-exchange potential (CD-Bonn etc.).
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