Tsukuba-CCS workshop on

"microscopic theories of nuclear structure and dynamics" December 10-12, 2018, Tsukuba U., Japan

Effects of tensor force in the relativistic scheme

Haozhao LIANG(梁豪兆)

RIKEN Nishina Center, Japan Graduate School of Science, University of Tokyo, Japan December 12, 2018

Contents

Introduction

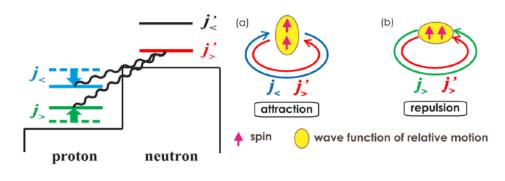
- Relativistic Hartree-Fock theory
- Effects of tensor force
- **D** Summary

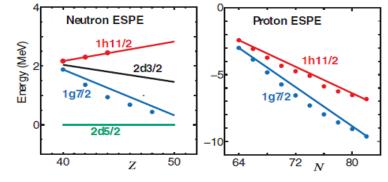
Zhiheng Wang LZU & Tsukuba & RIKEN

Tensor force and its effects

Tensor force is an important component of NN interaction

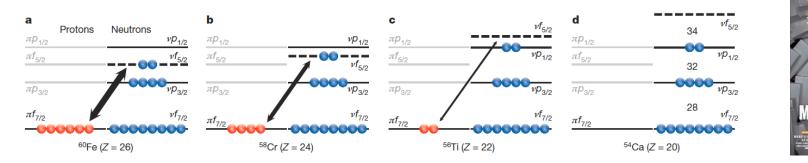
Crucial for the shell evolution in exotic nuclei





Otsuka et al., PRL 95, 232502 (2005)

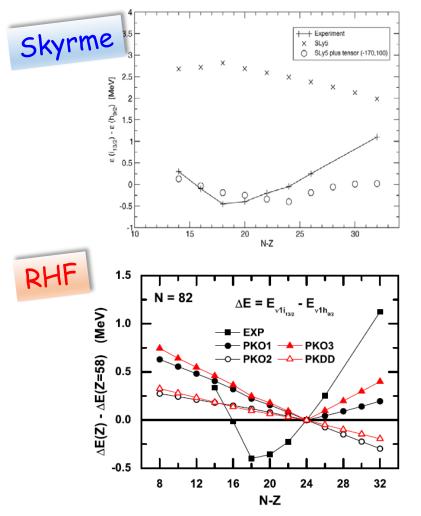
Crucial for the new magic numbers



Steppenbeck et al., Nature 502, 207 (2013)

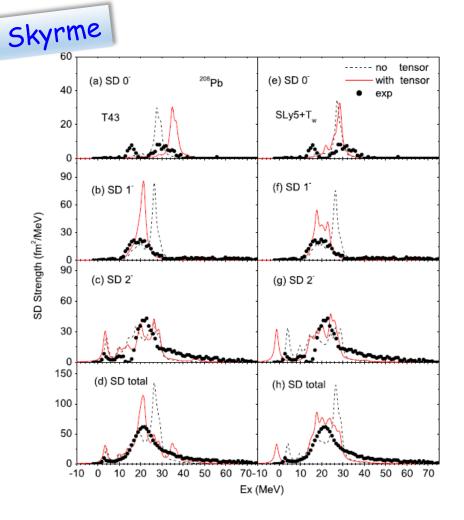
DFT and tensor effects

Shell evolution (N = 82)



Colò, Sagawa, Fracasso, Bortignon, *PLB* **646**, 227 (2007) Long, Sagawa, Meng, Giai, *EPL* **82**, 12001 (2008) (exp) Schiffer et al., *PRL* **92**, 162501 (2004)

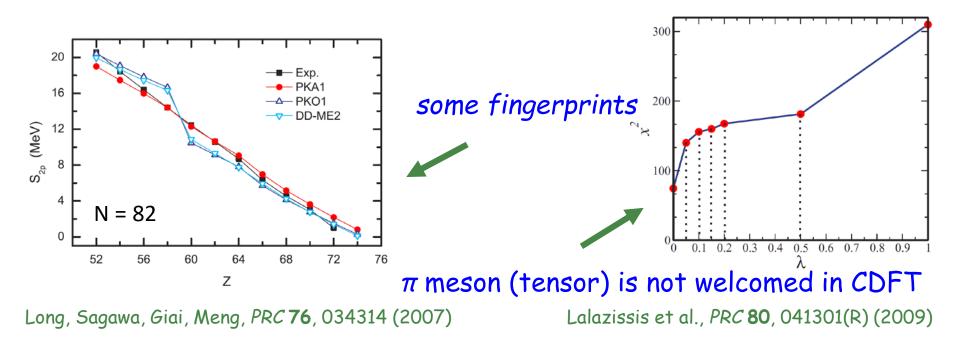
Giant resonances (spin-dipole)



Bai, Zhang, Sagawa, Zhang, Colò, Xu, PRL **105**, 072501 (2010) (exp) Wakasa et al., PRC **85**, 064606 (2012)

Tensor effects in relativistic DFT?

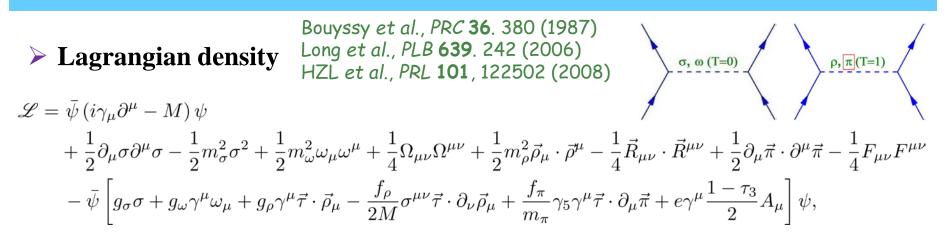
Signals of tensor force in relativistic DFT? (nuclear mass)



□ How to **identify** the tensor effects in relativistic DFT?

- Can we make **fair and quantitative comparison** with Skyrme, Gogny, etc.?
- What would be the proper ways to **determine the strengths** of tensor force?

Relativistic Hartree-Fock (RHF) theory



Hamiltonian

$$H = \int d^3x \,\bar{\psi}(x) [-i\boldsymbol{\gamma} \cdot \boldsymbol{\nabla} + M] \psi(x) + \frac{1}{2} \sum_{\phi} \iint d^3x \, d^4y \,\bar{\psi}(x) \bar{\psi}(y) \Gamma_{\phi}(x,y) D_{\phi}(x,y) \psi(y) \psi(x)$$

According to interaction vertices, we have interaction vertices propagators

$$\sigma$$
-S, ω -V, ρ -V, ρ -T, ρ -VT, and π -PV couplings

Caution: T here indicates Dirac matrix $\sigma^{\mu\nu}$, not the "tensor force"

Their leading-order terms contain the tensor force. Sagawa & Colò, PPNP 76, 76 (2014)
 How about the next-to-the-leading-order terms? Are they important?

Non-relativistic reduction

Relativistic meson-exchange two-body interactions

$$\hat{V}_{\phi}(m{r}_1,m{r}_2) = \gamma_0(m{r}_1)\gamma_0(m{r}_2)\Gamma_{\phi}(m{r}_1,m{r}_2)D_{\phi}(m{r}_1,m{r}_2)$$

Two-body interaction matrix elements

$$V_{\phi,\alpha\beta\gamma\delta} = \langle \varphi_{\alpha}\varphi_{\beta} | \hat{V}_{\phi} | \varphi_{\gamma}\varphi_{\delta} \rangle = \iint d\boldsymbol{r}_1 \, d\boldsymbol{r}_2 \, \varphi_{\alpha}^{\dagger}(\boldsymbol{r}_1) \varphi_{\beta}^{\dagger}(\boldsymbol{r}_2) \hat{V}_{\phi}(\boldsymbol{r}_1, \boldsymbol{r}_2) \varphi_{\gamma}(\boldsymbol{r}_1) \varphi_{\delta}(\boldsymbol{r}_2)$$

Non-relativistic reduced two-body interactions

$$V_{\phi,\alpha\beta\gamma\delta} = \langle \varphi_{\alpha}\varphi_{\beta} | \hat{\mathcal{V}}_{\phi}\Pi_{+} | \varphi_{\gamma}\varphi_{\delta} \rangle = \langle \xi_{\alpha}\xi_{\beta} | \hat{\mathcal{V}}_{\phi} | \xi_{\gamma}\xi_{\delta} \rangle$$

 ξ : upper component $\hat{\gamma}$ can be expanded in the **powers of 1**/*M* (~ Foldy-Wouthuysen method for one-body problem)

Example: plane waves in finite-density systems

$$\begin{split} V_{\phi,abcd} &= \bar{u}_{\boldsymbol{p}_{a}^{*}}(1)\bar{u}_{\boldsymbol{p}_{b}^{*}}(2)\frac{1}{m_{\phi}^{2} + \boldsymbol{q}^{2}}\Gamma_{\phi}(1,2)u_{\boldsymbol{p}_{c}^{*}}(1)u_{\boldsymbol{p}_{d}^{*}}(2) & \boldsymbol{p}^{*} \equiv \boldsymbol{p} + \hat{\boldsymbol{p}}\Sigma_{V}(\boldsymbol{p}) \\ \text{with} \quad u_{\boldsymbol{p}_{a}^{*}} &= \sqrt{\frac{M^{*} + \varepsilon_{a}^{*}}{2\varepsilon_{a}^{*}}} \begin{pmatrix} 1 \\ \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}_{a}^{*}}{M^{*} + \varepsilon_{a}^{*}} \end{pmatrix} & \varepsilon^{*}(\boldsymbol{p}) \equiv \boldsymbol{\omega}(\boldsymbol{p}) - \Sigma_{0}(\boldsymbol{p}) \end{split}$$

Non-relativistic reduced interactions

 $S_{12} \equiv (\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) - \frac{1}{2}(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)q^2$ \Box Up to the $1/M^2$ order $\hat{\mathcal{V}}_{\sigma-\mathrm{S}} = -g_{\sigma}(1)g_{\sigma}(2)\frac{1}{m_{\sigma}^{2} + \boldsymbol{q}^{2}} \left[1 - \frac{1}{4}\frac{4\boldsymbol{k}^{2} - \boldsymbol{q}^{2} - 4i\boldsymbol{\sigma}_{1}\cdot(\boldsymbol{k}\times\boldsymbol{q})}{4M^{*}(1)M^{*}(1)} - \frac{1}{4}\frac{4\boldsymbol{k}'^{2} - \boldsymbol{q}^{2} - 4i\boldsymbol{\sigma}_{2}\cdot(\boldsymbol{q}\times\boldsymbol{k}')}{4M^{*}(2)M^{*}(2)} \right],$ $\hat{\mathcal{V}}_{\omega-\mathrm{V}} = + g_{\omega}(1)g_{\omega}(2)\frac{1}{m_{\omega}^{2} + \boldsymbol{q}^{2}} \left[1 + \frac{1}{4}\frac{4\boldsymbol{k}^{2} - \boldsymbol{q}^{2} - 4i\boldsymbol{\sigma}_{1}\cdot(\boldsymbol{k}\times\boldsymbol{q})}{4M^{*}(1)M^{*}(1)} + \frac{1}{4}\frac{4\boldsymbol{k}'^{2} - \boldsymbol{q}^{2} - 4i\boldsymbol{\sigma}_{2}\cdot(\boldsymbol{q}\times\boldsymbol{k}')}{4M^{*}(2)M^{*}(2)} \right]$ $-\frac{g_{\omega}(1)g_{\omega}(2)}{4M^*(1)M^*(2)}\frac{1}{m^2+\boldsymbol{q}^2}\left|4\boldsymbol{k}\boldsymbol{k}'+2i\boldsymbol{\sigma}_1\cdot(\boldsymbol{q}\times\boldsymbol{k}')-2i\boldsymbol{\sigma}_2\cdot(\boldsymbol{q}\times\boldsymbol{k})+\frac{2}{3}(\boldsymbol{\sigma}_1\cdot\boldsymbol{\sigma}_2)\boldsymbol{q}^2-\boldsymbol{S}_{12}\right|,$ $\hat{\mathcal{V}}_{\pi\text{-}PV} = -\vec{\tau}(1) \cdot \vec{\tau}(2) \frac{f_{\pi}(1)f_{\pi}(2)}{m^2} \frac{1}{m^2 + q^2} \left| S_{12} + \frac{1}{3} (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) q^2 \right|,$ Finite density $\hat{\mathcal{V}}_{\rho-\mathrm{T}} = +\vec{\tau}(1)\cdot\vec{\tau}(2)\frac{f_{\rho}(1)f_{\rho}(2)}{4M^2}\frac{1}{m_{\circ}^2+\boldsymbol{q}^2}\left[\boldsymbol{S}_{12}-\frac{2}{3}(\boldsymbol{\sigma}_1\cdot\boldsymbol{\sigma}_2)\boldsymbol{q}^2\right],$ $\hat{\mathcal{V}}_{\rho\text{-VT}} = +\vec{\tau}(1)\cdot\vec{\tau}(2)\frac{f_{\rho}(1)g_{\rho}(2)}{4MM^{*}(1)}\frac{1}{m^{2}+\boldsymbol{a}^{2}}\left[-\boldsymbol{q}^{2}+2i\boldsymbol{\sigma}_{1}\cdot(\boldsymbol{q}\times\boldsymbol{k})\right]$ $+\vec{\tau}(1)\cdot\vec{\tau}(2)\frac{f_{\rho}(1)g_{\rho}(2)}{4MM^{*}(2)}\frac{1}{m^{2}+\boldsymbol{q}^{2}}\left[-2i\boldsymbol{\sigma}_{1}\cdot(\boldsymbol{q}\times\boldsymbol{k}')-\frac{2}{3}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2})\boldsymbol{q}^{2}+\boldsymbol{S}_{12}\right]$ + $\vec{\tau}(1) \cdot \vec{\tau}(2) \frac{g_{\rho}(1)f_{\rho}(2)}{4MM^{*}(2)} \frac{1}{m^{2} + q^{2}} \left[-q^{2} - 2i\sigma_{2} \cdot (q \times k') \right]$ $+\vec{\tau}(1)\cdot\vec{\tau}(2)\frac{g_{\rho}(1)f_{\rho}(2)}{4MM^{*}(1)}\frac{1}{m^{2}+\boldsymbol{q}^{2}}\left[+2i\boldsymbol{\sigma}_{2}\cdot(\boldsymbol{q}\times\boldsymbol{k})-\frac{2}{3}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2})\boldsymbol{q}^{2}+\boldsymbol{S}_{12}\right].$

Formalism is in agreement with Bonn interaction: Machleidt, Adv. Nucl. Phys. 19, 189 (1989)

Operators for tensor force in RHF

"*t*" indicates the tensor force with operator S_{12}

> Tensor interactions in **Bonn** and **RHF**

Wang, HZL et al., in preparation

$\hat{\mathcal{V}}_{0,\phi}^t = \frac{1}{m_{\phi}^2 + q^2} \mathcal{F}_{0,\phi} S_{12}$				$\hat{\mathcal{V}}_{\phi}^{t} = \frac{1}{m_{\phi}^{2} + \boldsymbol{q}^{2}} \mathcal{F}_{\phi} S_{12}$		
Coupling	$\mathcal{F}_{0,\phi}$	Ratio to π -PV		Coupling	\mathcal{F}_{ϕ}	Ratio to π -PV
		Bonn A	PKA1	ω -V	$\frac{g_{\omega}(1)g_{\omega}(2)}{1-2}$	-0.74
ω -V	$rac{g_\omega g_\omega}{4M^2}$	-0.02	-0.02		$4M^{*}(1)M^{*}(2)$	
$\pi ext{-PV}$	$-\vec{\tau}\cdot\vec{\tau}\frac{f_{\pi}f_{\pi}}{m_{\pi}^2}$	1	1	π -PV	$-\vec{\tau}\cdot\vec{\tau}\frac{f_{\pi}(1)f_{\pi}(2)}{m_{\pi}^2}$	1
ho-V	$\vec{\tau} \cdot \vec{\tau} \frac{g_{\rho}g_{\rho}}{4M^2}$	-0.0009	-0.002	$ ho ext{-V}$	$\vec{\tau} \cdot \vec{\tau} \frac{g_{\rho}(1)g_{\rho}(2)}{4M^{*}(1)M^{*}(2)}$	-0.03
<i>ρ</i> -Τ	$ \vec{\tau} \cdot \vec{\tau} \frac{f_{ ho} f_{ ho}}{4M^2} $	-0.03	-0.02	$ ho ext{-}\mathrm{T}$	$\vec{\tau} \cdot \vec{\tau} \frac{f_{\rho}(1)f_{\rho}(2)}{4M^2}$	-0.25
$\rho ext{-VT}$	$ec{ au} \cdot ec{ au} rac{f_ ho g_ ho}{2M^2}$	-0.01	-0.01	$\rho ext{-VT}$	$\vec{\tau} \cdot \vec{\tau} \frac{f_{\rho}(1)g_{\rho}(2)}{4MM^{*}(2)} + (1 \leftrightarrow 2)$	-0.16
		Zer	density			Finite density

□ The **largest** tensor contribution comes from **pion**.

□ All other couplings have opposite and non-negligible contributions.

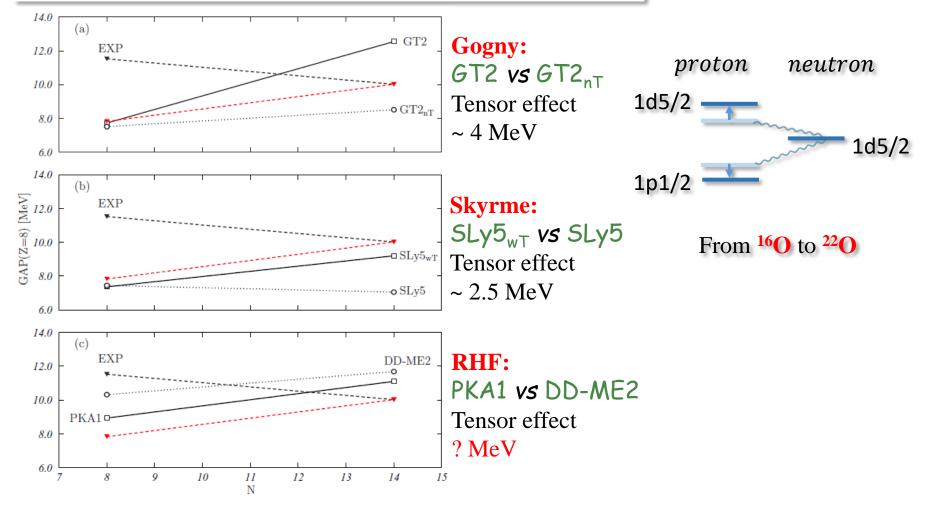
Tensor effects on shell evolution

PHYSICAL REVIEW C 81, 064327 (2010)

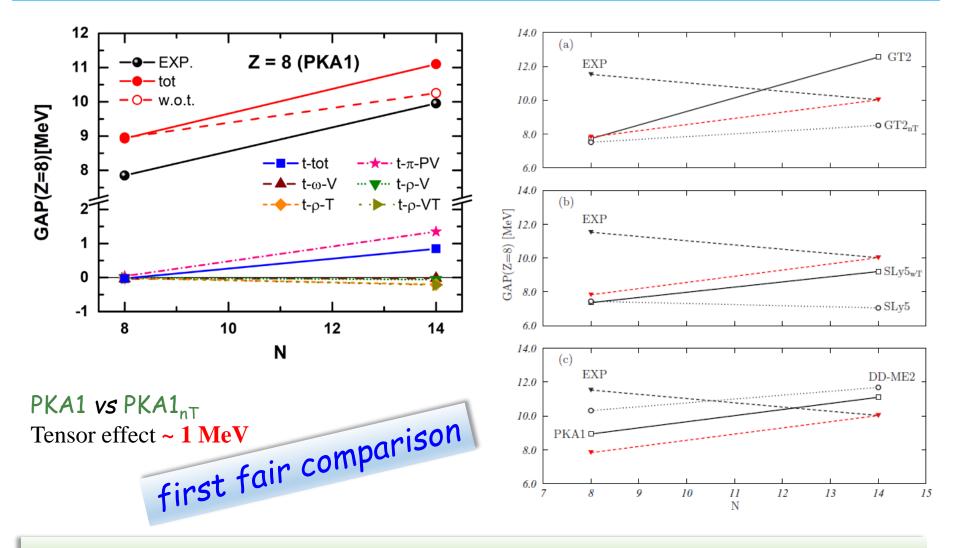
Tensor effects in shell evolution at Z, N = 8, 20, and 28 using nonrelativistic and relativistic mean-field theory

Skyrme vs Gogny vs RHF

M. Moreno-Torres,¹ M. Grasso,² H. Liang,^{2,3} V. De Donno,⁴ M. Anguiano,¹ and N. Van Giai²



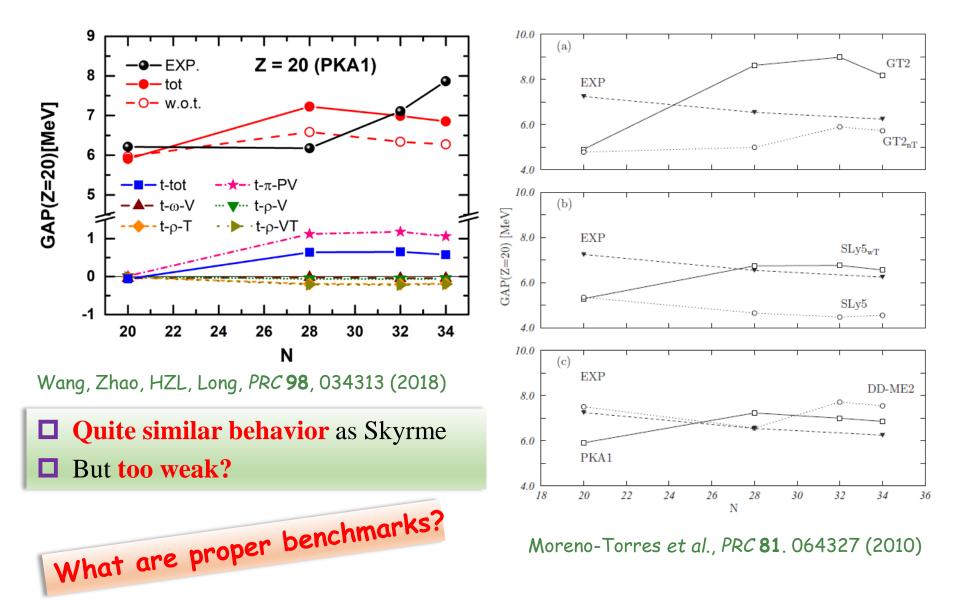
Tenser effects on gap Z=8



□ The **same behavior** of tensor force but **weaker** than Skyrme and Gogny

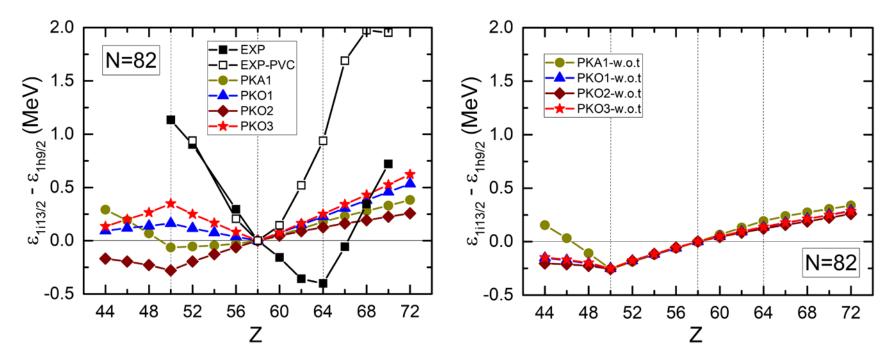
Wang, Zhao, HZL, Long, PRC 98, 034313 (2018)

Tenser effects on gap Z=20



Tenser effects on N=82 isotones

W/I & W/O tensor force in CDFT



EXP: Original data

EXP-PVC: subtracting PVC by RMF (as ref.) Afanasjev & Litvinova, PRC, 92, 044317 (2015) Strengths of tensor force: PKO3>PKO1>PKA1 >PKO2

Different strengths of tensor force \rightarrow Different results

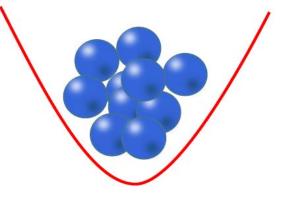
Neutron drops

Neutron drop is a multi-neutron system confined in an external field.

Why neutron drops?

- Simple, can be accessed by many *ab initio* methods
- > An ideal environment for studying neutron rich system

Pudliner et al., *PRL* **76**, 2416 (1996) Gandolfi, Carlson, Pieper, *PRL* **106**, 012501 (2011) Maris et al., *PRC* **87**, 054318 (2013) Potter et al., *PLB* **739**, 445 (2014) Zhao & Gandolfi, *PRC* **94**, 041302(R) (2016) Shen, Colò , Roca-Maza, arXiv:1810.09691



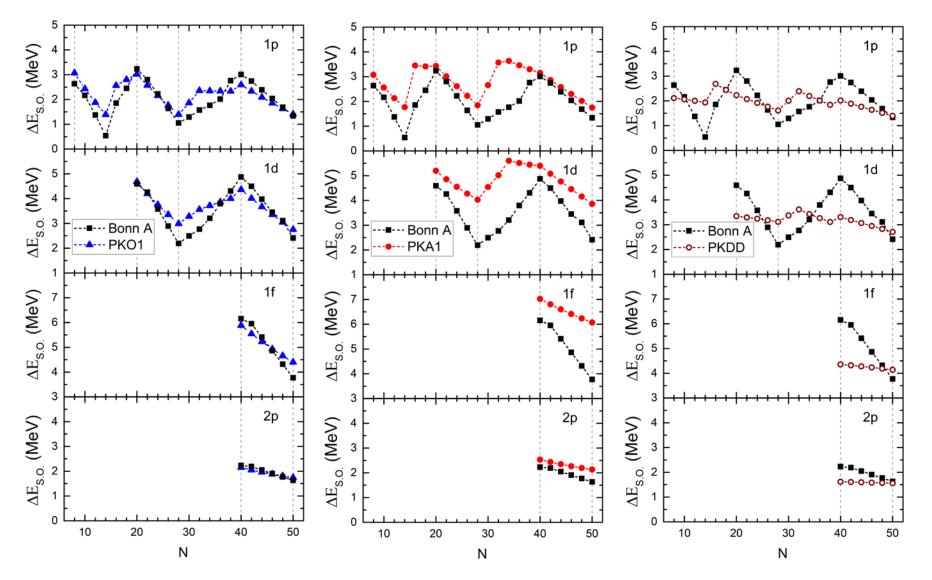
Relativistic Brueckner-Hartree-Fock (RBHF) theory for neutron drops

Neither RBHF nor CDFT
 includes beyond-mean-field
 effects

→ it is a fair comparison!

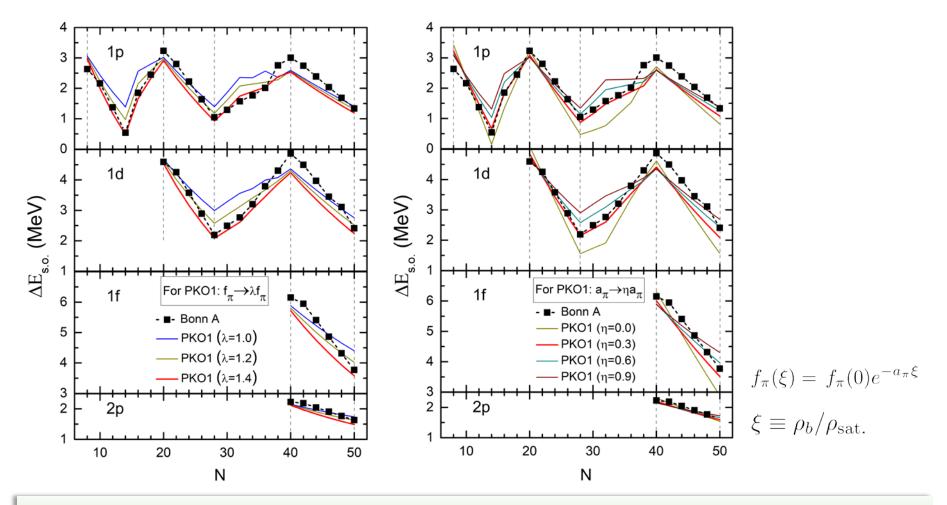
Shen, HZL, Hu, Meng, Ring, Zhang, CPL **33**, 102103 (2016) Shen, HZL, Meng, Ring, Zhang, PRC **96**, 014316 (2017) Shen, HZL, Meng, Ring, Zhang, PLB **778**, 344 (2018) Shen, HZL, Meng, Ring, Zhang, PRC **97**, 054312 (2018) Shen, HZL, Meng, Ring, Zhang, PLB **781**, 227 (2018)

Spin-orbit splitting in neutron drops



Shen, HZL, Meng, Ring, Zhang, PLB 778, 344 (2018)

Tensor effects on spin-orbit splitting



Increasing the strengths of tensor force: $f_{\pi} \rightarrow 1.4f_{\pi}$ or $a_{\pi} \rightarrow 0.3a_{\pi}$ Small $a_{\pi} \rightarrow$ "Tensor renormalization persistency"

cf. Tsunoda et al., PRC, 84, 044322 (2011)

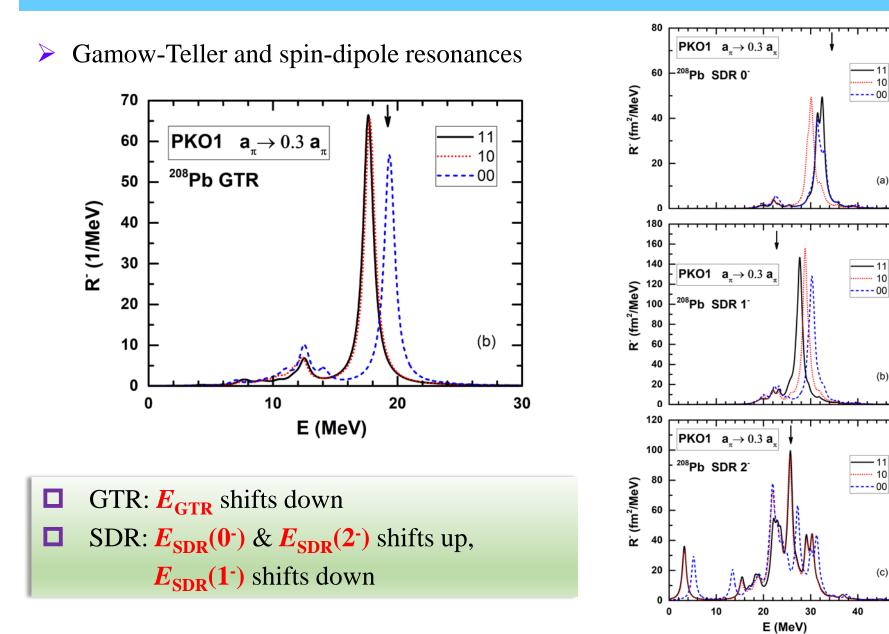
Tensor effects on spin-isospin resonances

(a)

(b)

(c)

50



Summary

- □ A first quantitative analysis of tensor effects in the relativistic Hartree-Fock theory
 - ✓ It allows **fair and direct comparisons** with Skyrme, Gogny, etc.
 - ✓ We have investigated the tensor effects on shell evolutions, spin-orbit splitting, spin-isospin resonances, etc.
 - \checkmark The strengths of tensor force in present EDFs seem too weak.
- **Remarkable tensor effects on spin-orbit splitting in neutron drops**
 - ✓ **Important guideline** for phenomenological EDF

Thank you!