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Questions

We have addressed the answers related to the following questions:

1 How to constraint the neutron-skin thickness of 208Pb nuclei, and canonical radius of the NS?
I PREX experiment has provided the neutron-skin thickness in 208Pb: ∆rnp = 0.33+0.16

−0.18 fm, which gives real
challenge to theory and experiment.

I Recently, Fattoyev et. al. constrained the upper limit of ∆rnp . 0.25 fm for the 208Pb nucleus, and canonical
radius of the NS of R1.4M� < 13.76 km with the help of GW170817 observation data [7].

2 How to constraint the emperical data of low-density of the pure neutron matter?

I Low-density data is important for neutron-rich nuclei as well as for the inner crust of the NS.

3 How to reproduce the dimensionless tidal deformability and maximum mass of the recent observation GW170817 ?

I GW170817 has been reported the Λ̃≤ 800 and maximum mass for nonrotating NS should be in the range
2.01±0.04 . M(M�). 2.16±0.03 [8].

[7] F. J. Fattoyev et al., Phys. Rev. Lett. 120, 172702 (2018).
[8] L. Rezzolla et al., ApJ Lett. 853, L25 (2018).
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Introduction

I In 1935 Yukawa proposed the meson theory of nuclear force
which gives a path to finite range interaction of the nuclear force.

I Range of interaction, r ∝
1

mi
with mi is the mass of the meson.

I π− long range attraction ( mπ = 140 MeV),→ gπ ψiγ5ψπps

I σ− (two-pion, s wave, mσ = 500−600 MeV), intermediate range
attraction ,→ gsψψσ

I ω− (3π− resonance state, p wave, mω = 783 MeV) short range
repulsion,→ gω ψγµ ψωµ

I ρ− (2π− resonance state p wave, mρ = 763 MeV) short range
repulsion→ gρ ψγµ~τψ. ~Rµ

I δ−meson (4π-resonance, mδ = 980MeV),→ gδ ψψδ

I NN-potential :

V(r) =−
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r
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Fig. : Typical NN-potential due to the exchange
of massive mesons
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Walecka-model (σ −ω)

The Lagrangian density of the model has the form [1]

L = ψ{iγµ
∂µ −M}ψ +

1
2

∂
µ

σ∂µ σ − 1
2

m2
σ σ

2−gsψψσ

+
1
2

m2
ω ω

µ
ωµ −gω ψγ

µ
ψωµ −

1
4

Ω
µν

Ωµν

I It contains the baryon field ψ of mass M, isoscalar scalar-meson field σ and an isoscalar vector-meson field ωµ ,
with the field tensor Ωµν = ∂µ ων −∂ν ωµ .

I Parameter sets: Cs = M(gs/ms) = 16.34, Cω = M(gω/mω ) = 13.99

I In this model meson do not interact among themselves. Hence, the incompressibility (K∞) of nuclear matter is
found to be 550 MeV which is rather high comparison to experimental estimates range 200-260 MeV.

I Note: Walecka model has been renormalizable. Unfortunately, these renormalizable model have encountered
difficulties due to large effects from loop integrals that incorporate the dynamics of the quantum vaccum. The
effective theory is an alternative.

I In order to lower the value of K∞ to acceptable range, the self-coupling terms in sigma meson are included by
Boguta and Bodmer[2].

[1] S. A. Chin and J. D. Walecka, Phys. Lett. B 52 (1974) 24.
[2] J. Boguta and A. R. Bodmer, Nucl. Phys. A 292 (1977) 413.
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Necessity of the non-linear coupling

Now, the Lagrangian density of the model has the form [2]

L = ψ{iγµ
∂µ −M}ψ +

1
2

∂
µ

σ∂µ σ − 1
2

m2
σ σ

2− 1
3

g2σ
3− 1

4
g3σ

4−gsψψσ

+
1
2

m2
wω

µ
ωµ −gω ψγ

µ
ψωµ −

1
4

Ω
µν

Ωµν

I Addition of self-interaction of σ meson, reduction of the high incompressibility (K∞) 550 MeV to ≈270 MeV of
infinite nuclear matter.

I In addition to this, the self coupling of the σ meson (nonlinear terms)helps to generate the repulsive part of the NN
potential at long range and reproduce finite nuclei properties remarkably [3].

I But it could not reproduce the equation of states upto satisfaction.

[3] F. Coester, S. Cohen, B. D. Day, and C. M. Vincent, Phys. Rev. C 1 (1970) 769.
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Continue. . .

The Lagrangian density of the model (σ −ω−ρ) has the form [4]

L = ψ{iγµ
∂µ −M}ψ +

1
2

∂
µ

σ∂µ σ − 1
2

m2
σ σ

2− 1
3

g2σ
3− 1

4
g3σ

4−gsψψσ

+
1
2

m2
wω

µ
ωµ −gω ψγ

µ
ψωµ −

1
4

Ω
µν

Ωµν+
ζ0

4!
g4

ω (ωµ ω
µ )2 +Λω (g2

ρ
~Rµ .~Rµ )(g2

ω ωµ ω
µ )

+
1
2

m2
ρ
~Rµ .~Rµ −gρ ψγ

µ~τψ. ~Rµ − 1
4
~Rµν .~Rµν − eψγ

µ (1− τ3)

2
ψAµ −

1
4

Fµν Fµν .

I The successful NL3[5] parameter set, it produces an equation of state stiffer and corresponding maximum neutron
star mass larger but this parameter set timely reproduced ground state properties of finite nuclei.

I The value of ζ0 may be used to efficiently tune the maximum neutron star mass.

I The cross-coupling of ρ−meson with ω allows one to vary the neutron-skin thickness in a heavy nucleus like 208Pb
over a wide range.
Note: (Rn−Rp)

Exp. = 0.33+0.16
−0.18 fm.

I The Λω is highly sensitive to the density dependence of symmetry energy-and in particular to its slope at saturation
density, which has important implications in structure and dynamics of neutron stars.

[4]Horst Mueller, Brian D. Serot, Nucl. Phys. A 606 (1996) 508.
[5] G. A. Lalazissis, J. Koning and P. Ring, Phys. Rev C 55 (1997) 540.
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Examples. . .
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FSUGold Series

I After getting a idea from Muller et. al. paper, Florida group developed series of FSUGold parameter sets including
terms like isoscalar and isovector parameters, i.e, ζ0 and Λω , respectively.

I First parameter FSUGold and published in PRL 95 (2005)122501.
K = 230 MeV, Rn−Rp = 0.21 fm, M =1.72M� and a radius of M1.4 is 12.66 km.

I Other parameter sets like FSUGold2 and FSU2R etc., but these parameter sets are fails to reproduce the
sub-saturation density of the finite nuclei.

I Now, the question is that whether we include more parameter or not?

I Our answer is that yes, if additional parameters are taken into consideration it would be relevant from physics point
of view. At subsatuartion densities, the δ−meson softens the symmetry energy. At higher density, δ−meson may
affect the maximum mass of the neutron star. Similarly, we can expect that the addition of this coupling into the
Lagrangian, may improve the quality of flow data and so on.
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Our model

The Lagrangian density for nucleon-meson many body system can be written as [9]:

L = ∑
α

ϕ
†
α (r)

{
− iα ·∇+β [M−Φ(r)− τ3D(r)]+W(r)+

1
2

τ3R(r)+
1+ τ3

2
A(r)

− iβα

2M
·
(

fω ∇W(r)+
1
2

fρ τ3∇R(r)+λ∇A
)
+

1
2M2 (βσ +βω τ3)∆A

}
ϕα (r)

+

(
1
2
+

κ3

3!
Φ(r)

M
+

κ4

4!
Φ2(r)

M2

)
m2

s

g2
s

Φ
2(r)− ζ0

4!
1

g2
ω

W4(r)+
1

2g2
s

(
1+α1

Φ(r)
M

)
(∇Φ(r))2

− 1
2g2

ω

(
1+α2

Φ(r)
M

)
(∇W(r))2− 1

2

(
1+η1

Φ(r)
M

+
η2

2
Φ2(r)

M2

)
m2

ω

g2
ω

W2(r)

− 1
2e2 (∇A(r))2− 1

2g2
ρ

(∇R(r))2− 1
2

(
1+ηρ

Φ(r)
M

)
m2

ρ

g2
ρ

R2(r)

−Λω

(
R2(r)W2(r)

)
+

1
2g2

δ

(∇D(r))2 +
1
2

mδ
2

g2
δ

(
D2(r)

)
− 1

2e2 (∇A)2 +
1

3gγ gω

A∆W +
1

gγ gρ

A∆R.

∂L

∂ψ
−∂µ

(
∂L

∂ (∂µ ψ)

)
= 0 [9] Shailesh K. Singh et. al., Phys. Rev. C 89 (2014) 044001.
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Equation of motion.....

I The Dirac equation for the Lagrangian density eqn. (1) becomes{
− iα ·∇+β [M−Φ(r)− τ3D(r)]+W(r)+

1
2

τ3R(r)+
1+ τ3

2
A(r)+

1
2M2 (βσ +βω τ3)∆A

− iβα

2M
·
[

fω ∇W(r)+
1
2

fρ τ3∇R(r)+λ∇A
]}

ϕα (r) = εα ϕα (r) .

I The mean field equations for Φ, W, R, D and A are given by

−∆Φ(r)+m2
s Φ(r) = g2

s ρs(r)−
m2

s

M
Φ

2(r)
(

κ3

2
+

κ4

3!
Φ(r)

M

)
+

g2
s

2M

(
η1 +η2

Φ(r)
M

)
m2

ω

g2
ω

W2(r)

+
ηρ

2M
g2

s

gρ
2 m2

ρ R2(r)+
α1

2M
[(∇Φ(r))2 +2Φ(r)∆Φ(r)]+

α2

2M
g2

s

g2
ω

(∇W(r))2 ,

−∆W(r)+m2
ω W(r) = g2

ω

(
ρ(r)+

fv
2

ρT(r)
)
−
(

η1 +
η2

2
Φ(r)

M

)
Φ(r)

M
m2

ω W(r)− 1
3!

ζ0W3(r)

+
α2

M
[∇Φ(r) ·∇W(r)+Φ(r)∆W(r)]−2 Λvgω

2R2(r)W(r) ,

−∆R(r)+m2
ρ R(r) =

1
2

g2
ρ

(
ρ3(r)+

1
2

fρ ρT,3(r)
)
−ηρ

Φ(r)
M

m2
ρ R(r)−2 Λvgρ

2R(r)W2(r) ,

−∆A(r) = e2
ρp(r) ,−∆D(r)+mδ

2D(r) = g2
δ

ρs3 ,
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Continue.....

I The scalar and vector potential is

S(r) =−gsΦ0(r)−gδ D0(r)

V(r) = gω W0(r)+
1
2

gρ τ3R0(r)+ e
(1− τ3)

2
A0(r)

I The set of coupled differential equations are solved self-consistently to describe
the ground state properties of finite nuclei.

I The total binding energy is obtained by summing the individual contribution,
which is given by:

Etotal = Epart +Eσ +Eω +Eρ +Eρω +Eδ +Ec +Epair +Ec.m.

Where Epart is the sum of the single particle energies of the nucleons.
Eσ , Eω , Eρ , Eδ , Ec are the contribution of the respective mesons and Coulomb fields.
The correction to the binding energy Ecm = 17.2

A1/5 MeV and corresponding to the mean-
square charge radius: 〈r2

c〉=− 3
4

1
(2MAEc.m.)

fm2
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Simulating Annealing Method(SAM)

What is simulated annealing?
Annealing is a process in which metal or liquid is heated to a specific temperature and
then allowed to cool slowly to achieve minimum energy configuration of the system.

Unique Features:
1 Highly adaptive
2 Suitable for problems of large scale
3 Search desired global minimum hidden among local minima

I We have used the SAM[10] to determine the values of the new ERMF parameter
set by searching for the global minimum in the hypersurface of the χ2 function,
given as

χ
2 =

1
Nd−Np

Nd

∑
i=1

(Oexp
i −Oth

i
σi

)2

I Here, Nd and Np are the number of experimental data points and the number of
fitted parameters, respectively. σi is the theoretical error, and Oexp

i and Oth
i are

the experimental and theoretical values, respectively.
[10] B. K. Agrawal et. al., Phys. Rev. C 72 (2005) 014310.
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Strategy of fitting parameter set

For convenience, we define a vector v with the components as
v≡ (E0,K∞,ρ0,M ∗/M,J,gδ ,η1,η2,ηρ ,Λω ,α1,α2,βσ ,βω ,ζ0, fρ , fω ,mσ )

We implemented the SAM algorithm by using the following basic steps,

1 We start with a guess value for the vector v and calculate χ2 (say,
χ2

old) using Eq.(1) for a given set of the experimental data and
corresponding ERMF results together with the theoretical errors.

2 We generate randomly a new set of ERMF parameters by using
following steps.
First, we use a uniform random number to select a component vr of
the vector v.
Second, the randomly selected component vr is then assigned a new
value,

vr → vr +ηdr where η is a uniform random number that lies
within the range of -1 to +1.

The second step is repeated until the new value of vr is found within
its allowed limit defined by v0 and v1.

3 The newly generated set of the ERMF parameters is accepted by use
of the SAM algorithm as follows.

We calculate the quantity P(χ2) = e(χ
2
old−χ2

new)/T

The new set of parameter ERMF parameters is accepted only if
P(χ2)> β , 0 < β < 1.

In present work we have employed the Cauchy
annealing schedule given by T(k) = Ti/(k+1)
where, k=1,2,3....is the time index.

Parameter v v0 v1 d
E0 -16.02 -16.30 -15.70 0.025
K∞ 230.0 210.0 245.0 1.0
ρ0 0.148 0.140 0.165 0.001

M∗/M 0.525 0.5 0.9 0.002
J 32.1 28.0 35.0 0.08

g
δ

2.0 0.0 15.0 0.2
η1 0.410 0.4 0.8 0.002
η2 0.10 0.09 0.12 0.002
ηρ 0.590 0.1 0.7 0.003
Λω 0.03 0.02 0.09 0.002
α1 1.73 1.0 2.0 0.005
α2 -1.51 -1.65 -1.40 0.005
βσ -0.083 -0.09 -0.08 0.00001
βω -0.55 -0.6 -0.4 0.001
ζ0 1.01 1.01 1.01 0.0

fρ /4 3.0 0.0 6.0 0.03
fω /4 0.4 0.0 1.0 0.005
ms 510.0 480.0 570.0 0.450

Table: The vector v0 and v1 contain the lower
and upper limits of each of the components of
the vector v. The vector d represents the
maximum displacement allowed in a single step
for the components of the vector v.
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Results and discussions

Table 1: The obtained new parameter set G3 along with
NL3, FSUGarnet and IOPB-I sets are listed.

NL3 FSUGarnet G3 IOPB-I
ms/M 0.541 0.529 0.559 0.533
mω /M 0.833 0.833 0.832 0.833
mρ /M 0.812 0.812 0.820 0.812
m

δ
/M 0.0 0.0 1.043 0.0

gs/4π 0.813 0.837 0.782 0.827
gω /4π 1.024 1.091 0.923 1.062
gρ /4π 0.712 1.105 0.962 0.885
g

δ
/4π 0.0 0.0 0.160 0.0

k3 1.465 1.368 2.606 1.496
k4 -5.688 -1.397 1.694 -2.932
ζ0 0.0 4.410 1.010 3.103
η1 0.0 0.0 0.424 0.0
η2 0.0 0.0 0.114 0.0
ηρ 0.0 0.0 0.645 0.0
Λω 0.0 0.043 0.038 0.024
α1 0.0 0.0 2.000 0.0
α2 0.0 0.0 -1.468 0.0

fω /4 0.0 0.0 0.220 0.0
fρ /4 0.0 0.0 1.239 0.0
βσ 0.0 0.0 -0.087 0.0
βω 0.0 0.0 -0.484 0.0

Nuclear matter properties
ρ0 0.148 0.153 0.148 0.149
E0 -16.29 -16.23 -16.02 -16.10
K∞ 271.5 229.5 243.9 222.6

M∗/M 0.595 0.578 0.699 0.593
J 37.40 30.95 31.8 33.30
L 118.6 51.04 49.31 63.58

Table 2: Bulk properties of finite nuclei.
Nucleus Obs. Expt. NL3 FSUGarnet G3 IOPB-I

16O B/A 7.976 7.917 7.876 8.037 7.977
Rc 2.699 2.714 2.690 2.707 2.705

Rn-Rp - -0.026 -0.028 -0.028 -0.027

40Ca B/A 8.551 8.540 8.528 8.561 8.577
Rc 3.478 3.466 3.438 3.459 3.458

Rn-Rp - -0.046 -0.051 -0.049 -0.049

48Ca B/A 8.666 8.636 8.609 8.671 8.638
Rc 3.477 3.443 3.426 3.466 3.446

Rn-Rp - 0.229 0.169 0.174 0.202

68Ni B/A 8.682 8.698 8.692 8.690 8.707
Rc - 3.870 3.861 3.892 3.873

Rn-Rp - 0.262 0.184 0.190 0.223

90Zr B/A 8.709 8.695 8.693 8.699 8.691
Rc 4.269 4.253 4.231 4.276 4.253

Rn-Rp - 0.115 0.065 0.068 0.091

100Sn B/A 8.258 8.301 8.298 8.266 8.284
Rc - 4.469 4.426 4.497 4.464

Rn-Rp - -0.073 -0.078 -0.079 -0.077

132Sn B/A 8.355 8.371 8.372 8.359 8.352
Rc 4.709 4.697 4.687 4.732 4.706

Rn-Rp - 0.349 0.224 0.243 0.287

208Pb B/A 7.867 7.885 7.902 7.863 7.870
Rc 5.501 5.509 5.496 5.541 5.521

Rn-Rp - 0.283 0.162 0.180 0.221
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Binding energy & Neutron-skin thickness

I The rms deviation are 2.977, 3.062, 3.696, 3.827 and 2.308 for NL3, FSUGold2, FSUGarnet, G2 and G3
respectively.

I The rms deviation on the binding energies for G3 parameter set is smaller in comparison to the other parameter set .
I The neutron-skin thickness is defined as [11]: ∆rnp = Rn−Rp

[11] A. Trzcińska et. al., Phys. Rev. Lett. 87 (2001) 082501.
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Infinite nuclear matter
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Energy and pressure density. . .

I By forming the energy-momentum tensor in the mean field approximation, one
can calculated energy density and pressure of the system as a function of density.

I Energy density:

E =
2

(2π)3

∫
d3kE∗i (k)+ρW +

m2
s Φ2

g2
s

(
1
2
+

κ3

3!
Φ

M
+

κ4

4!
Φ2

M2

)
− 1

2
m2

ω

W2

g2
ω

(
1+η1

Φ

M
+

η2

2
Φ2

M2

)

− 1
4!

ζ0W4

g2
ω

+
1
2

ρ3R− 1
2

(
1+

ηρ Φ

M

)
m2

ρ

g2
ρ

R2−Λω

(
R2W2)+ 1

2
m2

δ

g2
δ

(
D2) ,

I Pressure density:

P =
2

3(2π)3

∫
d3k

k2

E∗i (k)
− m2

s Φ2

g2
s

(
1
2
+

κ3

3!
Φ

M
+

κ4

4!
Φ2

M2

)
+

1
2

m2
ω

W2

g2
ω

(
1+η1

Φ

M
+

η2

2
Φ2

M2

)

+
1
4!

ζ0W4

g2
ω

+
1
2

(
1+

ηρ Φ

M

)
m2

ρ

g2
ρ

R2 +Λω

(
R2W2)− 1

2
m2

δ

g2
δ

(
D2) ,

Note: The solution of the mean field equations is simplified significantly in the case
of infinite nuclear matter, which we assume to be spatially uniform. For this uniform
case, the meson fields are uniform (i.e constant throughout space) and the nucleon
orbitals are plane-wave Dirac spinors with medium-modified effective mass and
energies.
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Symmetry Energy . . .

I The binding energy per nucleon can be written in the

form of asymmtery parameter α(= (ρn−ρp)
(ρn+ρp)

).

e(ρ,α) =
E

ρB
−M = e(ρ)

∣∣∣∣
ρ=ρ0

+α
2S(ρ)+O(α4)

I The strong force which is binding in nuclei is
symmetric under the exchange neutron to proton (or
proton-to-neutron).

I The density dependent symmetry energy of the
system:

S(ρ) =
1
2

[
∂ 2e(ρ,α)

∂α2

]
α=0

S(ρ) =
k2

F

6E∗F
+

g2
ρ ρ

8m∗2ρ

− 1
2

ρ
g2

δ

m2
δ

(
M∗

EF

)2

I To do so, we perform a Taylor series expansion
around nuclear-matter saturation density ρ0 .

e(ρ) = ε0 +
1
2

Kx2 + . . . ,

I The symmetry energy determines how the energies of
nuclei and nuclear matter depend on the difference
between neutron and proton densities.

I The proton fraction in NS matter is controlled by the
density dependence of the symmetry energy.
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Low and high density matter for SNM & PNM

I NL3 model provides too much large pressure on SNM comparison to other EoSs.
I The non-linear terms in the Lagrangian can reduce the pressure in such models so as to be consistent with the

present experimental constraints.
I The pressure in the actual NS environment is somewhat smaller than that for pure neutron matter, reflecting the

small fraction of nucleons that are protons.
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Neutron Star
Binary neutron star merger

Credit: LIGO team
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Introduction

I Two neutron stars (NS) revolve about a common centre of mass. While rotating, they emit gravitational waves. In
this process, the orbits lose energy and get close and closer, which is called inspiralling.

I When they approach, they come under the influence of each other and get distorted. The after effect is that tides are
raised exactly the same way as tides are created on Earth due to Moon.

I The newly formed tides pick the energy out of the orbit resulting in the speedy motion of the inspiral. This can be
detected and measured in the form of gravitational waves.

I Larger are the size of the neutron stars, bigger are the tides formed.
I From the equation of state (EoS) we can determine the size of NS alongwith its tidal deformation.
I In the experimental front, from the measurements of the NS masses and the extent of tidal deformation their size

and EoS can be calculated.

Figure: Compact stars; Credit: P. Landry
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Tidal Love numbers

I In 1911, the mathematician A. E. H. Love introduced the dimensionless parameter in Newtonian theory. It is
related to the tidal deformation of the Earth which is because of the gravitational attraction between the Moon and
the Sun.

I In Newtonian gravity, the tidal Love number is a constant of proportionality between the tidal field applied to the
body and the resulting multipole moment of its mass distribution.

I In case of quadrupole, the tidal field is characterized by tidal moment

Eij =−∂uext =−∂ij

(MB

rAB

)
in which the external potential is generated by the rest of the universe.

I In the presence of a tidal field, the quadrupole moment is proportional to the tidal field

Qij =−
2
3

k2R5Eij =−λEij

where, k2 and λ are the dimensionless tidal Love number, and the tidal deformability of the star which depend on the EoS.
R is the radius of the star.

I In the absence of a tidal field the body would be spherical, and its quadrupole moment would vanish.
I In general relativity, two types of Love numbers: an electric type of Love number kel that has direct analogy with

the Newtonian Love number (the gravitational fields generated by masses), and a magnetic-type Love number kmag
(gravitational field generated by motion of masses) that has no analogue in Newtonian gravity [6].

[6] T. Binnington and E. Poisson, Phys. Rev. D 80, 084018 (2009).
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Continue. . .

EoS

TOV equation
dP(r)

dr
=− [E (r)+P(r)][M(r)+4πr3P(r)]

r2(1− 2M(r)
r )

,

dM(r)
dr

= 4πr2E (r).

I For a given EoS, the TOV equation must be integrated from the
boundary conditions P(0) = Pc and M(0) = 0, P(R) = 0 and
M(R) = M.

Bharat Kumar Tsukuba-CCS workshop December 12, 2018 23 / 30



TOV+hµν

I To estimate the Love numbers k2, alongwith the evolution of TOV equation, we have to compute y = y2(R) with
initial boundary condition y(0) = 2 from the following differential equation iteratively:

r
dy(r)

dr
+ y(r)2 + y(r)F(r)+ r2Q(r) = 0,

F(r) =
r−4πr3[E (r)−P(r)]

r−2M(r)
, Q(r) =

4πr(5E (r)+9P(r)+ E (r)+P(r)
∂P(r)/∂E (r) −

6
4πr2 )

r−2M(r)
−4
[M(r)+4πr3P(r)

r2(1−2M(r)/r)

]2
.

Quadrupole Love number

k2 =
8
5
(1−2C)2C5[2C(y2−1)− y2 +2]

{
2C(4(y2 +1)C4 +(6y2−4)C3+

(26−22y2)C2 +3(5y2−8)C−3y2 +6)−3(1−2C)2(2C(y2−1)− y2 +2)log
( 1

1−2C

)}−1
,

Tidal deformability

λ2 =
2
3

k2R5
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Mass-radius and tidal deformability

I G3: Mmax = 2.0M�, R = 10.902 km
I IOPB-I: Mmax = 2.15M�, R = 11.936 km
I GW170817: 2.01±0.04 . M(M�). 2.16±0.03 [12]

[12] L. Rezzolla et al., ApJ Lett. 853, L25 (2018).
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Continue. . .

GW170817 results Our results
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I The LIGO/VIRGO limit on the tidal deformabilities favour soft EoSs, the 2M� constraints requires the EoS to be
stiff, thus setting a very restrictive bound for the quantity.

I The gravitational waveform depends on the weighted tidal deformability:

Λ̃ = 16
13

(
(M1+12M2)M

4
1

(M1+M2)
5 Λ1 +

(M2+12M1)M
4
2

(M1+M2)
5 Λ2

)

Bharat Kumar Tsukuba-CCS workshop December 12, 2018 26 / 30



“Remember that all models are wrong;
the practical question is how wrong do
they have to be to not be useful.”—–Box
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Conclusions

1 We have given two new parameter sets G3, and IOPB-I model.
2 The neutron-skin thickness for G3 and IOPB-I sets calculated for nuclei over a

wide range of masses are in harmony with the available experimental data.
3 The neutron matter EoS at sub-saturation densities for G3/IOPB-I parameter set

show reasonable improvement over the parameter considered.
4 The nuclear matter incompressibility coefficient and/or symmetry energy

coefficient associated with earlier parametrizations of such ERMF model were
little too large which has been taken care in our new parameter set G3/IOPB-I.

5 The maximum mass and tidal deformabilities for the neutron star of G3 and
IOPB-I sets are compatible with the recent observation GW170817.

6 Our tidal deformability results will be useful for current as well as future
observations.
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