



# Towards more accurate and reliable predictions for nuclear applications

S. Goriely Institut d'Astronomie et d'Astrophysique - Brussels University

Collaborators: S. Hilaire, N. Dubray, J.-F. Lemaître, S. Péru, K. Sieja, A. Bauswein, T. Janka, O. Just

# The r-process nucleosynthesis responsible for half the elements heavier than iron in the Universe

one of the still unsolved puzzles in nuclear astrophysics ... the r-process site remains to be confirmed ...



## Nuclear physics input for r-process applications

 $(n,\gamma) - (\gamma,n) - \beta$  competition & Fission recycling

(γ,**n**)

 $(n,\gamma)$ 

Main needs

- β-decay
- $(n,\gamma)$  and  $(\gamma,n)$  rates
- Fission (nif, sf,  $\beta$ df) rates
- Fission Fragments Distributions



Nucleosynthesis requires RATES for some 5000 nuclei !
 (and not only masses or β-decay along the oversimplified so-called "r-process path")
 simulations rely almost entirely on theoretical predictions
 In turn, theoretical models are tuned on available experimental data
 Ongoing progress on both theoretical and experimental sides

#### **Nuclear inputs to nuclear reaction & decay calculations**



#### **Nuclear inputs to nuclear reaction & decay calculations**



#### **Nuclear inputs to nuclear reaction & decay calculations**



"Microscopic" approach is a necessary but not a sufficient condition ! "(Semi-)Microscopic" models must be competitive in reproducing exp. data !



#### Impact of the various ingredients on the radiative neutron capture ( $E_n \sim 100 \text{keV}$ )

### **Mean Field mass models**

$$E = E_{MF} - E_{coll} - E_W - E_{b\infty}$$

 $E_{MF}$ : HFB or HF-BCS (or HB) main Mean-Field contribution

 $E_{coll}$ : Quadrupole Correlation corrections to restore broken symmetries and include configuration mixing

 $E_W$ : Wigner correction contributes significantly only for nuclei along the  $Z \sim N$  line (and in some cases for light nuclei)

 $E_{b\infty}$ : Correction for infinite basis



#### Nuclear masses and their impact on the r-abundance distribution

Nuclear masses driving the  $(n,\gamma) \leftrightarrow (\gamma,n)$  competition

SLy4 :  $\sigma_{rms}$ =5.1MeV on 570 e-e nuclei



Stoitsov et al. 2003

#### Nuclear masses and their impact on the r-abundance distribution

Nuclear masses driving the  $(n,\gamma) \leftrightarrow (\gamma,n)$  competition

HFB-21 :  $\sigma_{rms}$ =0.59MeV on 2408 nuclei



Good mass fit (rms <0.8MeV) is a necessary condition, but not a sufficient one

Nuclear masses and their impact on the r-abundance distribution

Nuclear masses driving the  $(n,\gamma) \leftrightarrow (\gamma,n)$  competition 2 HFB mass models: HFB-27: Standard Skyrme  $\sigma_{\rm rms}=0.50 {\rm MeV}$ HFB-31: Generalized Skyrme  $\sigma_{rms}=0.56$ MeV Wind ejecta Dynamical ejecta 10<sup>0</sup>  $10^{0}$ Solar Solar 10<sup>-1</sup> 10<sup>-1</sup> Mass fraction HFB-2 HFB-31 10<sup>-2</sup>  $10^{-2}$ 10<sup>-3</sup> 10<sup>-3</sup> HFB-3 HFB-2 10<sup>-4</sup>  $10^{-4}$ 10<sup>-5</sup> 10<sup>-5</sup> 220 80 180 200 240 80 180 200 220 100 120 140 160 100 120 140 160 240 Α A

 $\rightarrow$  Need further "microscopic" calculations beyond mean-field

#### Hauser-Feshbach model for radiative neutron capture reactions



GS

*Nuclear astrophysics apps* require NLDs & GSF for ~ 8000 nuclei

## **Mean Field + QRPA** γ**-**ray strength function

*Large-scale E*1 Mean-Field + QRPA calculations

Skyrme-HFB + QRPA

Gogny-HFB + QRPA

RMF +QRPA

QRPA calculations can accurately reproduce experimental data, provided *empirical corrections* are made, *i.e.* 

- Empirical Energy shift (beyond 1p-1h excitations and phonon couplings)
- Empirical damping of collective motions  $\rightarrow$  broadening
- Empirical deformation effects for *spherical calculations*

Recent large-scale axially-deformed Gogny-HFB + QRPA calculations with D1M interaction for ~2000 e-e nuclei with  $8 \le Z \le 110$ (interpolation for odd-A & odd-odd nuclei)

#### **Gogny-HFB + QRPA** *E***1** and *M***1** strength functions

QRPA calculations of the *E*1 & *M*1 strengths *empirically renormalized* on exp. data





Photo data

# Presence and impact of a possible low-energy *M*1 upbend of the de-excitation strength function

Violation of the Brink hypothesis

$$\vec{f}_{E1}(\varepsilon_{\gamma}) \neq \vec{f}_{E1}(\varepsilon_{\gamma})$$

$$\vec{f}_{E1} = \vec{f}_{E1}(\varepsilon_{\gamma}, T_{f})$$



#### SM-inspired low-energy correction of the de-excitation strength

 $f_{E1} = f_{E1}^{QRPA} + f_{E1}(\varepsilon_{\gamma} \to 0) \quad \text{Non-zero limit of the } E1 \text{ strength at } \varepsilon_{\gamma} \to 0$  $f_{M1} = f_{M1}^{QRPA} + f_{M1}(\varepsilon_{\gamma} \to 0) \quad \text{Upbend of the } M1 \text{ strength at } \varepsilon_{\gamma} \to 0$ 



See also Litvinova talk (this workshop)

#### The long-standing problem of the average radiative width $\langle \Gamma_{\gamma} \rangle$

$$\langle \Gamma_{\gamma} \rangle = \frac{D_0}{2\pi} \sum_{X,L,J,\pi} \int_0^{S_n + E_n} T_{XL}(\varepsilon_{\gamma}) \times \rho(S_n + E_n - \varepsilon_{\gamma}, J, \pi) d\varepsilon_{\gamma}$$





Theoretical error bars correspond to different NLD prescriptions

Impact of the new E1/M1 strength on the radiative n-capture rate of astrophysical interest Impact of the new E1/M1 strength on the r-process nucleosynthesis in the NSM disk ejecta



Increase of  $\langle \sigma \rangle$  due to low-energy

- *E*1 QRPA low-E strength
- M1 scissors & upbend

Increase production of

- Lanthanides & 3<sup>rd</sup> peak
- Actinides & chronometers

#### **Calculation of the Gogny-HFB fission paths**

Potential energy surface determined with D1M interaction from

$$E(\beta_2, \beta_3) = E_{HFB} + \Delta E_{Quad} + \Delta E_{triax} + \Delta E_{ZPE}$$
 (N. Dubray 2016)



Comparison of the *primary* barrier with empirical barriers (RIPL-3)



#### **Comparison for 424 fission barriers of e-e 90≤Z≤110 nuclei**



#### $\beta$ -decay rates

Calculation of the GT  $\beta$ -strength function within the axially deformed HFB+QRPA approach with D1M Gogny force (Martini, Peru, SG 2014)



Inclusion of odd nuclei under progress

## **Conclusions: still many open questions**

- 1. How reliable are the present  $\beta$ -decay models (def, FF, odd-A,...)?
- 2. How reliable are the present mass models ?
- 3. How well can we describe fission processes and FFD distributions ?
- 4. How reliable are NLD and PSF models for n-rich nuclei?
- 5. What is the neutron absorption by n-rich nuclei (OMP)?
- 6. What is the direct capture (and PE) contribution to the n-capture rates for exotic n-rich nuclei ?
- 7. What is the impact of the Resolved Resonance Region of n-rich nuclei on n-capture rates ?
- 8. How can we properly treat nuclear **UNCERTAINTIES** in *r*-process simulations ?

... Still a lot of nuclear physics questions to answer to ...



