Nuclear Physics Uncertainties in Core-Collapse Supernovae Shun Furusawa (RIKEN, ITHEMS)

We have to improve nuclear excitations (level densities) and electron captures (strength distributions) for nuclei with (N,Z)≈(50,30) (SF PRC 98.065802('18), SF+ PRC 95.025809 ('17b)).

H. Togashi (RIKEN), J. Holt (TEXAS A&M), I. Mishustin (FIAS),

H. Nagakura (Princeton), K. Sumiyoshi (Numazu),

S. Yamada (Waseda), H. Suzuki, K. Saito (Tokyo U. of Sci.)

Core-Collapse Supernovae

Energetic evets 10⁵¹ erg (ejecta), 10⁵³ erg (neutrino)
Emissions of neutrinos and gravitational Waves
Formations of a neutron star or a black hole
Nucleosynthesis site of heavy elements
Extreme test for nuclear physics

SN 1987A

Supernova matter in Core-Collapse Supernovae

Supernova Simulations

Hydrodynamics of matter in 3D space
 Neutrino transport in 3D space × 3D momentum space

2D (axisymmetric) simulation (Nagakura+) at Supercomputer K based on Togashi-Furusawa EOS (SF+17d)

Inputs of Supernova Simulations

(1) Equation of State ⇒ Stiffness, Nuclear compositions(Which nuclei appear) (2) Weak interaction rates ⇒ Neutrino emissions, absorptions, and scattering Ex. $(N, Z) + e^- \leftrightarrow (N + 1, Z - 1) + \nu_e$

Motions of neutrinos and matter around Proto-Neutron Star (Nagakura+) Togashi-Furusawa EOS (SF+17d)

(ρ, T, Ye) in Core-Collapse Supernova Simulations

Nuclear Statistical Equilibrium (NSE, 核統計平衡)

- $\tau_{\rm nuclear\ reaction}$ (strong and ele.mag.) $\ll \tau_{\rm dynamics}$
- All nuclear components in chemical equilibrium @T>~0.4 MeV

$$(A,Z) \leftrightarrow (A-1,Z)+n$$

 $(A,Z) \leftrightarrow (A-1,Z-1)+p$

• Free energy minimization $\Rightarrow \mu_{AZ} = Z \mu_p + (A - Z) \mu_n$

Ex1) Central mass fraction of stellar core collapse

 Dense electrons reduce nuclear Coulomb energy.
 → large mass nuclei

• $\mu_n > \mu_p$

→ **neutron-rich nuclei** •Nuclei are excited.

Nuclear Statistical Equilibrium (NSE, 核統計平衡)

- $\tau_{\text{nuclear reaction}} \ll \tau_{\text{dynamics}}$
- All nuclear components in chemical equilibrium @T>~0.4 MeV
- Free energy minimization \Rightarrow NSE $\mu_{AZ} = Z \mu_p + (A Z) \mu_n$

A=2 (d) 0.1 Light cluster physics raction (deuteron weak rates, pairing at high T & ρ ...) 0.01 should be improved. (SF+13b) SB 0.001 Σ

Ex2) Mass fraction of shocked matter

Current EOS tables as functions of (ρ , T, Ye) Soft R1.4<12.5 km, R1.4=12.5-13.5 km, R1.4>13.5 km stiff • Single Nucleus Approximation EOS : n, p, α , <A> Compressible LDM (LS)- Skyrme 180, 220, 375 (Latimer+'91) Thomas-Fermi (STOS) – RMF TM1e (in prep.), TM1(H. Shen+'98), - Variational method with AV18 & UIX (Togashi+'17) • Nuclear Statistical Equilibrium EOS : n, p & all nuclei HS - **SFHo**, **DD2**, **TM1**, ... (Hempel+'11, Steiner+'13) ()FYSS – AV18 & UIX (SF, Togashi+'17), TM1 (SF+'13,'17), **Different Inputs** - **xEFT**, DBHF with Bonn A, TM1e (SF+ in prep.) for NSE EOS RG – SLy4 (Raduta & Gulminelli'18) **(1)**bulk matter, (2) masses, and <u>• Hybrid EOS : NSE @low ρ & SNA @high ρ </u> **3**excitations SHO - FSU, FSU2.1, NL3 (G.Shen et al. '11) SRO - SLy4, KDEOv1, NRAPR, LS220 (Schneider et al. '17)

Systematical study of nuclear physics inputs for NSE EOS (SF, PRC '18b)

free energy density

Individual number density

$$f = f_{n,p} + \sum_{AZ} n_{AZ} (E_{AZ}^{kin} + M_{AZ})$$
$$n_{AZ} = \kappa g_{AZ} \left(\frac{M_{AZ}T}{2\pi\hbar^2}\right)^{3/2} \exp\left(\frac{\mu_{AZ} - M_{AZ}}{T}\right)$$

12

Name	g_{AZ} Nuclear Excitations	$f_{n,p} (+M_{AZ})$ Bulk matter	M _{data} Mass data
1B	Fragmentation model (~SMSM)	B(Stiff)	No
1E			
2EF	Liquid drop model + shell washout (~FYSS)	E(Soft) Oyamatsu &lida('07)	FRDM
3EF	Fai & Randrup (1982) (~HS)		
3EK			HFB24
4EF	Rauscher (2003) (~SRO)		FRDM

Average nuclear size and entropy are sensitive to excitation models

Nuclei at $ho{\sim}10^{11-12}$ g/cc

• Mass Fraction $X_{AZ} = An_{AZ}/(n_n + n_p + \sum An_{AZ})$

Mass fraction at $\rho = 2.0 \times 10^{12}$ g/cc, T = 1.8 MeV, $Y_e = 0.28$

- Nuclei with (N,Z)=(40-80,25-40)
- Sensitive to choice of excitation models
- Nuclei with (N,Z)≈(50,30) are commonly abundant in all models

Lack of Electron Capture Data $(N, Z) + e^- \rightarrow (N + 1, Z - 1) + v_e$ (+ partition function level densities for Equation of State)

Electron captures on nuclei reduce neutrino bursts

(Sullivan et al.16, see also Hix '03, Lentz '13)

Summary

- Core-Collapse Supernovae greatly depends on weak rates and nuclear statistical equilibrium (NSE).
- NSE EOS requires ① bulk matter calculation,
 ② mass data, and
 ③ nuclear excitation model (the most ambiguous part).
 Nuclei with (N,Z)=(40-80,25-40) appear at ρ~10¹¹⁻¹²g/cc.
- Primary targets are nuclei with (N,Z)≈(50,30)
- We lack in their model or data of Electron Captures (β+ strength distribution) and nuclear excitations (level density).