Alpha condensates and dynamics of cluster formation

Yasuro Funaki

(Kanto Gakuin U.)

Tsukuba–CCS workshop on ``microscopic theories of nuclear structure and dynamics' '@U. of Tsukuba, Japan, December 10–12, 2018.

50th anniversary of Ikeda diagram (1968)

Container picture with THSR ansatz

Container picture with THSR ansatz

So-called ``THSR'' wave function (or condensate w.f.)

A. Tohsaki,et al., PRL 87, 192501(2001), Y. F. et al., PTP 108, 297 (2002).

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_{k}^{2}}{b^{2} + 2\beta_{k}^{2}}\right) \phi_{\alpha}(b)$$

 $\Phi_{{}^{12}C}^{eTHSR}(\boldsymbol{\beta},b) = \Psi_{G}^{-1}\mathcal{A}\{\Phi_{\alpha}(\boldsymbol{\beta},b)\Phi_{\alpha}(\boldsymbol{\beta},b)\Phi_{\alpha}(\boldsymbol{\beta},b)\}$

$$B_k^2 = b^2 + 2\beta_k^2 \ (k = x, y, z)$$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Two limits B =b: Shell model w.f. B >>b: Gas of independent α -particles Internal w.f. of α particle

b=1.35 fm: fixed $\phi_{lpha}(b)\coloneqq$

Why the Hoyle state is the 3α condensate ?

The $3\alpha RGM/GCM$ eq. of motion gives the solution, which is very 3α cond. w.f.

The 3α RGM/GCM: to give solutions of full 3α problem in a microscopic way

Comparison with exp. data for the Hoyle state $(0_2^+ \text{ of } {}^{12}\text{C})$ (THSR w.f.)

Inelastic electron scattering $(0_1^+ \rightarrow 0_2^+)$

Energy (MeV) $E_{cal} - E_{3\alpha}^{th} = 0.38$ $E_{exp} - E_{3\alpha}^{th} = 0.23$

α-decay width (MeV) $\Gamma_{cal} = 7.7 \times 10^{-6}$ $\Gamma_{exp} = 8.5(10) \times 10^{-6}$ Monopole M.E. (fm²) $M(E0; 0_2^+ \rightarrow 0_1^+) = 6.4$ (Exp: 5.4(2)) B(E2) (e²fm⁴)

 $B(E2; 2_1^+ \to 0_2^+) = 2.4 \text{ (Exp: } 0.73(13)\text{)}$

Y. F. et al., PRC **67**, 051306(R)(2003). Y. F. et al., EPJA **24**, 321(2005).

GFMC (data from Wringa) and Comparison with THSR

One-body density distribution

Y. F. et al., Progress in Particle and Nuclear Physics 82, 78-132 (2015).

THSR + GCM (for 12 C)

Y. F. et al., Progress in Particle and Nuclear Physics 82, 78-132 (2015).

THSR + GCM (for 12 C)

-8.0 r

Y. F. et al., Progress in Particle and Nuclear Physics 82, 78-132 (2015).

THSR + GCM (for 12 C)

All excited states above the threshold are governed by cluster dynamics -8.0 r

Container picture with THSR ansatz

First success of container picture for ordinary cluster state

'S

```
Characterized by rel. distance parameter R_z.
Localized clustering.
```


$$\Psi_{^{20}\text{Ne}}^{\text{Brink}}(R_z, b) = \mathcal{A}\left\{\exp\left(\frac{8(r_z - R_z)^2}{5b^2}\right)\phi_{\alpha}(b)\phi_{^{16}\text{O}}(b)\right\}$$

Characterized by the size of container *B*.

Non-localized clustering.

$$\Phi_{20}^{\text{THSR}}(\beta, b) = \mathcal{A}\left\{\exp\left(\sum_{k}^{x, y, z} \frac{8r_k^2}{5(b^2 + 2\beta_k^2)}\right)\phi_\alpha(b)\phi_{16_0}(b)\right\}$$
$$B_k^2 = b^2 + 2\beta_k^2 \ (k = x, y, z)$$

B. Zhou, Y. F. et al., PRC86, 014301 (2012); PRL 110, 262501(2013); PRC 89, 3319 (2014).

First success of container picture for ordinary cluster state The energy levels of α +¹⁶O inversion doublet bands in ²⁰Ne

Characterized by rel. distance parameter R_z . Localized clustering.

B. Zhou, Y. F. et al., PRC86, 014301 (2012); PRL 110, 262501(2013); PRC 89, 3319 (2014).

Y. F. et al., PTEP (2014) 113D01.

Container picture with THSR ansatz

4α extended THSR wave function

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_{k}^{2}}{b^{2} + 2\beta_{k}^{2}}\right)\phi_{\alpha}(b)$$

 $\Phi_{{}^{16}0}^{\text{eTHSR}}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, b) = \Psi_{G}^{-1} \mathcal{A} \{ \Phi_{\alpha}(\boldsymbol{\beta}_1, b) \Phi_{\alpha}(\boldsymbol{\beta}_1, b) \Phi_{\alpha}(\boldsymbol{\beta}_1, b) \Phi_{\alpha}(\boldsymbol{\beta}_2, b) \}$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Internal w.f. of α particle

4α extended THSR wave function

$$\Phi_{\alpha}(\boldsymbol{\beta}, b) = \exp\left(-2\sum_{k}^{x, y, z} \frac{r_{k}^{2}}{b^{2} + 2\beta_{k}^{2}}\right)\phi_{\alpha}(b)$$

 $\Phi_{{}^{16}0}^{\text{eTHSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) = \Psi_{G}^{-1}\mathcal{A}\{\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_1,b)\Phi_{\alpha}(\boldsymbol{\beta}_2,b)\}$

 Ψ_G : Total center-of-mass w.f. to be eliminated

Hill-Wheeler eq. or GCM (generator coordinate method)

$$\sum_{\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2} \left\langle \hat{P}_{MK}^J \Phi_{^{16}O}^{\text{eTHSR}}(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,b) \middle| \hat{H} - E \middle| \hat{P}_{MK}^J \Phi_{^{16}O}^{\text{eTHSR}}(\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2,b) \right\rangle f(\boldsymbol{\beta'}_1,\boldsymbol{\beta'}_2) = 0$$

 $\hat{P}^{J}_{\!M\!K}$: Angular momentum projection operator

Hamiltonian (NN force: F1 force)

A. Tohsaki, PRC **49**, 1814 (1994).

$$\widehat{H} = -\frac{\hbar^2}{2m} \sum_{i}^{16} \nabla_i^2 - T_G + \sum_{i \le i}^{16} (V_{ij}^{(N)} + V_{ij}^{(C)}) + \sum_{i \le i \le k}^{16} V_{ijk}^{(N)}$$

 $\boldsymbol{\beta}_{i} = \left(\beta_{ix} = \beta_{iy}, \beta_{iz}\right)$

With (axially symmetric) deformation

Spurious continuum components are effectively eliminated by r² constraint method. See Y. F. et al., PTP **115**, 115 (2006).

to my Collaborators

Bo Zhou (Nanjing U.)

Zhongzhou Ren (Nanjing U.)

Chang Xu (Nanjing U.)

Taiichi Yamada (Kanto Gakuin U.)

Tadahiro Suhara (Matsue)

Hisashi Horiuchi (RCNP)

Akihiro Tohsaki (RCNP)

Peter Schuck (IPN, Orsay)

Gerd Röpke (Rostock U.)

and for your attention.