Identifying resonances with wave-packet dynamics

ALEXIS DIAZ-TORRES

In collaboration with Jeffrey A. Tostevin

Astrophysical S-Factor for ¹²C + ¹²C Fusion

AD-T & Wiescher, PRC 97, 055802 (2018)

Collective Potential-Energy Landscape for ¹²**C** + ¹²**C**

Moeller & Iwamoto, NPA **575** (1994) 381

Phase shift analysis of the effective potentials for ¹²C + ¹²C

A NEW METHOD FOR POTENTIAL RESONANCES FROM WAVE-PACKET DYNAMICS

Wave-Packet Dynamics

D.J. Tannor, Quantum Mechanics: a Time-Dependent Perspective, USB, 2007

• **Preparation:** the initial state $\Psi(t = 0)$

• **Time propagation:** $\Psi(0) \rightarrow \Psi(t)$, guided by the operator, $\exp(-i\hat{H}t/\hbar)$ \hat{H} is the model Hamiltonian

 Analysis: extraction of probabilities from the time-dependent wave function

Real ${}^{12}C + {}^{12}C$ total potentials for the J = 0, 2, 4 partial waves

Initial Wave-Packet

$$\Psi_0(R) = \frac{1}{\pi^{1/4}\sqrt{\sigma}} \exp\left[-\frac{(R-R_0)^2}{2\sigma^2}\right] e^{iK_0(R-R_0)}$$

 $R=0-1000\,\mathrm{fm}$ with 2048 evenly spaced points

$$R_0 = 400 \,\mathrm{fm}$$

$$\sigma = 10 \, \mathrm{fm}$$

$$E_0 = 6 \,\mathrm{MeV}$$

Energy Projection of the Wave Function

Radial probability density for a resonant bin state with J=0

Resonances from wave-packet dynamics: Effective Energy Spectra

$$\mathcal{P}(E_k) \equiv \frac{\langle \tilde{\Psi} | \hat{\Delta} | \tilde{\Psi} \rangle}{\langle \Psi_0 | \hat{\Delta} | \Psi_0 \rangle}$$

Effective Energy Spectra

Probability Density Function $\mathcal{P}(E_k)/2\epsilon$

Probability Density Function for J=4

Present method versus conventional approaches

TABLE I: Resonance energies (MeV) and their widths (keV), extracted from Fig. 6 for $R_{max} = 3000$ and 7000 fm, are compared to those from the S-matrix pole search and scattering phase shift methods. While the absolute errors of all E_R from the present method are < 0.01%, those for Γ_R are between 0.5 and 6%.

	I	S-matrix poles		phase shifts		
$R_{max} = 3000 \ (7000) \ \text{fm}$						
J	E_R	Γ_R	E_R	Γ_R	E_R	Γ_R
0	4.430(4.431)	$2.75 \pm 0.09 \; (1.10 \pm 0.07)$	4.437	1.55	4.437	1.58
2	$5.081 \ (5.082)$	$6.62 \pm 0.15 \; (5.91 \pm 0.29)$	5.088	5.70	5.089	6.14
4	$6.535\ (6.535)$	$49.62 \pm 0.23 \; (49.72 \pm 0.30)$	6.538	49.50	6.555	73.85

* The new method calculates resonance energies and widths in agreement with alternative, established methods.

The new method is applicable and useful for the quantitative study of resonance phenomena in different fields, where particles are temporarily trapped by attractive potential pockets.

AD-T & Tostevin, arXiv: 1809.10517v1