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The most important formula in nuclear physics:

Bethe-Weizsiacker mass formula for 2375 nuclei (AME 2012) and A>16
and masses determined with an accuracy <1 MeV.

AME 2012

SealLl NEDF (extracted
from calculated masses)

—8A1/2  even-even nuclei,

0 odd nuclei,
SA~ 12 odd-odd nuclei.
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Single-particle density of states in a many-fermion system

E(A4) = e, + A" #(periodic orbits) + 2.78 MeV A~
= e V+e S+..+E. + A" #(periodic orbits)
+2.78 MeV A" (quantum chaos)

Supershells

p (&) = prE(€) + Posc(€),
Posc(€) = %GPO(S) sin (SP(;!(S) +¢PO§) +...

—

Dominating periodic orbits (PO):
triangle and square

M 1
Azf p(€)de, ESC:/ EPosc(€)dE.
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FIG. 1. RMS of the difference 6U between computed and
observed masses as a function of mass number A. Dots taken
from Fig. 7 of Ref. [3], solid curve from Eq. (15).

FIG. 10. Electronic single-particle level density g(k) as a func-
tion of wave number k, evaluated in a spherical Woods-Saxon
potential corresponding to a Na cluster with N=3000, by
Nishioka et al. (1990).

Bohigas and Leboeuf
Phys. Rev. Lett. 88, 092502 (2002) Theory: Balian and Bloch (1972), Berry and Tabor (1976),

and Nishioka, Hansen, and Mottelson (1990).
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Supershells have been observed
in atomic clusters in 1980’s
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FIG. 1. The shell correction part of the total energy, deter-
mined for the most favorable configuration of a given cluster,
solid line. The dashed line shows the same quantity computed
. for spherical geometry only. The numbers in the upper part of
the plot designate the spherical magic numbers. The numbers
in the lower part correspond to some of the most prominent
minima of deformed clusters only.
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FIG. 12. Supershell beats in large sodium clusters: (a) Loga-
rithmic derivative of the experimental mass yield of sodium
clusters from an adiabatic expansion source, by Pedersen et al.
(1991) (see this reference and the text for details); (b) second
differences of total free energy obtained in self-consistent spher-
ical jellium-Kohn-Sham-LDA calculations by Genzken and
Brack (1991). See the text for an explanation of the exponential N'/®

scaling factors. FIG. 4. The excitation energy of the first shape isomer of
each cluster. The highest and sharpest peaks correspond to

S Bj¢rnh0|m et al (1990’ 1991). the spherical magic clusters.
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A (first) minimal nuclear energy density functional
Sealll



The full form of the functional SealLLL1 is
kinetic

-~ -~

homogencous

-

-~

gradient

-~ ~
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12 2 | . 52 |
Elnnp] = (T +7p)+ Y (@jim*” +bjn® +cin” ) 4+ Y mlwa2

= g=n.p
, | & 3 np(rny(r’) et 3n,(r) 4/3
+ Wol -Vn+ E geii(M|vg(r)|"+— [ d°r —~ _ .
B lr —r'| 4 n
spin-orbit q=n.p ) g
- Coulomb
pairing

v" Terms not previously considered in literature proportional to n>/3and no powers higher than n7/3!
v' The apparent number of 9 (a,b,c’s) + n.+W,+g, (volume pairing) = 12 parameters
eventually comes down to only seven parameters!

* Semiclassical method (only four parameters), < Using single-particle orbitals (seven parameters)
initially suggested by Weizsacker (1935)

Eginlny.n ] + Espln,.n,| = (orbital-free) = * o), n,—n
kin n’ P SO " p : n(r) ;’:ch,(f’)vx (r) n=nn+nP’ ﬁ= n+ p.
1~ v+ Wo2m ) ’ n,+n,
= D TrElnglF(X,) — 2 5 n|Vnl", v(r) = vi (P (r),
g=n.p k
F(X) = 14+(14)X +%X" X T2[n] t(r) = ;’: Vg, (r) - Vg, (r), Time-even densities
1+ kX ' treln]’
3 2.7 l 9 — -V * f
rrln] = 5(31,-)-!3,,5/3’ nln] = aw\/,—”;_ J) = ——x ) % (000t ()
k,oof r=r'
hi? F'(Xg) 12 12 12 s(r) = v, ()0 g Ve (1),
—ZmV( 9 Vn, ) + Ugn,” = pgn,/~, kg; “ '
SE] | V_vV Time-odd densities
”Ih"p feo oy - % s 'y .
0= 4 .p). (r)= — v, (F v, (r)|
9 an, = TO4E (. p} J g 5 et AEd




Higher order corrections:

Higher order gradient corrections do not seem to be significant

B’ 1
g)V‘*(pH:pP) Z

t€{n,p} 2y

Wf(ﬁr)’ (13)

9 2
_ (V_P) _E(V_ﬂ)‘ﬁ; vip
p + 3
p 8 \ p p p

Higher powers of the density (n83, n3,...) are not needed either!



* How the fit was performed?
 What is the quality of other nuclear properties
obtained without any further fitting?



QMC of infinite homogeneous matter

(allows us to fix three parameters)

3h2(3712)2/3 s
Ena.ny) = /3, .5/3
(np,np) T (n;” +n3")
2
+ 2(01,15/3 +b1n2 +C1n7/3)ﬂ21.
j=0 £ s -
— L
&
Infinite homogeneous neutron matter (f=1)
0.50 - ¢
2 J
Enlnn) = < O (B3r2n.)ng + Eim(ny), o = B - ~
ni” [fm!]

Ei(n,) = a,,n,sl/3 - b,,nfl + c,,nZ/3,

FIG. 3. The QMC results of Wlaziowski et al. [131] for the

. . . interaction energy per neutron displayed as the ratio &y /Erg defined
Values fixed from QMC with chiral EFT in Eq. (15b) (with 8 = 1), where & = 34*(372n,)**n, /(10m,). If

2N (N3LO) and 3N (N2LO) interactions a, = 0 in Eq. (15b), the ratio &gy /Erg would tend to O for n, — 0.

For densities n}7|an| < 1 (Where an, = —18.9fm is the s-wave
neutron-neutron scattering length), the leading-order correction to the
kinetic energy density per particle contribution would be instead linear

in density A hlaz,n, /mg.

a, = ap + a) + a» = —32.6 MeV fm?,
b, = by + by + by = —115.4MeV fm°,
¢, = g+ ¢ + ¢ = 109.1MeV fm*.

The term proportional to n>/3is clearly present,
as in the case of the unitary Fermi gas!
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Figure 5 (Color online) The contribution to the ground state energies
of the terms quartic in isospin density 8 Er4 = [ d°&(p)p*, evaluated
perturbatively with NEDF-1, see Table [II] In the lower panel we
display the ratio (N —Z) /A for the nuclei we have considered. Among

the 2375 nuclei we have considered, there are 33 nuclei with N = Z,

78 nuclei with Z > N, and 70 nuclei with [N —Z|/A > 1 /4.

(N-Z)* contributions to finite nuclei
are rather small



TABLE II. Best-fit parameters for the SealLL.1 functional and the
orbital-free approximation (next column in italic when different). The
errors quoted for the fit parameters should be interpreted as estimating
by how much this parameter can be independently changed while
refitting the other and incurring a cost of at most § xg < 0.1 MeV.

SSeal L1

0.154
0

—684.5(10)

827.26
64.3
119.9(61)
—256(25)
—96.8
449.2
—461.7
-32.6
—1154
109.1
3.93(15)
73.5(52)
—200
N/A

20.7355
1.43996

1.74

0.034

Hydro

0.154
Same
—685.6(2)

828.76
50.9
94.9(14)
—160.0
—83.5
475.2
559.6
Same
Same
Same
3.370(50)
0.0
N/A
0.2

Same
Same

3.04
2.86
0.038
0.041

Comments

Adjusted (see Fig. 5)
Insignificant

= 1
3 ? 3a2\F 3, 3
2(‘0” = —m(T — EbD"O

a) = n(l)nb|

Fixed in orbital-free theory
) =ag —ap — a
b, =b, — by — b,
C)r =Cqp—Cyp—C)
From neutron matter EoS (16)
From neutron matter EoS (16)
From neutron matter EoS (16)

Fixed in orbital-free theory
2o fitin Ref. [145]
Semiclassical (see Sec. [I1H)
UnitsMeV=fm=1)
cgs units (dmep = 1)
606 even-even nuclei
2375 nuclei

345 charge radii
883 charge radii

* In the orbital free framework there
are four independent parameters:

ay by, by, N,

* Using single-particle orbitals there
are seven independent parameters:
ag by, by, €3, Wy, ng, and g,

These parameters are fixed by

v Nuclear saturation density

v Binding energies of nuclei

v' Symmetry energy and its density
dependence

v’ Surface tension

v’ Spin-orbit strength

v’ Strength of pairing correlations
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FIG. 5. Saturation density n, dependence of the energy residual
xe and charge radii residual yx, of the Seal L1 functional. After
holding np fixed (through the parameter c;), the remaining five
shaded parameters in Table IT were fit by minimizing only x2 =
Y |Enz — E(N,Z)|*/Ng over the N = 196 spherical even-even
nuclei with A = 16 measured (not extrapolated) from Audi efal. [18],
Wang et al. [19]. The value ng = 0.154fm~ fixed in the SealLl
functional represents a compromise between these residuals here both
xe and ¥, increase by about 10%.
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FIG. 6. The principal component analysis of the SealLL.1 NEDF
in the case of the orbital-free (a) and orbital-based (b) approach.
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FIG. 21. The various ellipses show the region in the (£,,n;,) plane,
in which the NEDF parameters can be changed and to lead to changes
in the residual § xz < 0.2 MeV. While the equilibrium energy &, and
density ng are controlled mainly by the combination by + &, which
is constrained with very high precision, the combination by — &y
has significantly less constraint; see Sec. III1. This aspect allows
us to manipulate to a certain degree the saturation properties, while
affecting the overall fit only slightly.



These do not contain quartic terms in .

) (b)
- 0 a.00 0.[!1 0,04 0.06 D.lll Q. ]D O.L 0. 14 0.16 D.ll

0.00 002 004 006 0.08 0.10 0.12 0.14 0.16 0.18 [fm]

n [ﬁn] P.-G. Reinhard at ECT#, Trento, Italy, 26-30 January, 2015,
https://stes.google. com/site/ectworkshopns2o15/talks
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Saturation, symmetry energy, compressibility,
and neutron skin thickness

TABLEIIL Saturation, symmetry, and neutron skin properties for

E(ng,0) — E(ng/2.n0/2) Seal.LL1. All values in MeV unless otherwise specified.

Mo

E(n,0
L=3 z—[ (a, )] = 3npe, (np)
dn| n o

S =

Neutron skin
Eph #¥(Ca
[fm]  [fm]

0.131  0.159

6 2 _ ,
— gﬂ(%r'ng)“ + ..a,,n g 3b,ng + 4C,,ng“q.

2/3 4/3

F+"‘al"0 +cingy -,

E(ng.np)

3EF + 5a|n0 +4C|n0 =

= eo(n) + e2(n)B* + es(n)B* + O(B°).

Go(n) = %EF - aonzﬂ 4+ bon + c0n4f3

&0 + 5 Kod” + 0('53'% S,, L,, and neutron skin radius
can be controlled with a,-b,n,'/3 and c,

exln) = 4 TSEF +a|n S bin +C|n 4/3
which are largely unconstrained in SeallLl

= 54 L2b + 3K28" 4 0(3Y),
€s(n) = Sy + Lad + 5 Ks8” + O(3).

. . By changing a, by 6a,=20 MeV fm? and

d =(n—ng)/3ng . . .
keeping saturation energy and density fixed

Quartic terms in B are needed only if one can change incompressibility K, by

one constrains binding energies of 6Ko= £23 MeV

nuclei and neutron matter EoS at the

same time!
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FIG. 9. The histogram of the mass residuals between Seal.L.1 and
experiment for 606 even-even nuclei.
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§ 2 1 FIG. 8. Mass residuals between Seal 1.1 and measured masses for
A WA i # 606 even-even nuclei, of which 410 are deformed nuclei and 196 are
I OF —tii " N |HRashdgac?/ -} " spherical nuclei, plotted with red squares and blue bullets respectively
z- as a function of proton number Z (a) and neutron number N (b).
W -2t 1
Ll | Introducing the center-of-mass correction for
0 20 40 60 80 100 120 140 160 spherical nuclei alone reduce the x; for the
N (b) . o .
binding energies from 1.54 MeV to 0.97 MeV.
FIG. 10. The residual of the two-nucleon separation energies . . . .
between Seal L1 and experiment for 606 even-cven nuclei: Sa,(Z) For spherical nuclei one needs also zero-point energy corrections.

for constant N (a) and §,,(N) for constant Z (b) chains connected by
lines.



Charge radii and charge distributions

Mean: 0.022 fm
.10k St.dev: 0.025 fim |
)
o oosf i
I~
| 0.00 _
4
s
—0.05F _
—0.10 L L 1 1
0 . 1] 40 &0 20 100
proton number £ (a)
0.15 I I ; r . : .
Mean: 0.022 fin T~
010+ Stdev: 0,025 fim i
k)
& 0.05F ]
2
I~
I pook i
=
e
—D0&sF ]
—0.10 1 1 1 I 1 1 !
0 20 40 G0 20 100 120 140 160

neutron number N (b)

FIG. 12. Radii residuals between Seal.LL1 and experiment for 345
even-even nuclei. Isotonic (a) and isotopic (b) chains are connected
by lines.

r [fm]

FIG. 11. The calculated proton n,(r) (dashed) and charge n.(r)
(dotted) densities for **Ca (red) and *®Pb (blue), calculated with
SealLL1 compared to charge densities (solid) extracted from electron
scattering experiments [157].




48Ca neutrons BCa protons
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FIG. 13. Single particle energies in **Ca (a) and *®*Pb (b) for a variety of functionals UNEDF0-2 [73-75] and Seal.L1 (calculated using
the HFBTHO DFT solver [154]).

48Ca: rms deviations for UNEDFO, UNEDF1, UNEDF2, and Seall1l for neutrons/protons:
1.50/1.22,1.71/1.08, 1.92/1.22, 1.88/1.17 MeV

208ph: rms deviations for UNEDFO, UNEDF1, UNEDF2, and Seall1 for neutrons/protons:
0.82/0.77, 0.61/0.49, 0.69/0.50, 0.62/0.54 MeV

UNEDF2 was constrained to describe single-particle properties too!



Fission pathways

100 125 150

O [b]

FIG. 14. Two-dimensional potential energy surface of >*’Pu with
SealLL1 for 0 < Q3 < 200b,0 € Q3 < 40b*2. The least-energy
fission path is marked as white dashed line.

240py fission pathway
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FIG. 15. Fission pathway for **’Pu along the mass quadrupole
moment (5, calculated using HFBTHO with SealLL.1, SkM#*, and

UNEDFI1-HFB.
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FIG. 12. (Color online) The residuals of the inner fission barriers,
AE 4, panels (a)(d): fission isomer excitation energies, A En, panels
(e)—(h); and outer fission barriers, A Eg. panels (1)), for various
actinide nuclei. Residuals are defined as the difference between the
computed values with UNEDF2, UNEDFI, DI1S, and FRLDM models
and the empirical values [83,84]. The shaded area represents an
average experimental uncertainty for each quantity.
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FIG. 16. Fully self-consistent calculations of the proton and neutron driplines for the SealLL1 NEDF (thick blue line) compared with
predictions of the functionals SLy4 and UNEDF]1 extracted from Ref. [169], and FRLDM [66]. The vertical axis is shifted by the approximate S-
stability line Zz(N') which minimizes Eq. (1) at constant A with parameters from Table I: 9z E(A — Z,Z)|z=zﬁ =0,Zs =A/2+ aCA3f3/2a,).
The inset shows the usual Z vs N plot, with the Z = Zﬁ(N) curve as a solid (yellow) line. The 2375 nuclear masses from Refs. [18,19] are
displayed as dots. We have plotted possible r-process trajectories predicted to be realized in the case of two neutron star mergers [16,17] (red
circles), in a classical hot (n,y) <= (y.n) in equilibrium r-process [ 170] (green circles) with the FRDM model [66] and neutron star merger with
the UNEDFI1 functional [74] (blue circles). With pink and green bands we display the r-process paths obtained by Mendoza-Temis ef al. [171]
under various conditions using the FRDM model [66] and the Duflo-Zuker model [172].




Pasta phase properties of the neutron
star crust as a function of baryon
density, evaluated in simulation boxes
of various volumes: 323...963 fm3
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FIG. 17. (a) Energy per baryon in the pasta phase (Epaq), energy
per neutron in pure neutron matter ( Epym), and energy per baryon in
uniform nuclear matter ( E,g;) as a function of average baryon density.
(b) Charge ratio of the nuclear pasta as a function of average baryon
density. (c) The energy per nucleon difference between the uniform
and the inhomogeneous matter configurations in 8 equilibrium as a
function of the average baryon density.




Perspectives

* By introducing two surface terms one can adjust the neutron thickness independently of
the symmetry energy properties and one can also control the static electric polarizability.
In Sealll n, = n, and global properties are very weakly dependent on their difference.

2 2

. 1 h-
Eyn = ng—|Vn, + V'n,_,l2 +n—|Vn, — V'npl2
2m 2m

* One can introduce an isospin dependence of the spin-orbit interaction and control
separately the neutron and proton single-particle spectra. In SealLl1 W, = W, and global
properties are very weakly dependent on their difference.

Eso = Wod - Vn+ Wi(Jn — J,) - (V. — Vn,),

* One can tune the neutron and proton effective masses




Perspectives (continued)

Many modern NEDFs have stronger pairing coupling for protons than for neutrons. This
violates isospin symmetry, when not accounting for the role of Coulomb interaction.
Coulomb interaction makes the proton pairing weaker. A good choice of the effective

coupling constants is
g.+<0and h > 0.

g(nu(r).np(r)) = g(np(r).na(r)),

En = f d*r ge(r)(vn(r))* + v, ()%
h(nu(r),np(r)) = h(ny(r),n,(r)).

N f &P hea(r)([va () — v (r)ID)B,

* Entrainment terms
This term vanishes in the ground state. With this

term one can control the isovector giant
resonances properties (energy, sum rule).

With this term one can control the

& o (n,,np
- ntrain — t 2
spin entrain =% af I . . Gamow-Teller and beta transitions.

AR gcm(
.

Odd and odd-odd nuclei

S 2 2
Espin = @1 (s; +57) + 25, -5
Important for beta-decay matrix elements

fd3l‘ I’ln,p(r) > |f d3l‘ Sn,p(r)l



Conclusions

v This un-optimized NEDF Sealll is physically intuitive and at the present level provides
one of the most accurate descriptions of global nuclear properties (masses, charge radii,
two-nucleon separation energies, single-particle spectra, etc.) with a surprisingly small
number of parameters (seven).

v The outlined framework provides a clear strategy for further improving the quality of
NEDF.

v" We have identified a significant number of parameters, which have little or no influence

on the ground state properties. These additional parameters can be used to refine various
nuclear properties.

* Single-particle spectra

e Static dipole polarizability

* Neutron skin thickness

* Symmetry energy properties

* Isovector giant resonance properties

e Gamow-Teller and beta transitions

* Nuclear compressibility and monopole giant resonances
* Pairing properties



