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The most important formula in nuclear physics: 

SeaLL1		NEDF	(extracted	
from	calculated	masses)	

AME	2012	

Bethe-Weizsäcker mass formula for 2375 nuclei  (AME 2012) and A≥16 
and masses determined with an accuracy  ≤ 1 MeV.  	





  

E( A) =   eTF + A1/6 # (periodic orbits) + 2.78 MeV A−1/3

          =   evolV + esurf S + ...+ ECoul + A1/6 # (periodic orbits) 

             + 2.78 MeV A−1/3  (quantum chaos)

Bohigas	and	Leboeuf	
Phys.	Rev.	Lett.	88,	092502	(2002)	

Single-particle density of states in a many-fermion system 

Supershells	

Dominating	periodic	orbits	(PO):	
										triangle	and	square	

Theory:	Balian	and	Bloch	(1972),	Berry	and	Tabor	(1976),	
and	Nishioka,	Hansen,	and	Mottelson	(1990).	



Supershells	have	been	observed	
	in	atomic	clusters	in	1980’s	

S	Bjørnholm	et	al	(1990,	1991).		



A	(first)	minimal	nuclear	energy	density	functional		
																																		SeaLL1	



ü  Terms	not	previously	considered	in	literature	proportional	to	n5/3	and	no	powers	higher	than	n7/3!	
ü  The	apparent	number	of	9	(a,b,c’s)	+	ηs+W0+g0	(volume	pairing)	=	12		parameters		
							eventually	comes	down	to	only	seven	parameters!											

Time-even	densities	

Time-odd	densities	

•  Semiclassical	method	(only	four	parameters),		
						initially	suggested	by	Weizsäcker	(1935)	

•  Using	single-particle	orbitals	(seven	parameters)													



Higher order gradient corrections do not seem to be significant 

Higher	powers	of	the	density	(n8/3,	n3,…)	are	not	needed	either!		

Higher	order	corrections:		



•  How	the	fit	was	performed?	
•  What	is	the	quality	of	other	nuclear	properties		
obtained	without	any	further	fitting?		



QMC	of	infinite	homogeneous	matter	
(allows	us	to	fix	three	parameters)	

Infinite	homogeneous	neutron	matter	(β=1)	

Values	fixed	from	QMC	with	chiral	EFT		
2N	(N3LO)	and	3N	(N2LO)	interactions		

The	term	proportional	to	n5/3	is	clearly	present,		
as	in	the	case	of	the	unitary	Fermi	gas!	



(N-Z)4		contributions	to	finite	nuclei		
are	rather	small	



•  In	the	orbital	free	framework	there	
are	four	independent	parameters:	

a0,	b0,	b1,	ηs.	
	
•  Using	single-particle	orbitals	there	

are	seven	independent	parameters:	
a0,	b0,	b1,	c1,	W0,	ηs,	and	g0.	
	
These		parameters	are	fixed	by	
ü  Nuclear	saturation	density	
ü  Binding	energies	of	nuclei	
ü  Symmetry	energy	and	its	density	

dependence	
ü  Surface	tension	
ü  Spin-orbit	strength	
ü  Strength	of	pairing	correlations	





These	do	not	contain	quartic	terms	in	β.		



Saturation,	symmetry	energy,	compressibility,		
and	neutron	skin	thickness	

By	changing	a0	by	δa0=±20	MeV	fm2	and	
keeping	saturation	energy	and	density	fixed	
one	can	change	incompressibility	K0	by		
δK0=	±23	MeV	

S2	,	L2,	and	neutron	skin	radius		
can	be	controlled	with	a1-b1n01/3	and	c1	
which		are	largely	unconstrained	in	SeaLL1	

Quartic	terms	in	β	are	needed	only	if	
one		constrains	binding	energies	of	
nuclei	and	neutron	matter	EoS	at	the	
same	time!		



Introducing	the	center-of-mass	correction	for		
spherical	nuclei	alone	reduce	the	χE	for	the		
binding	energies	from		1.54	MeV	to	0.97	MeV.		
For	spherical	nuclei	one	needs	also	zero-point	energy	corrections.		



Charge	radii	and	charge	distributions	



48Ca:	rms	deviations	for	UNEDF0,	UNEDF1,	UNEDF2,	and	SeaLL1	for	neutrons/protons:	
1.50/1.22,	1.71/1.08,	1.92/1.22,	1.88/1.17	MeV	
208Pb:	rms	deviations	for	UNEDF0,	UNEDF1,	UNEDF2,	and	SeaLL1	for	neutrons/protons:	
0.82/0.77,	0.61/0.49,	0.69/0.50,		0.62/0.54	MeV	
	
UNEDF2	was	constrained	to	describe	single-particle	properties	too!	



Fission	pathways	





Pasta	phase	properties	of	the	neutron	
star	crust	as	a	function	of	baryon	
density,	evaluated	in	simulation	boxes	
of	various	volumes:	323…963	fm3	



Perspectives	

•  By	introducing	two	surface	terms	one	can	adjust	the	neutron	thickness	independently	of	
the	symmetry	energy	properties	and	one	can	also	control	the	static	electric	polarizability.	
In	SeaLL1	η0	=	η1	and	global	properties	are	very	weakly	dependent	on	their	difference.	

•  One	can	introduce	an	isospin	dependence	of	the	spin-orbit	interaction	and	control		
					separately	the	neutron	and	proton	single-particle	spectra.	In	SeaLL1	W0	=	W1	and	global		
					properties	are	very	weakly	dependent	on	their	difference.	

•  One	can	tune	the	neutron	and	proton	effective	masses		



Perspectives	(continued)	
•  Many	modern	NEDFs	have	stronger	pairing	coupling	for	protons	than	for	neutrons.	This	

violates	isospin	symmetry,	when	not	accounting	for	the	role	of	Coulomb	interaction.		
Coulomb	interaction	makes	the	proton	pairing	weaker.	A	good	choice	of	the	effective	
coupling	constants	is	

					geff	<	0	and	heff		>	0.	

•  Entrainment	terms	

This	term		vanishes	in	the	ground	state.		With	this	
term	one	can	control	the	isovector	giant	
resonances	properties	(energy,	sum	rule).			

With	this	term	one	can	control	the		
Gamow-Teller	and	beta	transitions.	

•  Odd	and	odd-odd	nuclei	

Important	for	beta-decay	matrix	elements	



Conclusions	
ü  This	un-optimized		NEDF	SeaLL1	is	physically	intuitive	and	at	the	present	level	provides	

one	of	the	most	accurate	descriptions	of	global	nuclear	properties	(masses,	charge	radii,	
two-nucleon	separation	energies,	single-particle	spectra,	etc.)	with	a	surprisingly	small	
number	of	parameters	(seven).	

ü  The	outlined	framework	provides	a	clear	strategy	for	further	improving	the	quality	of	
NEDF.	

ü  We	have	identified	a	significant	number	of	parameters,	which	have	little	or	no	influence	
on	the	ground	state	properties.	These	additional	parameters	can	be	used	to	refine	various	
nuclear	properties.	

•  Single-particle	spectra	
•  Static	dipole	polarizability	
•  Neutron	skin	thickness	
•  Symmetry	energy	properties					
•  Isovector	giant	resonance	properties		
•  Gamow-Teller	and	beta	transitions	
•  Nuclear	compressibility	and	monopole	giant	resonances		
•  Pairing	properties			


