Statistical errors and parametric correlations of covariant energy density functionals

Anatoli Afanasjev Mississippi State University

- 1. Motivation and introduction
- 2. Systematic uncertainties: brief review
- 3. Statistical errors in prediction of physical observables
- 4. Parametric correlations
- 5. Conclusions

In collaboration with S. Abgemava (MSU), A. Taninah (MSU)

- explicit (DD-ME2, DD-PC1)
- non-linear (through the powers of mesons) (NL1, NL3*)

Skyrme and Gogny DFTs: different prescriptions for density dependence Theoretical errors/uncertainties in description/predictions of physical observables

- Systematic errors/uncertainties- apply to a set of the functionals- related to the choice of the basic
physics behind the functional
- Statistical errors/uncertainties apply only to a given functional
 due to choice of experimental data and the selection of adopted errors in the fitting protocol (the latter is to a degree subjective especially for the quantities of different dimensions)
 - 1. S. Brandt, Data analysis. Statistical and Computational Methods for Scientists and Engineers. (Springer International Publishing, Switzerland, 2014).
 - 2. J. Dobaczewski et al, J. Phys. G 41 (2014) 074001

Systematic uncertainties in physical observables

- 1. Generate the functional variations by means of Monte-Carlo procedure
- 2. Define the parameter hyperspace
- For simplicity use non-linear meson exchange functionals since they have the smallest number of parameters → thus the smallest volume of parameter hyperspace

$$\mathcal{L} = \bar{\psi} \left[\gamma \cdot (i\partial - g_{\omega}\omega - g_{\rho}\vec{\rho}\,\vec{\tau} - eA) - m - g_{\sigma}\sigma \right] \psi + \frac{1}{2}(\partial\sigma)^{2} - U(\sigma) - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{2} - \frac{1}{4}\vec{R}_{\mu\nu}\vec{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} U(\sigma) = \frac{1}{2}m_{\sigma}^{2}\sigma^{2} + \frac{1}{3}g_{2}\sigma^{3} + \frac{1}{4}g_{3}\sigma^{4}$$

6 parameters: \mathbf{M}_{σ} , \mathbf{g}_{σ} , \mathbf{M}_{ω} , \mathbf{g}_{ρ} , \mathbf{g}_{2} , \mathbf{g}_{3}

The NL5(*) functionals: the fitting protocols

1			$\mathbf{M} \mathbf{L} \mathbf{r} (\mathbf{D})$					
	NL5(A)		NL5(B) NL5(C)		NL5(D)	NL5(E)		
			1. Parameters					
	m_{σ} 516.993054		503.253177	502.481217	503.122989	503.298890		
	g_{σ}	10.165747	9.896631	9.900244	10.187753	10.263955		
	g_{ω}	12.658290	12.457831	12.489590	12.940276	13.052487		
	$g_ ho$	4.277136	4.202553	4.318575	4.589814	4.582673		
	g_2	8.350509	-10.925997	-10.821667	-10.858440	-10.976703		
	g_3	19.260373	-28.502727	-28.27378	-30.993091	-32.006687		
		2. Nucl	lear matter proper	rties				
	E/A	-16.25	-16.20	-16.24	-16.29	-16.27		
	ρ_0	0.146	0.150	0.150	0.150	0.150		
	K_0	318.42	259.22	260.673	256.50	252.96		
	J	34.92	34.92	35.925	38.87	38.93		
	L_0	108.85	108.33	112.31	123.98	124.96		
	2. Penalty function contributions							
	χ^2_{total}	343.901	367.822	273.014	74.973	85.049 3.698		
	$\chi^2_{total}/\text{degree}$	14.95	15.99	12.41	3.9459			
	χ^2_{NM} (%)	8.120 (2.3 %)	2.626~(0.5~%)	3.842 (1.1 %)	4.434 (5.3 %)	3.625~(3.5~%)		
	$\chi^2_E ((\%)$	128.318 (37.3 %)	145.727 (39.6 %)	111.550 (40.9 %)	55.221 (73.7 %)	51.231 (60.2 %)		
	χ^2_{Rch} (%)	34.231 (9.9 %)	18.363~(5.0~%)	16.124~(5.9~%)	15.318 (20.4 %)	16.802 (19.7 %)		
	χ^2_{Nskin} (%)	173.235 (50.4 %)	201.105 (54.6 %)	141.498 (51.8 %)	$0\ (0.0\ \%)$	13.390 (15.7 %)		
	$\chi^2_{Nskin(Zr)}(\%)$	76.071 (22.1 %)	86.591 (23.5 %)	0~(0.0~%)	0 (0.0 %)	1.178 (1.4 %)		
Adop	oted error	10% for K_0		2.5%	o for K ₀			
Neut	ron skins	4 (5%)	4 (5%)	3 (5%)	0	4 (exp.)		
(adopted err.)		NI 3*-like						

Global performance of the NL5(*) functionals: binding energies

Global performance of the NL5(*) functionals: charge radii and summary

CEDF	measured	measured+estimated			charge radii		
	ΔE_{rms} [MeV]	ΔE_{rms} [MeV]	$\Delta(S_{2n})_{rms}$ [MeV]	$\Delta(S_{2p})_{rms}$ [MeV]	$\Delta(r_{ch})_{rms}$ [fm]	$\Delta(r_{ch})_{rms}$ [fm]	
1	2	3	4	5	6	7	
NL5(C)	3.41	3.71	1.37	1.54	0.040	0.0284	
NL5(D)	2.83	2.90	1.22	1.29	0.041	0.0277	
NL5(E)	2.73	2.81	1.23	1.29	0.042	0.0288	
NL3*	2.96	3.00	1.23	1.29	0.041	0.0283	

Statistical errors in the masses, two-neutron separation energies, charge radii and neutron skins

For comparison - statistical errors in Skyrme DFT

Statistical errors versus systematic uncertainties

Statistical errors versus systematic uncertainties

CDFT in a "nutshell"

$$V(\mathbf{r}) = g_{\omega}\omega(\mathbf{r})$$

 $S(\mathbf{r}) = g_{\sigma} \sigma(\mathbf{r})$

V ~ 350 MeV/nucleon S ~ - 400 MeV/nucleon U ~ - 50 MeV/nucleon

Variation of physical observables in ²⁰⁸Pb with a change of a single parameter

Parametric correlations: NL5(C) functional

Skyrme and Gogny ED functionals: less localized in the parameter space

Parameters	UNEDF0 [81]	UNEDF1 [82]	SLy4 [84]	SKM* [85]	BSk28 [83]	BSk29 [83]
$t_0[MeVfm^3]$	-1883.68781034	-2078.32802326	-2488.91	-2645.00	-3988.86	-3970.40
$t_1[MeVfm^5]$	277.50021224	239.40081204	486.82	410.00	395.769	394.880
$t_2[MeVfm^5]$	608.43090559	1575.11954190	-546.39	-135.00		
$t_3[MeVfm^{3+3\alpha}]$	13901.94834463	14263.64624708	13777.0	15595.0	22774.4	22649.3
$t_4[MeVfm^{5+3\beta}]$					-100.000	-100.000
$t_5[MeVfm^{5+3\gamma}]$					-150.000	-150.000
x_0	0.00974375	0.05375692	0.834	0.09	0.928026	0.964850
x_1	-1.77784395	-5.07723238	-0.344	0.00	0.0274980	-0.0047741
x_2	-1.67699035	-1.36650561	-1.000	0.00		
$t_2 x_2 [MeV fm^5]$					-1388.61	-1388.95
x_3	-0.38079041	-0.16249117	1.354	0.00	1.09482	1.14453

Parameters	D1S[78]		D1[80]		D1M[79]	
$\mu_i \text{ (fm)}$	0.7	1.2	0.7	1.2	0.5	1.0
$W_i [\text{MeV}]$	-1720.30	103.64	-402.4	-21.30	-12797.57	490.95
B_i [MeV]	1300.00	-163.48	-100.0	-11.77	14048.85	-752.27
H_i [MeV]	-1813.53	162.81	-496.2	37.27	-15144.43	675.12
M_i [MeV]	1397.60	-223.93.	-23.56	-68.81	11963.89	-693.57
$t_0 [{ m MeV}]$	1390.6		1350.0		1562.22	
x_0	1		1		1	
α	1/3		1/3		1/3	
W_{LS} [MeV]	-130.0		115.0		115.56	

(2015)054310 Ň 5 PRC al, et Agbemava . S

The source of oblate shapes – the low density of s-p states

054310 (2015) PRC 92, S. Agbemava et al, Statistical errors in the description of absolute and relative single-particle energies in ³⁰⁴120

	ľ	Veutron	Proton					
	Orbital	$\bar{e}_{ u}$	$\sigma(e_{\nu})$	Orbital \bar{e}_{τ}		$\sigma($	(e_{π})	
	$4s_{1/2}$	-6.372	0.077	$2f_{5/2}$	-2.4	18 0.1	121	
	Neutron Fermi level			Proton Fermi level				
	$1j_{13/2}$	-5.195	0.136	$3p_{3/2}$	-0.30	02 0.	132	
Neutron				Proton				
$\operatorname{Orbital}$				Orbital				
pairs (m, j)		$\overline{\Delta e}_{\nu}$	$\sigma(\Delta e_{\nu})$	pairs (m, j)		$\overline{\Delta e}_{\pi}$	$\sigma(\Delta e_{\pi})$)
$3d_{5/2}$ - $3d_{3/2}$		0.322	0.005	$1i_{13/2}$ - $2f_{7/2}$ 0.1		0.247	0.082	
$3d_{3/2}$ - $4s_{1/2}$		0.642	0.011	$2f_{7/2}$ - 2	$2f_{5/2}$	1.486	0.035	
below neutron Fermi level				below proton Fermi level				
$4s_{1/2}$ - $1j_{13/2}$ 1.177 0.102			0.102	$2f_{5/2}$ - 3	$3p_{3/2}$	2.116	0.030	
$ 1j_{13/2} - 2h_{11/2} 1.917 0.107 $			$3p_{3/2}$ - 3	$3p_{1/2}$	0.318	0.006		
$\Delta e_i(m,j) = e_i(m) - e_i(j)$								

Conclusions

- 1. Statistical errors for different classes of physical observables are substantially lower than systematic ones for covariant density functionals.
- 2. Parametric correlations emerge for "loosely" defined parameters. Seen in NL5(*), DD-ME2 and PC-PK1
- 3. Functionals have to be checked for parametric correlations and they have to be removed to make parameters really independent.
- → Question: How many independent parameters could be defined by the models/fitting protocols in use?

Submitted to PRC, see also nuclear theory archieve arXiv: 1811.11473

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037