PACS10 project in lattice QCD

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

10th symposium on Discovery, Fusion, Creation of New Knowledge by MultidisciplinaryComputational Sciences@ University of Tsukuba, October 15-16 2018

PACS10 project in lattice QCD

Not PACS-X project

Takeshi Yamazaki

University of Tsukuba

10th symposium on Discovery, Fusion, Creation of New Knowledge by MultidisciplinaryComputational Sciences@ University of Tsukuba, October 15-16 2018

PACS10 project

PACS = PACS Collaboration

- Tsukuba N. Ishizuka, J. Kakazu, Y. Kuramashi, N. Namekawa, T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié Riken-CCS Y. Nakamura, E. Shintani
- Hiroshima K.-I. Ishikawa
 - Tohoku N. Tsukamoto, S. Sasaki

PACS10 project

PACS = PACS Collaboration

Tsukuba	N. Ishizuka, J. Kakazu, Y. Kuramashi, N. Namekawa,
	T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié
Riken-CCS	Y. Nakamura, E. Shintani
Hiroshima	KI. Ishikawa
Tohoku	N. Tsukamoto, S. Sasaki

10 = spatial extent of 10 fm

PACS10 project

PACS = PACS Collaboration

Tsukuba	N. Ishizuka, J. Kakazu, Y. Kuramashi, N. Namekawa,
	T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié
Riken-CCS	Y. Nakamura, E. Shintani
Hiroshima	KI. Ishikawa
Tohoku	N. Tsukamoto, S. Sasaki

10 = spatial extent of 10 fm

Purpose of PACS10 project

Removing all main systematic uncertainties in lattice QCD using three ensembles at physical m_{π} on (10 fm)³ volume

Outline

- PACS10 project
 - Lattice QCD
 - pre-PACS10 project
 - PACS10 project
 - PACS10 configuration
- Result of PACS10 project
 - Light meson form factors
 - Nucleon form factors
 - Kaon semileptonic decay
 - Muon anomalous magnetic moment
- Summary

Standard Model of Elementary Particles

QCD =

Quantum Chromodynamics theory of strong interaction for quarks and gluons

Standard Model of Elementary Particles

QCD =

Quantum Chromodynamics theory of strong interaction for quarks and gluons

dynamical u, d, s quark effect in low energy physics $N_f = 2+1 \text{ QCD } (m_u = m_d \ll m_s)$ what we want to calculate

Standard Model of Elementary Particles

QCD =

Quantum Chromodynamics theory of strong interaction for quarks and gluons

dynamical u, d, s quark effect in low energy physics $N_f = 2+1$ QCD ($m_u = m_d \ll m_s$)

what we want to calculate

Standard Model of Elementary Particles

non-perturbative calculation method is necessary for QCD.

Lattice QCD: non-perturbative calculation using supercomputer

Lattice QCD non-perturbative calculation using supercomputer

finite lattice spacing a (regularization) momentum cut-off : $|p| \le \pi/a$ 4d finite spacetime = $L^3 \times T$ quarks $\psi(x)$: on site gluons $U_{\mu}(x)$: link between sites

Expectation value of observable $\mathcal{O}(\overline{\psi}, \psi, U)$ $\langle \mathcal{O}(\overline{\psi}, \psi, U) \rangle = \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(D^{-1}, \frac{U_i}{U_i}) + O(1/\sqrt{N})$ quark propagator $D^{-1}[U, m_q]$, quark mass m_q

Monte Carlo simulation

gauge configuration U_i generated with proper probability

each U_i generation needs $O(10^4) D^{-1}[U, m_q]$

 $D[U, m_q] = O(10^9) \times O(10^9)$ matrix when $L = T = 10^2$

 $m_q \rightarrow \text{small} \Rightarrow \text{computational time} \rightarrow \text{long}$

Large computational resource necessary

Simulation parameters: $m_{\pi}(m_{u,d,s}), L^3 \times T, a$

 m_{π} : pion mass (pion = lightest composite particle of quarks in QCD)

Lattice QCD \rightarrow QCD need $m_{\pi} = m_{\pi}^{\text{phys}}, \ L \gtrsim 6/m_{\pi}, \ a \rightarrow 0$

unphysical m_{π} ($m_{\pi}^{\text{phys}} = 0.135 \text{ GeV}$): cost $\propto m_{\pi}^{-(2 \sim 9)}$

(depend on solver algorithm of $D^{-1}[U, m_q]$)

traditionally extrapolate to $m_\pi^{\rm phys}$ with several data at larger m_π

finite L: cost $\propto L^3T$

finite L effect is negligible in $L\,{\gtrsim}\,6/m_{\pi}$

finite a: cost $\propto a^{-(2\sim 6)}$ (depend on Monte Carlo algorithm)

need several data in small a for $a \rightarrow 0$

main systematic uncertainty in lattice QCD

pre-PACS10 project

History of lattice QCD Collaboration in University of Tsukuba

Collaboration	CP-PACS		CP-PACS+JLQCD	PACS-CS	PACS
Main resource	CP-PACS		Earth Simulator	PACS-CS, T2K	Κ†
N_f	0	2	2+1	2+1	2+1
m_{π} [GeV]	> 0.3	> 0.5	> 0.6	> 0.156	0.146
<i>L</i> [fm]	3.0	2.5	2.0	2.9	8.1
a [fm]	> 0.05	> 0.1	> 0.07	0.09	0.08
$a \rightarrow 0$	0	0	0		
year	~2002		~2006	~ 2009	\sim 2015

 $N_f = 0$ no dynamical quark effect $N_f = 2$ dynamical quark effect for u, d $N_f = 2 + 1$ dynamical quark effect for u, d, s

 $m_{\pi}^{\text{phys}} = 0.135 \text{ GeV}$

[†]MEXT SPIRE Field 5 Subject 1

pioneering study in each period

PACS10 project since 2016

Project		pre-PACS10		
Resource		K		
N_f		2+1		
m_{π} [GeV]		0.146		
<i>L</i> [fm]		8.1		
$L^3 \cdot T$	128 ⁴	160 ⁴	256 ⁴	96 ⁴
<i>a</i> [fm]	0.08	0.06	0.04	0.08
a ightarrow 0				
OFP node	256	512	2048	
status	done	almost done	running	
Name	PACS10-1	PACS10-2	PACS10-3	K conf

Purpose

Removing all main systematic uncertainties in lattice QCD

using three ensembles at physical m_{π} on (10 fm)⁴ volume

Results of PACS10 project

precise determination of physical quantity from lattice QCD

I. quantitatively understand property of hadrons (mass, size, etc.) reproduce experimental values with high accuracy

hadron = composite particles of quarks, e.g. mesons (π, K, \dots) and nucleon (proton, neutron)

II. search for new physics beyond the standard model discrepancy between theoretical calculation and experiment

Results of PACS10 project

precise determination of physical quantity from lattice QCD

- I. quantitatively understand property of hadrons (mass, size, etc.) reproduce experimental values with high accuracy
 - hadron = composite particles of quarks, e.g. mesons (π, K, \cdots) and nucleon (proton, neutron)
 - 1. Light meson electromagnetic form factors
 - 2. Nucleon form factors

Finite volume effect PACS10-1 and $(5.4 \text{ fm})^3$: [arXiv:1807.06237]

- II. search for new physics beyond the standard model discrepancy between theoretical calculation and experiment
 - 3. Kaon semileptonic decay
 - 4. Muon anomalous magnetic moment

Results from PACS10-1 and PACS10-2 configurations All results are preliminary.

1. Light meson form factors by J. Kakazu

Electromagnetic form factor $F(Q^2) = 1 - \frac{1}{6}Q^2 \langle r^2 \rangle + \cdots$

 $\langle r^2 \rangle$ mean square charge radius, Q^2 momentum transfer $F(Q^2) \neq 1 \rightarrow$ hadron has internal structure.

1. Light meson form factors by J. Kakazu

Electromagnetic form factor $F(Q^2) = 1 - \frac{1}{6}Q^2 \langle r^2 \rangle + \cdots$

 $\langle r^2 \rangle$ mean square charge radius, Q^2 momentum transfer $F(Q^2) \neq 1 \rightarrow$ hadron has internal structure.

pion: agree with the experiment and other lattice results kaon: agree with experiment and closer to another lattice result will investigate systematic errors

2. Nucleon form factors Nucleon: proton *p* and neutron *n* Proton size puzzle

Proton charge radius: $G_E(q^2) = 1 - \frac{q^2}{6} \langle r^2 \rangle_E + \mathcal{O}(q^4)$

Slide from S. Sasaki in QCDdownunder2017

 $\langle r^2 \rangle_E$ differs in μ -proton and e-proton experiments.

Several experiments proposed to resolve this puzzle

3. Kaon semileptonic decay

Standard model predicts $$\begin{split} & \Delta_{\rm CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0 \\ & V_{ij}: \text{ Cabbibo-Kobayashi-Maskawa matrix element} \\ & \text{if } \Delta_{\rm CKM} \neq 0, \text{ signal of new physics} \end{split}$$

 $|V_{ud}| = 0.97420(21)$ nuclear β decay [PoS(CKM2016):028] $|V_{ub}| = O(10^{-3})$ B meson decay

Determination of $|V_{us}|$ using lattice QCD

Experimental result of $K \rightarrow \pi l \nu$ decay (*l*: lepton, ν : neutrino)

 $|V_{us}|f_{+}(0) = 0.21654(41)$ [PoS(CKM2016):032]

*Kl*3 form factor $f_+(0)$ from lattice QCD calculation $\rightarrow |V_{us}|$

3. Kaon semileptonic decay (PACS10-1) by J. Kakazu *Kl*3 form factors: $f_+(q^2)$ and $f_0(q^2)$, $f_+(0) = f_0(0)$

Our $|V_{us}|$ agrees with $\Delta_{CKM} = 0$

and another determination of $|V_{us}|$ (leptonic decay $K \rightarrow l\nu$). will investigate systematic errors for final result

4. Muon anomalous magnetic moment

figure and values from PDG18

Main uncertainty from leading order Hadronic Vacuum Polarization $a_{\mu}^{\text{hvp}} = 6931(34) \times 10^{-11}$ by phenomenology desired Lattice QCD calculation for new physics search

Summary

PACS10 project

Removing all main uncertainties in lattice QCD

 $m_{\pi} = 0.135$ GeV, L = 10 fm, a = 0.8, 0.6, 0.4 for $a \to 0$

Encouraging results obtained from PACS10 configuration

- charge radius for π, K, N
- new physics search from $|V_{us}|$ and a_{μ}

Future works

- finish PACS10-3 generation
- precise physical quantity for stable hadrons [arXiv:1807.06237]
 mass, decay constant, charge radius, ···
- multi-hadron systems

scattering, strong and weak decays, nucleus, ···