Computational magnetic materials discovery

Takashi Miyake CD-FMat, AIST, Tsukuba

Collaborators Tien-Lam Pham, Hieu-Chi Dam (JAIST) Hiori Kino, Kiyoyuki Terakura (NIMS)

Materials discovery

✓ Superconductor having highest *T*_c?
 ✓ Harder material than diamond ?
 ✓ Strong magnet ?

- - -

Atomic species + Composition + Structure

History of permanent magnet

- \checkmark High saturation magnetization
- ✓ High coercivity \rightarrow High magnetocrystalline anisotropy
- ✓ High Curie temperature
- ✓ Phase stability

Intrinsic properties

Sample dependent (microstructure, interfaces, ...)

Nd-Fe-B magnet

K. Hono (NIMS)

- ✓ Saturation magnetization
 ✓ Magneteon atomics
- ✓ Magnetocrystalline anisotropy
- ✓ Curie temperature

- ✓ Coercivity
- ✓ Microstructure

Magnet compounds

Magnetic properties

- Saturation magnetization
- Magnetocrystalline anisotropy
- Curie temperature

Structural properties

• Phase stability

Fe, Co, Mn, ...

Nd, Sm, ...

B, C, N, ...

Other elements ???

the second secon

Slater-Pauling curve Calculation by H. Akai

Hard-magnetic compounds

Hirayama, Miyake and Hono, JOM 67, 1344 (2015)

2:14:1 type $Nd_2Fe_{14}B$

1:5 type (*m*=1, *n*=0) SmCo₅, YCo₅

2:17, 2:17:3 type (*m*=3, *n*=1) Sm₂Co₁₇, Sm₂Fe₁₇N₃

1:12 type (*m*=2, *n*=1) SmFe₁₁Ti, NdFe₁₁TiN

 $R_{m-n}T_{5m+2n}$

NdFe₁₂N film

Y. Hirayama et al., Scripta Materialia **95**, 70 (2015)

Chemical substitution

High-throughput computational screening

Direct screening of 1,280 compounds by first-principles calculation

System	(BH) ^{£57} _{mms} [kJ/m ³]	""Мала [T]	K1454 [MJ/m3]	Hasa (T)	Kather [MJ/m3]	μ.M. 49 [T]	Hay (T)
NdFe ₁₂	636	1.99	3	3	-2.2*		
NdFe ₁₀ B	611	1.95	45	58			
NdFe ₁₂ C	617	1.96	47	60	8		
NdFe ₁₀ N	686	2.06	47	57	9.91*	1.664	84
NdFe ₁₁ Ti	438	1.65	4	7	-0.58' 1.70"	1.70*	2.0*
NdFe ₁₁ TiB	432	1.64	48	72	-0.70/		
NdFenTiC	432	1.64	50	76	2.6/		
NdFe ₁₁ TiN	487	1.74	49	71	11.3 10.6	1.484	≥7*,
CeFe ₁₂	586	1.91	4	5			
CeFegB/C/N	556/568/630	1.86/1.88/1.98	127/137/139	170/182/175			
CeFe ₁₁ Ti	396	1.57	11	18		1.19' 1.55"	2.96 2.3*
CeFe ₁₁ TtB/C/N	396/391/443	1.57/1.56/1.66	134/145/148	213/232/222			
SmFe ₁₂	538	1.83	-5	-6	2.4'		
SmFearTi	357	1.49	8	-13	-0.52"		
SmFe ₁₁ TiN	401	1.58	-73	-115	-20.4*		
SmFe ₁₀ N	580	1.90	-71	-93	-18.1*		
CeFe ₁₁ Co ₁ B/N	536/605	1.83/1.91	129/142	176/183			
CeFe _g Co ₄ B/C/N	464/464/521	1.70/1.70/1.80	116/141/146	168/208/203			
CeFe _s Nt _s N	417	1.61	167	260	1 C		
NdFe ₁₁ Co ₁ B/C/N	586/586/661	1.91/1.91/2.03	46/48/48	60/63/59			
NdFesCosB/C/N	520/505/574	1.80/1.77/1.89	41/49/50	57/69/67			

Körner, Krugel and Elsässer, Sci. Rep. 6, 24686 (2016)

Topological materials

T. Zhang et al., arXiv: 1807.08756

c.f. F. Tang et al., arXiv:1807.09774 M.G. Vergniory et al., arXiv:1807.10271

Structure data from database 39,519 materials from ICSD Electronic structure 8,056 are topological by first-principles calc.

5,005 topological semimetals

1,814 topological insulators

1,237 topological crystalline insulators

Exhaustive search ??

Virtual screening

Virtual screening

① Computational database

OQMD:

Home Materials Analysis Documentation Download

The Open Quantum Materials Database

Newsflash: OQMD v1.1 is out! (Download it here.)

Welcome to the Open Quantum Materials Database

The OQMD is a database of DFT-calculated thermodynamic and structural properties. This online interface is for convenient, small-scale access; for a more powerful utilization of the data, we recommend downloading the entire database and the API for interfacing with it, from the link below.

You can...

Search for materials by composition,

- Create phase diagrams using the thermochemical data in OQMD,
- Determine ground state compounds at any composition,

Visualize crystal structures, or

Download the entire database (and the API) for your own use!

Current status

OQMD v1.1 has been released! Download it here. The database now contains 471857 entries. In addition, calculations of new structures are constantly ongoing! Recently added compounds include: EuPaBe PrPaFe PaReHg AcLaPa KPaMo

✓ 9485 Fe compounds
✓ 9541 Co compounds
✓ 9932 Ni compounds

RTX materials

T_{4d-5d} = ["Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg"]

T_{3d} = ["Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"]

R = ["La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu"]

```
X = ["B", "C", "N", "O"]
```

Optimized structure Total energy Magnetic moment etc.

2 Machine-learning model

Kernel regression

$$f(\vec{x}) = \sum_{i=1}^{N} \alpha_i k(\vec{x}^{(i)}, \vec{x})$$

Gaussian kernel

$$k(\vec{x}, \vec{x'}) = C \exp(-\beta ||\vec{x} - \vec{x'}||^2)$$

Laplacian kernel

$$k(\vec{x}, \vec{x'}) = C \exp(-\beta ||\vec{x} - \vec{x'}||)$$

Orbital Field Matrix (OFM)

Pham et al., STAM 18, 756 (2017)

2 Orbital Field Matrix (OFM)

Formation energy

Pham et al., STAM **18**, 756 (2017)

- Data: 4,220 *R*-*T*-*X* compounds
- DFT: VASP+GGA
- Machine learning: KRR + OFM

RMSE = 0.190 eV/atomMAE = 0.112 eV/atom $R^2 = 0.98$

Pham et al., STAM 18, 756 (2017)

- Data: 4,220 *R*-*T*-*X* compounds
- DFT: VASP+GGA
- Machine learning: KRR + OFM

RMSE = 0.190 eV/atom MAE = 0.112 eV/atom $R^2 = 0.98$

OFM1 + Manhattan distance + Laplace kernel regressor

RMSE = 0.110 eV/atom

MAE = 0.067 eV/atom

Pham et al., JCP 148, 204106 (2018)

 $R^2 = 0.994$

https://materialsproject.org/wiki/images/6/6f/Convexhull.png

Collect experimental $T_{\rm C}$'s of 101 *R*-*T* alloys from database (AtomWork)

H. Kino (NIMS)

- ✓ Represent a compound by a vector x
- ✓ 27 primary descriptors characterizing crystal constituent elements and structure

Category	Descriptors
Atomic properties of	$Z_T, r_T, r_T^{cv}, IP_T, \chi_T, S_{3d}, L_{3d}, J_{3d}$
transition metals (T)	
Atomic properties of	$Z_R, r_R, r_R^{cv}, IP_R, \chi_R, S_{4f}, L_{4f}, J_{4f}, g_J, J_{4f}g_J,$
rare-earth metals (R)	$J_{4f}(1-g_J)$
Structural information	$C_T, C_R, d_{T-T}, d_{T-R}, d_{R-R}, N_{T-R}, N_{R-R},$
(S)	N_{R-T}

Machine learning

- ✓ Select a subset of 27 primary descriptors that maximizes prediction accuracy (Exhaustive search for 2²⁷-1 combinations)
- ✓ Gaussian kernel-ridge regression
- ✓ 10-fold cross validation

Dam et al., J. Phys. Soc. Jpn. (accepted)

 $T_{\rm C}$ of *R*-*T* bimetals

Prediction

Understanding?

Subgroup relevance analysis

Dam et al., J. Phys. Soc. Jpn. (accepted)

 $\operatorname{cov}(X,Y) = \langle X - \langle X \rangle \rangle \langle Y - \langle Y \rangle \rangle$

covariance

Subgroup relevance analysis

Dam et al., J. Phys. Soc. Jpn. (accepted)

n	score	descriptor(s)
2	0.870153	C _R ,Z _T
3	0.942222	(C_R, Z_R, Z_T)
4	0.953386	J_{3d}, C_R, Z_R, Z_T
5	0.954294	$L_{3d}, J_{3d}, C_R, Z_R, Z_T$
6	0.954391	$L_{3d}, J_{3d}, \chi_T, C_R, Z_R, Z_T$
7	0.954452	$L_{3d}, J_{3d}, \chi_T, C_R, Z_R, Z_T, r_T^{cv}$
8	0.954448	$L_{3d}, J_{3d}, \chi_T, IP_T, C_R, Z_R, Z_T, r_T^{cv}$

Result by exhaustive search

Summary

- High-throughput screening by a combined computational and machine-learning techniques
- Virtual screening of Nd-Fe-B compounds using kernel-ridge regression and orbital-field-matrix
- Kernel-ridge regression of Curie temperature: important descriptors and descriptor groups by subgroup relevance analysis