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Materials discovery 2

ü Superconductor having highest Tc?
ü Harder material than diamond ?
ü Strong magnet ?
…

Atomic species + Composition + Structure



History of permanent magnet 3

Nd2Fe14B

ü High saturation magnetization
ü High coercivity → High magnetocrystalline anisotropy
ü High Curie temperature
ü Phase stability



Intrinsic properties Sample dependent
(microstructure, interfaces, …)

K. Hono (NIMS)

Nd-Fe-B magnet
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Hard axis

Magnet compound vs Magnet material 4

ü Saturation magnetization
ü Magnetocrystalline anisotropy 
ü Curie temperature

ü Coercivity
ü Microstructure



Magnetic properties
• Saturation magnetization
• Magnetocrystalline anisotropy
• Curie temperature

Structural properties
• Phase stability

Fe, Co, Mn, …

Nd, Sm, …

B, C, N, …

Other elements ???

5Magnet compounds

Slater-Pauling curve
Calculation by H. Akai



2:14:1 type
Nd2Fe14B

1:5 type  (m=1, n=0)
SmCo5, YCo5

2:17�2:17:3 type (m=3, n=1)
Sm2Co17, Sm2Fe17N3

1:12 type (m=2, n=1)
SmFe11Ti, NdFe11TiN

Rm-nT5m+2nHirayama, Miyake and Hono, JOM 67, 1344 (2015)

6Hard-magnetic compounds



NdFe12N film

Y. Hirayama et al., Scripta Materialia 95, 70 (2015)
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MagnetizationMagnetic anisotropy
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R (Fe1-a Ta )12 X

Chemical substitution

Nd�
Fe(8i)�

N�

Fe(8j)�(

Fe(8f)�

B, C, N

Ti, Cr, V, Mn, Co, Ni, … 

Ce, Pr, Nd, Sm, …

• Magnetization
• Magnetocrystalline anisotropy
• Curie temperature
• Formation energy



Körner, Krugel and Elsässer, Sci. Rep. 6, 24686 (2016) 

High-throughput computational screening 9

Direct screening of 1,280 compounds by first-principles calculation



Topological materials 10

T. Zhang et al., arXiv: 1807.08756

F. Tang et al., arXiv:1807.09774
M.G. Vergniory et al., arXiv:1807.10271

c.f. 

Structure data
from database

Electronic structure
by first-principles calc.

39,519 materials from ICSD

8,056 are topological

5,005 topological semimetals
1,814 topological insulators
1,237 topological crystalline insulators



Exhaustive search ?? 11

Material data
from database

Evaluate properties by 
first-principles calculation

Recommend new compounds

Candidate compounds
by chemical substitution

{ xi }   material

{ x´i }   material

{ y´i }   property



Virtual screening 12

Material data

Validation by 
first-principles calculation

Recommend new compounds

Candidate compounds
by chemical substitution

{ xi }   material
{ yi }   property

{ x´i }   material { y´i }   property

Machine-learning model

y = f (x)



Virtual screening 13

Material data

Validation by 
first-principles calculation

Recommend new compounds

Candidate compounds
by chemical substitution

{ y´i }   formation energy

Machine-learning model

y = f (x)

�

R-T-X
�

③
Nd-Fe-B



14① Computational database

ü 9485 Fe compounds
ü 9541 Co compounds
ü 9932 Ni compounds

T4d-5d = ["Y", "Zr", "Nb", 
"Mo", "Tc", “Ru", "Rh", "Pd", 
"Ag", "Cd", "Hf", "Ta", "W", 
"Re", "Os", "Ir", "Pt", "Au", 
“Hg"]

T3d = ["Ti", "V", "Cr", "Mn", 
"Fe", "Co", "Ni", "Cu", “Zn"]

R = ["La", "Ce", "Pr", "Nd", 
"Pm", "Sm", "Eu", "Gd", 
"Tb", "Dy", "Ho", "Er", "Tm", 
“Yb", “Lu"]

X = ["B", "C", "N", "O"]

RTX materials

http://oqmd.org

Optimized structure
Total energy
Magnetic moment
etc.



15② Machine-learning model
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16② Descriptor

Sci. Technol. Adv. Mater. 18 (2017) 759 T. LAM PHAM et al.

Figure 1. OFM representation for an Na atom in a regular octahedral site surrounded by six Cl atoms: atomic one-hot vector for Na
(left), representation for the six Cl atoms surrounding the Na atom (middle), and representation for the Na atom surrounded by six
Cl atoms (right).

Fij =
Np∑

p
X

′p
ij , (3)

where F is the OFM representing the entire molecule.
For the formation energy (per atom) of a crystal, which
is not proportional to the system size, the descriptor
for the entire structure is obtained by averaging the
descriptors of the local structures:

Fij = 1
Np

Np∑

p
X

′p
ij , (4)

where Np is the number of atoms in the unit cell.

3. Results and discussion

3.1. Prediction of local atomic properties

We now examine how the OFM can be employed to
predict the local atomic properties of materials. In this
work, we focus on the local magnetic moments of
transition-metals in LAT alloys (in ferromagnetic con-
figuration), the dataset of which includes 658 struc-
tures collected from the Materials Project database [28,
29]. We select the structures by combining transition-
metals and lanthanides from the sets of {Sc, Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au} and
{La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu}. We employ Vienna Ab Initio Simulation
Package (VASP) 5.4.1 [30–33] with the generalized gra-
dient approximation (GGA)/Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional[34,35] to calcu-
late the local magnetic moments of these structures.
We followed the Materials Project database regard-
ing the selection of projector augmented wave (PAW)

projectors [36,37], and employed pymatgen 4.3.0 [27]
to prepare the VASP input files with 0.1eV Gaussian
smearing of MITRelaxSet and a k-point mesh density
of 150Å− 3. The energy cutoff is 520 eV. The VASP-
PAW includes scalar relativistic effects by default. We
perform collinear spin calculations without spin-orbit
coupling. The systematic simulations performed in this
study were conducted with the assistance of the Or-
ganizing Assistant for Comprehensive and Interactive
Simulations (OACIS) [38].

In LAT alloys, three types of exchange interactions
exist, including the exchange interaction between
transition-metal (T) atoms in the T sub-lattices (T–
interaction), the exchange interaction between
lanthanidemetal (LA) atoms and the T sub-lattices (LA
–T interaction), and the exchange interaction between
lanthanide metal atoms in the LA sub-lattices (LA –
interaction). The exchange interactions involving LA
elements are mediated by their 5d states, because of
the strong spatial localization of the 4f states. The LA–
T interaction is weak and the LA–LA interaction is
marginal, in comparison to the T–T interaction. Our
description of the local structure in terms of the co-
ordination of the valence electrons is expected to in-
clude a significant amount of information regarding
thesemagnetic interactions, which are essential for pre-
dicting the local magnetic moment. We first exam-
ine which elements in the OFM determine the local
magnetic moments of the Mn, Fe, Co, and Ni sites
in the LAT dataset through decision tree regression
analyses.

To obtain the coordination information, we first
employ Equation (1) to analyze the local magnetic mo-
ments, without considering the effects of different
atomic orbitals having the same angular quantumnum-
bers, but different principle quantum numbers. We
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Pham et al., STAM 18, 756 (2017)
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transition-metals and the occupied f orbitals of the
lanthanides play important roles in determining the
local magnetic moments of the transition-metal sites.
The obtained results confirm the interpretability of our
OFM representation regarding structural and physical
chemistry. In addition, kernel ridge regression (KRR)
analyses using standard techniques and similarity mea-
sures are implemented in learning prediction models
to quantitatively predict the local magneticmoments of
transition-metal sites in LAT alloys, formation energies
for LATX materials, and atomization energies for or-
ganicmolecules. Our computational experiments show
that the OFM representation can accurately reproduce
the local magnetic moments of transition-metal sites in
LAT alloys, formation energies of crystalline systems,
and atomization energies of molecular systems. The
high prediction accuracy confirms the practicability of
our OFM representation.

2. Methodology

2.1. Representation ofmaterials

To design the representation for a material, we start
with the representation for an atom as a material build-
ing block. We utilize the standard notation for elec-
tron configuration to develop the representation for
an atom; e.g. the electron configurations of Na and Cl
are [Ne]3s1 and [Ne]3s23p5, respectively. In order to
convert this standard notation into a numerical vec-
tor, we borrow the concept of one-hot vector in the
field of natural language processing, in which a word is
represented by a bit vector having the dimension of the
number of words in a dictionary. The vector consists
of elements with values of 0, with the exception of a
single element used uniquely to identify the word. The
representation of an atom is then converted from the
standard notation into a one-hot vector O⃗atom by using
a dictionary comprised of the valence subshell orbitals:
D = {s1, s2, p1, p2, . . . , p6, d1, d2, . . . , d10, f 1, f 2, . . . ,
f 14} (e.g. d5 indicates the electron configuration in
which the atomic valence d orbital holds five electrons),
which consists of 32 elements (Figure 1).

Next, we design the representation of the coordina-
tion number. It is not easy to define the coordination
number for realistic crystal structures and there exist
a number of such definitions. In this study, we adopt
the definition by O’Keeffe [26], which utilizes the solid
angles determined by the faces of the Voronoi polyhe-
dra. This method can give the same coordination num-
bers for the high-symmetry atomic environment and
evaluate coordination numbers for the
lower-symmetry atomic environment automatically
and with no ambiguity. We implement this method us-
ing Python Materials Genomics (pymatgen) code [27].

We represent a local structure surrounding an atom
by considering the sumof theweighted vector represen-

tations of all surrounding atoms in the local structure
using O⃗atom and the coordination number. A central
atom at site p in a local structure can be represented
using theOFMwith the elementsXp, which are defined
as follows:

Xp =
np∑

k=1
O⃗pT × O⃗k × wk,

Xp
ij =

np∑

k=1
opi o

k
j

θ
p
k

θ
p
max

, (1)

where i, j ∈ D; k is the index of the nearest-neighbor
atoms; np is the number of nearest-neighbor atoms
surrounding site p; wk is a weight that represents the
contribution of atom k to the coordination number
of the center atom, p; okj and opi are elements of the
one-hot vectors of the kth neighboring atom and p
(ouv is 1 if the valence orbitals of the atom at site u
have electron configuration of type v; otherwise, it is 0)
representing the electron configuration. Further, wk =
θ
p
k /θ

p
max , gives a weight of atom k in the coordination

of the central atom at site p, where θ
p
k is the solid

angle determinedby the face of theVoronoi polyhedron
separating k and p, and θ

p
max is the maximum among

np of them. An element of OFM, Xp
ij , represents the

number of orbitals j coordinating the center orbital i.
Additionally, to incorporate the information on the

sizes of the valence orbitals, the distance rpk between
p and k should be included in wk. We propose the
following form for the calculation of theOFMelements:

X
′p
ij =

np∑

k=1
opi o

k
j

θ
p
k

θ
p
max

ζ(rpk), (2)

where ζ(rpk) is a function representing the contribution
of rpk to wk. In this work, we use the inverse of the
distance as the distance-dependent weight function:
ζ(rpk) = 1/rpk. We use this ζ(rpk) to distinguish atoms
of the same valence configuration with different core
shells and to describe the length dependence between
the atoms. (Note thatwe can add the information on the
core shells to the hot vector without losing the algebraic
operation.)

Composing thedescriptor for a structure (amolecule
or a crystal system) from its local structure represen-
tation requires careful consideration. From the data
science viewpoint, the composed descriptors should
include as much information as possible. On the other
hand, from thematerials science viewpoint, the descrip-
tors should be composed so that the natures of the
target physical properties are reflected appropriately.
For simplicity, in this work, for the atomization energy
of a molecule (which is proportional to the molecule
size), we take the sum of the descriptors of the local
structures as the descriptor for the entire structure:
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transition-metals and the occupied f orbitals of the
lanthanides play important roles in determining the
local magnetic moments of the transition-metal sites.
The obtained results confirm the interpretability of our
OFM representation regarding structural and physical
chemistry. In addition, kernel ridge regression (KRR)
analyses using standard techniques and similarity mea-
sures are implemented in learning prediction models
to quantitatively predict the local magneticmoments of
transition-metal sites in LAT alloys, formation energies
for LATX materials, and atomization energies for or-
ganicmolecules. Our computational experiments show
that the OFM representation can accurately reproduce
the local magnetic moments of transition-metal sites in
LAT alloys, formation energies of crystalline systems,
and atomization energies of molecular systems. The
high prediction accuracy confirms the practicability of
our OFM representation.

2. Methodology

2.1. Representation ofmaterials

To design the representation for a material, we start
with the representation for an atom as a material build-
ing block. We utilize the standard notation for elec-
tron configuration to develop the representation for
an atom; e.g. the electron configurations of Na and Cl
are [Ne]3s1 and [Ne]3s23p5, respectively. In order to
convert this standard notation into a numerical vec-
tor, we borrow the concept of one-hot vector in the
field of natural language processing, in which a word is
represented by a bit vector having the dimension of the
number of words in a dictionary. The vector consists
of elements with values of 0, with the exception of a
single element used uniquely to identify the word. The
representation of an atom is then converted from the
standard notation into a one-hot vector O⃗atom by using
a dictionary comprised of the valence subshell orbitals:
D = {s1, s2, p1, p2, . . . , p6, d1, d2, . . . , d10, f 1, f 2, . . . ,
f 14} (e.g. d5 indicates the electron configuration in
which the atomic valence d orbital holds five electrons),
which consists of 32 elements (Figure 1).

Next, we design the representation of the coordina-
tion number. It is not easy to define the coordination
number for realistic crystal structures and there exist
a number of such definitions. In this study, we adopt
the definition by O’Keeffe [26], which utilizes the solid
angles determined by the faces of the Voronoi polyhe-
dra. This method can give the same coordination num-
bers for the high-symmetry atomic environment and
evaluate coordination numbers for the
lower-symmetry atomic environment automatically
and with no ambiguity. We implement this method us-
ing Python Materials Genomics (pymatgen) code [27].

We represent a local structure surrounding an atom
by considering the sumof theweighted vector represen-

tations of all surrounding atoms in the local structure
using O⃗atom and the coordination number. A central
atom at site p in a local structure can be represented
using theOFMwith the elementsXp, which are defined
as follows:

Xp =
np∑

k=1
O⃗pT × O⃗k × wk,

Xp
ij =

np∑

k=1
opi o

k
j

θ
p
k

θ
p
max

, (1)

where i, j ∈ D; k is the index of the nearest-neighbor
atoms; np is the number of nearest-neighbor atoms
surrounding site p; wk is a weight that represents the
contribution of atom k to the coordination number
of the center atom, p; okj and opi are elements of the
one-hot vectors of the kth neighboring atom and p
(ouv is 1 if the valence orbitals of the atom at site u
have electron configuration of type v; otherwise, it is 0)
representing the electron configuration. Further, wk =
θ
p
k /θ

p
max , gives a weight of atom k in the coordination

of the central atom at site p, where θ
p
k is the solid

angle determinedby the face of theVoronoi polyhedron
separating k and p, and θ

p
max is the maximum among

np of them. An element of OFM, Xp
ij , represents the

number of orbitals j coordinating the center orbital i.
Additionally, to incorporate the information on the

sizes of the valence orbitals, the distance rpk between
p and k should be included in wk. We propose the
following form for the calculation of theOFMelements:

X
′p
ij =

np∑

k=1
opi o

k
j

θ
p
k

θ
p
max

ζ(rpk), (2)

where ζ(rpk) is a function representing the contribution
of rpk to wk. In this work, we use the inverse of the
distance as the distance-dependent weight function:
ζ(rpk) = 1/rpk. We use this ζ(rpk) to distinguish atoms
of the same valence configuration with different core
shells and to describe the length dependence between
the atoms. (Note thatwe can add the information on the
core shells to the hot vector without losing the algebraic
operation.)

Composing thedescriptor for a structure (amolecule
or a crystal system) from its local structure represen-
tation requires careful consideration. From the data
science viewpoint, the composed descriptors should
include as much information as possible. On the other
hand, from thematerials science viewpoint, the descrip-
tors should be composed so that the natures of the
target physical properties are reflected appropriately.
For simplicity, in this work, for the atomization energy
of a molecule (which is proportional to the molecule
size), we take the sum of the descriptors of the local
structures as the descriptor for the entire structure:
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Generalization

Orbital Field Matrix (OFM)
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• Data: 4,220 R-T-X compounds
• DFT: VASP+GGA
• Machine learning: KRR + OFM

Sci. Technol. Adv. Mater. 18 (2017) 763 T. LAM PHAM et al.

Figure 3. Comparison of formation energies calculated using DFT and those predicted through machine learning (ML-predicted),
using OFM.

(a) (b)

Figure 4. Standard deviations of local OFMs of QM7 (a) and LATX (b) datasets.

gies of LATX systems, and comparable accuracy to the
CM descriptor for the atomization energies of organic
molecular systems in the QM7 dataset. It may be noted
that, for molecular systems (the QM7 dataset contains
light elements such as C, H, O, N, and S only), the
CM descriptor yields a slightly better result than our
OFM. However, for LATX systems with a variety of
elements (the LATXdataset contains transition-metals,
lanthanides, and light elements), our OFM exhibits su-
perior prediction ability.

Figure 4(a) and (b) depicts the standard deviations
of the OFMs of all local structures for the QM7 and
LATXdatasets, respectively. It is apparent that theQM7
dataset contains only a small number of non-zeroOFM
elements, whereas the LATX dataset exhibits a large
variety of OFMs. Moreover, the QM7 dataset exhibits a
small deviation of the OFM, whereas the LATX dataset
has a greater deviation. These differences arise because
the QM7 dataset is comprised of organic molecules,
where the covalent bonding formed by the sp
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Formation energy

RMSE = 0.190 eV/atom  

MAE = 0.112 eV/atom
R2 = 0.98

Pham et al., STAM 18, 756 (2017)

② Orbital Field Matrix (OFM)

DFT energy (eV/atom)
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18② OFM, OFM1

OFM1 + Manhattan distance + Laplace kernel regressor

RMSE = 0.110 eV/atom  
MAE = 0.067 eV/atom

R2 = 0.994Pham et al., JCP 148, 204106 (2018)
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Figure 3. Comparison of formation energies calculated using DFT and those predicted through machine learning (ML-predicted),
using OFM.

(a) (b)

Figure 4. Standard deviations of local OFMs of QM7 (a) and LATX (b) datasets.

gies of LATX systems, and comparable accuracy to the
CM descriptor for the atomization energies of organic
molecular systems in the QM7 dataset. It may be noted
that, for molecular systems (the QM7 dataset contains
light elements such as C, H, O, N, and S only), the
CM descriptor yields a slightly better result than our
OFM. However, for LATX systems with a variety of
elements (the LATXdataset contains transition-metals,
lanthanides, and light elements), our OFM exhibits su-
perior prediction ability.

Figure 4(a) and (b) depicts the standard deviations
of the OFMs of all local structures for the QM7 and
LATXdatasets, respectively. It is apparent that theQM7
dataset contains only a small number of non-zeroOFM
elements, whereas the LATX dataset exhibits a large
variety of OFMs. Moreover, the QM7 dataset exhibits a
small deviation of the OFM, whereas the LATX dataset
has a greater deviation. These differences arise because
the QM7 dataset is comprised of organic molecules,
where the covalent bonding formed by the sp
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Formation energy
Pham et al., STAM 18, 756 (2017)

• Data: 4,220 R-T-X compounds
• DFT: VASP+GGA
• Machine learning: KRR + OFM

RMSE = 0.190 eV/atom  

MAE = 0.112 eV/atom
R2 = 0.98

DFT energy (eV/atom)
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19③ Phase stability

https://materialsproject.org/wiki/images/6/6f/Convexhull.png

Ef

X
EH

DE

DE = Ef - EH
DE < 0 :  Stable



Curie temperature of R-T bimetals

Collect experimental TC’s of 101 R-T alloys from database (AtomWork)

H. Kino (NIMS)
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Descriptors

ü Represent a compound by a vector x
ü 27 primary descriptors characterizing crystal constituent elements and 

structure

x = (ZT, rT, … , ZR, rR, ..., CT, CR, ...)

21

J. Phys. Soc. Jpn. LETTERS

Category Descriptors
Atomic properties of
transition metals (T)

ZT , rT , rcv
T , IPT , χT , S 3d , L3d , J3d

Atomic properties of
rare-earth metals (R)

ZR, rR, rcv
R , IPR, χR, S 4 f , L4 f , J4 f , gJ , J4 f gJ ,

J4 f (1 − gJ)
Structural information
(S)

CT , CR, dT−T , dT−R, dR−R, NT−R, NR−R,
NR−T

Table I. Transition metal, rare-earth and structural descriptors. See also the
supporting information.

binations in another way, such as indicator diagram to select
the best combinations depending on the purpose of the analy-
sis.6–8)

Yet, it isn’t easy to understand relationship and structures
among descriptors from a huge list of scores and descriptors.
Informatics treatment usually thinks little of the importance of
meaning of descriptors, though they are the physical param-
eters that physicists regards as important. But, we hope that
we can extract more information from the huge data. In the
present work, we introduce well-defined subgroup concept to
clarify the relationship among descriptors. Our method can
also elucidate the way how to choose the combination of the
descriptors systematically as well as the way to understand
the meaning of descriptors.

Our target variable is the experimental TC of the rare-earth
transition-metal binary stoichiometry alloys in this study.9)

We take descriptors from the element dependent categories
(R for rare-earth elements and T for transition metal ele-
ments). We utilize the knowledge of the conventional theory-
driven method. The key parameters of the effective theory-
driven models are related to the properties of constituent el-
ements and/or structural parameters. For example, the orbital
energy level increases (becomes deeper) as the atomic num-
ber Z increases. The electron interaction becomes stronger as
the atomic orbital is more localized. The magnetic exchange-
couplings are associated with the strength of electron interac-
tion and transfer integrals. Coupling strength between TM-3d
and RE-4f (through RE-5d) is crucial for discussing RE de-
pendence of the magnetism. The strength is proportional to
the 3d-4f effective exchange coupling and the 4f total spin
projected onto the 4f total angular moment J4 f . The latter
quantity is given by J4 f (1 − gJ) with gJ the Landé g-factor.
We also add the descriptors from the structure-related cate-
gory (S) to describe the ratio of the elements as well as real
volume or spatial dependent simple variables to distinguish,
e.g., Th2Zn17 and Th2Ni17 polytypes. We list the descriptors
in Table I and give their detailed explanations in the support-
ing information.

As a regression model, we employ the kernel ridge regres-
sion with the radial basis function kernel. The kernel ridge
regression can include the non-linear effects of the descrip-
tors and has much stronger power to fit target functions with
descriptors though there exist a demerit of taking much more
time to fit/predict the regression models than the linear re-
gression does. We used python scripts with mpi4py, scipy and
scikit-learn.10, 11) Our scores in the regression models are the
R2 values, which we evaluate in the leave-one-out cross vali-
dation.

First, we analyze the descriptors. We take Pearson’s corre-

all

leave-CR-out

Fig. 1. Top panel: The blue line shows the best score for each number of
descriptors. The orange dotted line shows the score when CR is removed.
Bottom panel: CR (Å−3) vs TC (◦ C).

lation coefficient between descriptors. The absolute values of
Pearson’s correlation coefficient among three descriptors, ZT ,
rT and S 3d, among the T categories are the same, 1, which
means that their contributions are the same in the regression
model after the normalization procedure. Therefore, the num-
ber of the independent descriptors is reduced from 27 to 25.
Then, we execute exhaustive search for 225 − 1 = 3.3 × 107

regression models where the combinations of descriptors are
different and evaluate their accuracy values (scores).

We usually evaluate the score of the regression model.
However, we want to evaluate the importance of the descrip-
tors. We change a viewpoint from the regression model to
the descriptor to discuss the importance of the latter. We use
the relevance analysis,12, 13) which roughly corresponds to the
linear response theory as to the descriptors. (See also the
supporting information.) It originally utilizes the change of
values when we remove/add a descriptor. The former corre-
sponds to the leave-one-out experiment, while the latter the
add-one-in experiment. The descriptor is strongly or weakly
relevant when their accuracy score changes meaningfully in
the leave-one-out or in the add-one-in experiment, respec-
tively.

Our first relevance analysis is that on the strong relevance.
We found that it is only the descriptor, CR, which is strongly
relevant. We can verify the importance of CR when we plot
CR vs TC . Almost all the points are placed in the bottom-left
side of the right panel of Fig. 1. It is no doubt that CR has
dominant dependence to TC . We note that we can’t find such
relationship if we simply execute regressions.

The second relevance analysis is that on the weak rele-
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Category Descriptors
Atomic properties of
transition metals (T)

ZT , rT , rcv
T , IPT , χT , S 3d , L3d , J3d

Atomic properties of
rare-earth metals (R)

ZR, rR, rcv
R , IPR, χR, S 4 f , L4 f , J4 f , gJ , J4 f gJ ,

J4 f (1 − gJ)
Structural information
(S)

CT , CR, dT−T , dT−R, dR−R, NT−R, NR−R,
NR−T

Table I. Transition metal, rare-earth and structural descriptors. See also the
supporting information.
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eters that physicists regards as important. But, we hope that
we can extract more information from the huge data. In the
present work, we introduce well-defined subgroup concept to
clarify the relationship among descriptors. Our method can
also elucidate the way how to choose the combination of the
descriptors systematically as well as the way to understand
the meaning of descriptors.

Our target variable is the experimental TC of the rare-earth
transition-metal binary stoichiometry alloys in this study.9)
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ments). We utilize the knowledge of the conventional theory-
driven method. The key parameters of the effective theory-
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and RE-4f (through RE-5d) is crucial for discussing RE de-
pendence of the magnetism. The strength is proportional to
the 3d-4f effective exchange coupling and the 4f total spin
projected onto the 4f total angular moment J4 f . The latter
quantity is given by J4 f (1 − gJ) with gJ the Landé g-factor.
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gory (S) to describe the ratio of the elements as well as real
volume or spatial dependent simple variables to distinguish,
e.g., Th2Zn17 and Th2Ni17 polytypes. We list the descriptors
in Table I and give their detailed explanations in the support-
ing information.

As a regression model, we employ the kernel ridge regres-
sion with the radial basis function kernel. The kernel ridge
regression can include the non-linear effects of the descrip-
tors and has much stronger power to fit target functions with
descriptors though there exist a demerit of taking much more
time to fit/predict the regression models than the linear re-
gression does. We used python scripts with mpi4py, scipy and
scikit-learn.10, 11) Our scores in the regression models are the
R2 values, which we evaluate in the leave-one-out cross vali-
dation.

First, we analyze the descriptors. We take Pearson’s corre-
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Fig. 1. Top panel: The blue line shows the best score for each number of
descriptors. The orange dotted line shows the score when CR is removed.
Bottom panel: CR (Å−3) vs TC (◦ C).

lation coefficient between descriptors. The absolute values of
Pearson’s correlation coefficient among three descriptors, ZT ,
rT and S 3d, among the T categories are the same, 1, which
means that their contributions are the same in the regression
model after the normalization procedure. Therefore, the num-
ber of the independent descriptors is reduced from 27 to 25.
Then, we execute exhaustive search for 225 − 1 = 3.3 × 107

regression models where the combinations of descriptors are
different and evaluate their accuracy values (scores).

We usually evaluate the score of the regression model.
However, we want to evaluate the importance of the descrip-
tors. We change a viewpoint from the regression model to
the descriptor to discuss the importance of the latter. We use
the relevance analysis,12, 13) which roughly corresponds to the
linear response theory as to the descriptors. (See also the
supporting information.) It originally utilizes the change of
values when we remove/add a descriptor. The former corre-
sponds to the leave-one-out experiment, while the latter the
add-one-in experiment. The descriptor is strongly or weakly
relevant when their accuracy score changes meaningfully in
the leave-one-out or in the add-one-in experiment, respec-
tively.

Our first relevance analysis is that on the strong relevance.
We found that it is only the descriptor, CR, which is strongly
relevant. We can verify the importance of CR when we plot
CR vs TC . Almost all the points are placed in the bottom-left
side of the right panel of Fig. 1. It is no doubt that CR has
dominant dependence to TC . We note that we can’t find such
relationship if we simply execute regressions.

The second relevance analysis is that on the weak rele-
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vance, where, in the original prescription, we add another de-
scriptor to the set of descriptors, which we must define. We
define groups and subgroups here and make use of them in the
relevance analysis. We utilize hierarchal clustering analysis,
where the distance between descriptors is one minus absolute
values of Pearson’s correlation coefficient. We can define the
groups or subgroups that are made of tree nodes containing
below the distance, d, of the clustering. For example, we can
define four groups at d = 0.5. Two of them have the same de-
scriptors as those of the T and R categories, while we have two
groups for the original S category. (We call the original cluster
category and the cluster by the hierarchical analysis group.)
The dTR constitutes a group, while the other S category de-
scriptors do the other. It isn’t surprising that the grouping at
d = 0.5 is almost the same as the categories defined a priori as
T, R and S when we remember the definition of the descrip-
tors of materials. Here we successfully defined the groups and
subgroups, where the groups are almost the same as the orig-
inal category but are clustered from the data themselves. (We
redefine the group S as the result of this clustering. The group
S that doesn’t include dTR is different from the category S.)

We can further make advances in this grouping. We notice
that the definition of the value of d is unnecessary, but we
only have to define the vertical line of the decomposition tree
to define subgroups because the child nodes below the vertical
line is the same. Thus, we are able to define many subgroups
of descriptors as sets of the child nodes of the dendrogram.

We also notice that the relevance analysis can be done not
only for a descriptor, but also for a subgroup of descriptors.
We apply the relevance analysis not to a descriptor but to
a subgroup/group. We call this method subgroup relevance
analysis. We plotted the result in Fig. 2. The horizontal score
is evaluated in the leave-one-out experiment and related to
the strong relevance and the vertical scores in the add-one-in
experiment and to the weak relevance. Note that we evaluate
score of a subgroup belonging to the group under the condi-
tion that we must use at least one descriptor in the subgroup
and we can add any descriptors belonging to the other group
in the weak relevance analysis.

We explain how to read Fig. 2. The weak relevance val-
ues, or leave-one-out values are written as vertical values. The
subgroup containing only rR has the score, 0.894670, which is
the highest score in the condition that we must take the sub-
group rR in the group R and we can take any descriptors in
the other groups. (A subgroup which has a descriptor is also
a subgroup.) The subgroup containing rR, ZR and rcv

R has the
score, 0.954451, which is the highest score in the condition
that we must take at least one descriptor in the subgroup rR,
ZR and rcv

R of the group R and we can take any descriptors in
the other groups as explained in the previous paragraph.

The sole descriptor ZR in the group R has the highest score
(0.954451). It means that ZR can solely represent the group R.
It is also the case for the CR subgroup in the group S. But, the
structure of the group T is different from those of the group
R and of the group S. The subgroup made of J3d, χT , rcv

T ,
ZT (and rT and S 3d) has the highest score (0.948763), but its
child subgroup descriptors has smaller scores (0.924265 and
0.946501). It means that there exists no single descriptor that
can represent the whole nature of the group T. When we ex-
amine all the combinations made of J3d, χT , rcv

T , ZT , we find
that ZT takes the best score (0.954501) if we choose descrip-

Table II. The best R2 score and descriptors as a function of the number of
descriptors n.

n score descriptor(s)
2 0.870153 CR,ZT
3 0.942222 CR,ZR,ZT
4 0.953386 J3d ,CR,ZR,ZT
5 0.954294 L3d ,J3d ,CR,ZR,ZT
6 0.954391 L3d ,J3d ,χT ,CR,ZR,ZT
7 0.954452 L3d ,J3d ,χT ,CR,ZR,ZT ,rcv

T
8 0.954448 L3d ,J3d ,χT ,IPT ,CR,ZR,ZT ,rcv

T

tors among them, a set of ZT and J3d is the best (0.953386)
for two descriptors and a set of ZT , J3d and L3d is the best
(0.954451) for three descriptors. We note that the descriptor
ZT has the same effect as S 3d. We discuss the the interpreta-
tion of the result later.

We can also know the importance of the groups by the hor-
izontal values above the yellow solid line in Fig. 2. They are
the strong relevance, or leave-one-out values as to the groups,
T, R and S. For example, the group R has the value, 0.875866,
which is the best score when we remove all the descriptors of
the group R. The better the score is, the less important the
group is. The value, 0.506824, is the smallest among them,
which means that the group S is the most important among
the groups. On the other hand, the least important group is R,
the value of which is 0.875866. It means that the score still
holds a high value even if we exclude all the descriptors in the
group R. Therefore, the importance of group R is the lowest
among T, S and R.

We add additional explanation in Fig. 2. The descriptor
J4 f (1−gJ) can represent the subgroup containing gJ ,...,J4 f gJ ,
but the score is 0.932963, which is lower than the score
0.954451 of ZR. We also add comment on the group of dTR.
The strong relevance value is 0.954451 and the weak rele-
vance value is 0.953824. The facts that their difference is
small and that the weak relevance value is smaller than the
strong relevance value mean that the existence of the group
dTR makes the regression model worse.

Here, we compare the result of the subgroup relevance
analysis in Fig. 2 with the best score having n descriptors
without the subgroup relevance analysis in table II. The set
of CR, ZR and ZT is the best score (0.94222) for n = 3. The set
of CR, ZR, ZT and JR is the best score (0.953386) for n = 4.
The set of CR, ZR, ZT , JR and L3d is the best score (0.954294)
for n = 5. The descriptor sets are made of the most important
descriptor in the group R (ZR) and that in the group S (CR)
and those in the group T (ZT when we choose a descriptor.
J3d and ZT when we choose two descriptors and J3d, L3d and
ZT when we choose three.) These combinations are the same
as the analysis in the previous paragraph. Thus, the subgroup
relevance analysis successfully illustrates the structure among
descriptors and their importance.

We can get the conclusion that the descriptor CR is strongly
relevant when we define subgroups at d ∼ 0 and execute the
leave-one-out experiment. The original relevance analysis is
the special case of the subgroup relevance analysis. Therefore,
the subgroup relevance analysis is the natural extension from
the original relevance analysis.

We explain the advantage of the expression with the den-
drogram. For example, we can easily choose rcv

R if we don’t

3
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Figure 6: experimental TCversus CV predicted TC after fixing errors.
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Fig. 2. R2 scores of the subgroup relevance analysis on the hierarchical clustering of the descriptors. The

group R (green) starts from L4 f to rcv
R . The group T (red) starts from IPT to rT . The group S (cyan) is starts from

dTT to CT . The group dTR is made of the descriptor dTR. Horizontal values are strong relevance values and tilted

values are weak relevance values. The values of the vertical axis are the one minus the absolute values of the

Pearson’s correlation coefficient. Paths of the highest value (0.954451) are colored in yellow dashed lines. See

details in the main body also.
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we must use at least one descriptor in the subgroup and we can add any descriptors belonging
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vance, where, in the original prescription, we add another de-
scriptor to the set of descriptors, which we must define. We
define groups and subgroups here and make use of them in the
relevance analysis. We utilize hierarchal clustering analysis,
where the distance between descriptors is one minus absolute
values of Pearson’s correlation coefficient. We can define the
groups or subgroups that are made of tree nodes containing
below the distance, d, of the clustering. For example, we can
define four groups at d = 0.5. Two of them have the same de-
scriptors as those of the T and R categories, while we have two
groups for the original S category. (We call the original cluster
category and the cluster by the hierarchical analysis group.)
The dTR constitutes a group, while the other S category de-
scriptors do the other. It isn’t surprising that the grouping at
d = 0.5 is almost the same as the categories defined a priori as
T, R and S when we remember the definition of the descrip-
tors of materials. Here we successfully defined the groups and
subgroups, where the groups are almost the same as the orig-
inal category but are clustered from the data themselves. (We
redefine the group S as the result of this clustering. The group
S that doesn’t include dTR is different from the category S.)

We can further make advances in this grouping. We notice
that the definition of the value of d is unnecessary, but we
only have to define the vertical line of the decomposition tree
to define subgroups because the child nodes below the vertical
line is the same. Thus, we are able to define many subgroups
of descriptors as sets of the child nodes of the dendrogram.

We also notice that the relevance analysis can be done not
only for a descriptor, but also for a subgroup of descriptors.
We apply the relevance analysis not to a descriptor but to
a subgroup/group. We call this method subgroup relevance
analysis. We plotted the result in Fig. 2. The horizontal score
is evaluated in the leave-one-out experiment and related to
the strong relevance and the vertical scores in the add-one-in
experiment and to the weak relevance. Note that we evaluate
score of a subgroup belonging to the group under the condi-
tion that we must use at least one descriptor in the subgroup
and we can add any descriptors belonging to the other group
in the weak relevance analysis.

We explain how to read Fig. 2. The weak relevance val-
ues, or leave-one-out values are written as vertical values. The
subgroup containing only rR has the score, 0.894670, which is
the highest score in the condition that we must take the sub-
group rR in the group R and we can take any descriptors in
the other groups. (A subgroup which has a descriptor is also
a subgroup.) The subgroup containing rR, ZR and rcv

R has the
score, 0.954451, which is the highest score in the condition
that we must take at least one descriptor in the subgroup rR,
ZR and rcv

R of the group R and we can take any descriptors in
the other groups as explained in the previous paragraph.

The sole descriptor ZR in the group R has the highest score
(0.954451). It means that ZR can solely represent the group R.
It is also the case for the CR subgroup in the group S. But, the
structure of the group T is different from those of the group
R and of the group S. The subgroup made of J3d, χT , rcv

T ,
ZT (and rT and S 3d) has the highest score (0.948763), but its
child subgroup descriptors has smaller scores (0.924265 and
0.946501). It means that there exists no single descriptor that
can represent the whole nature of the group T. When we ex-
amine all the combinations made of J3d, χT , rcv

T , ZT , we find
that ZT takes the best score (0.954501) if we choose descrip-

Table II. The best R2 score and descriptors as a function of the number of
descriptors n.

n score descriptor(s)
2 0.870153 CR,ZT
3 0.942222 CR,ZR,ZT
4 0.953386 J3d ,CR,ZR,ZT
5 0.954294 L3d ,J3d ,CR,ZR,ZT
6 0.954391 L3d ,J3d ,χT ,CR,ZR,ZT
7 0.954452 L3d ,J3d ,χT ,CR,ZR,ZT ,rcv

T
8 0.954448 L3d ,J3d ,χT ,IPT ,CR,ZR,ZT ,rcv

T

tors among them, a set of ZT and J3d is the best (0.953386)
for two descriptors and a set of ZT , J3d and L3d is the best
(0.954451) for three descriptors. We note that the descriptor
ZT has the same effect as S 3d. We discuss the the interpreta-
tion of the result later.

We can also know the importance of the groups by the hor-
izontal values above the yellow solid line in Fig. 2. They are
the strong relevance, or leave-one-out values as to the groups,
T, R and S. For example, the group R has the value, 0.875866,
which is the best score when we remove all the descriptors of
the group R. The better the score is, the less important the
group is. The value, 0.506824, is the smallest among them,
which means that the group S is the most important among
the groups. On the other hand, the least important group is R,
the value of which is 0.875866. It means that the score still
holds a high value even if we exclude all the descriptors in the
group R. Therefore, the importance of group R is the lowest
among T, S and R.

We add additional explanation in Fig. 2. The descriptor
J4 f (1−gJ) can represent the subgroup containing gJ ,...,J4 f gJ ,
but the score is 0.932963, which is lower than the score
0.954451 of ZR. We also add comment on the group of dTR.
The strong relevance value is 0.954451 and the weak rele-
vance value is 0.953824. The facts that their difference is
small and that the weak relevance value is smaller than the
strong relevance value mean that the existence of the group
dTR makes the regression model worse.

Here, we compare the result of the subgroup relevance
analysis in Fig. 2 with the best score having n descriptors
without the subgroup relevance analysis in table II. The set
of CR, ZR and ZT is the best score (0.94222) for n = 3. The set
of CR, ZR, ZT and JR is the best score (0.953386) for n = 4.
The set of CR, ZR, ZT , JR and L3d is the best score (0.954294)
for n = 5. The descriptor sets are made of the most important
descriptor in the group R (ZR) and that in the group S (CR)
and those in the group T (ZT when we choose a descriptor.
J3d and ZT when we choose two descriptors and J3d, L3d and
ZT when we choose three.) These combinations are the same
as the analysis in the previous paragraph. Thus, the subgroup
relevance analysis successfully illustrates the structure among
descriptors and their importance.

We can get the conclusion that the descriptor CR is strongly
relevant when we define subgroups at d ∼ 0 and execute the
leave-one-out experiment. The original relevance analysis is
the special case of the subgroup relevance analysis. Therefore,
the subgroup relevance analysis is the natural extension from
the original relevance analysis.

We explain the advantage of the expression with the den-
drogram. For example, we can easily choose rcv

R if we don’t

3

Result by 
exhaustive search

1 - |r |
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26Summary

n High-throughput screening by a combined 
computational and machine-learning techniques

n Virtual screening of Nd-Fe-B compounds using 
kernel-ridge regression and orbital-field-matrix

n Kernel-ridge regression of Curie temperature: 
important descriptors and descriptor groups by 
subgroup relevance analysis


