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Main Target Problems
Medium size drugs +  Diversity in Structures (Vast Conformations)
Covalent bond-type drugs +  Reaction Contorl (First-principles Calculations)
Single Nucleotide Polymorphism »  Fast Gene Analysis
Drug discovery needs long time (10~15 year) and - - - s
($1billion) , But the success ration is less than 1/20000 Fusion of Biology, Medicine,

We needs a breakthrough for in silico drug discovery, and Physics to solve above problems
.e. detection of target, design of drug and proteins & etc.
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Mitocondrial protein detection by supercomputer “‘v Efficient sampling method by Molecular Dynamics

Gene analysis In Silico drug discovery project by AMED Post K Computer Project by MEXT
SNP analysis since 2017. since 2015

Protein Crowding Simulations
for Understanding
Biological Functions
in Cellular Environments

Toward molecular cellular-scale simulations
~to understand biological functions in cell~

To better understand cell,

—>analyze crowding effects, which control biochemical reactions in cell
(DDynamics : Protein dynamics under cellular environments
(@Thermodynamics: Protein interaction/stability under cellular environments
(Function: Protein functions under cellular environments
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The limitations of models

% Hard sphere model (Minton,1993) % NMR amide-exchange experiments of CI2
(Entropy-centered model) (Pielak, 2011)
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Crowding stabilizes or destabilized
proteins

Compact folded structures
are to stabilized
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wAll-atom MD simulations were performed to consider
enthalpy-centered protein-protein or protein-water interactions!

Protein crowding simulations

% We performed a series of

all-atom MD simulations of two different protein systems,
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Changing protein volume fraction
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Destabilizations of proteins
due to crowding

* Free energy landscapes of villin % Free energy landscapes of protein G
1 14 12

Protein interactions due to crowding

% Contact maps between protein G and villin
(average minimum distances)
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% Representative dimer structures

(protein G and villin)
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Radial distribution function

* PGO, PG1-4
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Water distributions around proteins
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% Distributions of bulk water (> 6A) drastically decreased
with protein volume fraction > 30% .
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Protein volume fraction f

% Diffusion coefficient and Dielectric constant linearly decreases
with protein volume fractions

Developments of
Computational Methods for
Promoting Biologically Relevant

Rare Events of Proteins

Mil

Background: Biologically Rare Event

*Brute-Force Molecular Dynamics (MD)
by a Special Purpose Supercomputer
(ex. ANTON from D. E. Shaw Research)

@ MF1
30 us
43!'&

'ﬂ
MF2

40 Jf
ﬁ;s 1ms t‘o s
i us

The accessible timescale of

normal MD simulation is far from

the timescale of rare events.

- 4 Time Scale of Biologically Rare Event ) -

llisecond-order Folding Simulation of Ubiquitin in Explicit Water II 10-19
by a Brute-Force MD. (PNAS, 110, 5915, (2013). Fig. 1) T
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Free Energy

Purpose: Developments of Methods for
Reproducing Rare Events
as Structural Transitions of Proteins

1. Parallel Cascade Selection MD
(PaCS-MD)
(J.Chem.Phys. 139, 035103 (2013))

2. Qutlier FLOODing
(OFLOOD) Method
(J. Comput. Chem. 36 97 (2015))
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In these methods, multiple and short-time MD simulations are used

instead of a long-time MD simulation.

For a review of other methods, see Phys.Chem.Chem.Phys., R. Harada et. al., 17, 6155-6173 (2015)
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Parallel Cascade Selection MD

Reactant Prody

(PaCS-MD)

Cycle

Reaction

Selection Coordinate

Restart MD

Selectian

Pyl

D

a

Q

-

<

O
Repeat

Sufficiently Close y,‘@r)

to Product

Start Short-Time MD

[ Trajectory from Short-Time MD ]
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Selections of Initial Structures
in PaCS-MD: Folding of Chignolin

Folding Pathways

|Selections of Initial Structures at Each Cycle |

Reproduced by PaCS-MD

Cycle of PaCS-MD
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* Computational cost: 100 ps X 10 initial structures / cycle

(1ns / cycle)
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* Snapshots are Ranked with RMSD from Product at Each Cycle.

% Highly ranked Top Ten Snapshots were Selected by low RMSD values.

J.Chem.Phys., R. Harada et. al.,139, 035103 (2013)

RMSD from the Closed state [A]

Open-Closed Transitions of Protein
Reproduced by PaCS-MD
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(224 residues)
in Explicit Solvent
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* Short-time (100 ps) MD simulation x 10 initial structures / cycle: 1 ns / cycle
Totally simulation time after the 50t cycle: 50 ns

* RMSD,seq < 1.0 A — Terminate PaCS-MD.




Computational Efficiency
of PaCS-MD

Profile of RMSD for a long-time . .o . , .
7000 ns = 1 ms) MD simulation Maltodextrin-Binding Protein  Blue: Experiment (Closed)
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RMSD from the open state [A] * 100-ps MD simulation x 10 initial structures / cycle: 1 ns / cycle

J. Struc. Biol., 198, 65 (2017)
Application: Structural Transition of
o FtsZ (Monomer)  FtsZ Monomer

Bacterial Division

The Side-Chain of Arg29 was Flipped
Upon the T-R Transition!
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Brof. Matsumura’s Group (Ritsumeikan Univ).

PaCS-MD Combined with

Experimental Data (PaCS-fit)
PaCS-MD Experiment (EM)
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Red: Snapshot after 30 cycles
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Sci.Rep. 6, 29360 (2016)  of Adenylate Kinase

How to define the scoring function

From PaCS-fit From experiments

The cross-correlation coeffici
farget EM map is computed as

CC =

= (pm,i B ﬁmM(ptarget,i - ﬁtarget)

\/Z(pmiipr-n)zug(fmaiip;argﬂ_)z_ (2)

where p,, ; is the electron density of simulated map at the i voxel and p,,,;; is the corresponding density in the
target map. During PaCS-Fit, all the CC values were computed by the collage program* in the Situs package’.

In PaCS-fit, initial structures would be selected so that values of CC gradually increase.
To reproduce data from EM, PaCS-fit is performed so that values of CC between
theoretical and experimental data would be correlated, i.e. CC — 1.




EM-driven PaCS-MD for MBP

Combining experimental EM data with
theoretical MD structures, we can predict
structures suitable to actual experimental
conditions

Experimental EM-data

Red: Experimental structure
Blue: EM-driven targeted PaCS-MD
Minimum C, RMSD = 0.8 A

Computational MD-structure

Summary of this talk

1. Molecular Dynamics Simulation in Cellular Condition

Crowding effects on protein folding

2. Parallel Cascade Selection Molecular Dynamics

Transition pathways among metastable structures
Prediction of Structures on the basis of experimental results
Protein-Protein interaction (PPT)




