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Building logical qubits in a superconducting quantum
computing system
Jay M. Gambetta1, Jerry M. Chow1 and Matthias Steffen1

The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman’s
famous ‘plenty of room at the bottom’ lecture (Feynman, Engineering and Science 23, 22 (1960)), hinting at the notion of novel
devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the
potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next
significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit
state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting
qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected
superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the
progress in this exciting field has been astounding, but we are at an important turning point, where it will be critical to incorporate
engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum
computers in the near future.
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INTRODUCTION
Quantum computing holds the promise of solving some
computation problems, that are untenable on conventional
computers.1–3 Loosely speaking, quantum computing targets
problems that can exploit entanglement to explore correlations
in computations, then selects the correct answer through
constructive interference. For example, Shor’s algorithm addresses
the computational challenge of factoring by exploiting quantum
interference to measure the periodicity of arithmetic objects.1

However, there is a pernicious flaw to this increase in
computational power. In a quantum computer, the information
is encoded in quantum bits, or qubits, which need to interact
strongly with one another, external inputs for control, and outputs
for detection, but nothing else. This leads to the quantum conflict:
balancing just enough control and coupling, while preserving
quantum coherence. This conflict represents a fundamental
impediment to reducing the physical qubit error rate low enough
to perform long/difficult/large-scale/practical quantum computa-
tions with them directly.
Fortunately, it has been shown that with quantum error

correction (QEC) it is possible to perform fault-tolerant quantum
computing.4,5 The essential idea in QEC is to encode information
in subsystems of a larger physical space that are immune to noise.
QEC can be used to define fault-tolerant logical qubits, through
employing a subtle redundancy in superpositions of entangled
states and non-local measurements to extract entropy from the
system without learning the state of the individual physical qubits.
The particular architecture for implementing a fault-tolerant
operating scheme has bearing on the requirements necessary
for the underlying physical qubits.

While there are many approaches to achieving quantum fault-
tolerance, one of the most promising is the two-dimensional (2D)
surface code.6–9 This code has a high tolerance to errors, or
threshold (approximately 6.7 × 10−3), requires only nearest-
neighbor qubit interactions, has simple error syndrome extraction
circuits,10 and a suite of fault-tolerant logic based on transversal
gates,7 code deformation,8,11 or lattice surgery.12

All together, this suggests that to build a quantum computer we
require:

● a physical qubit that is well isolated from the environment and
is capable of being addressed and coupled to more than one
extra qubit in a controllable manner,

● a fault-tolerant architecture supporting reliable logical qubits,
and

● universal gates, initialization, and measurement of logical
qubits

A physical quantum computer satisfying all three of these
requirements is still an outstanding challenge. However, in recent
work, physical qubits in trapped-ion and superconducting systems
have reached the point where errors are at or below the
threshold,13–16 and networks of 4–9 superconducting qubits with
individual control and readout have been used to show concepts
of error correction.17–19 Over the next few years, the field will be in
a stage of building interesting quantum devices with a complexity
that could never be emulated in full generality on a classical
computer (~50 or more qubits). These devices will allow us to
understand nature in a regime that has never been explored
before, offering new insight into analog simulations of quantum
systems. Nonetheless, near-term progress towards the monu-
mental task of fully fault-tolerant universal quantum computing
will hinge upon using QEC for demonstrating a quantum memory:
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Limitations	  of	  current	  standard	  electronic	  state	  calculation	  methods;
Molecular	  orbital	  theory,	  Density	  functional	  theory

The  Basis  of  the  Electron  Theory  of  Metals,  with  
Special  Reference  to  the  Transition  Metals  by  N.  F.  Mott,  
1949

The  main  purpose  of  this  paper  is  to  suggest  that  these  
two  model  are  not,  as  is  usually  believed,  different  
approximations  to  the  same  exact  function.

1. London-Heitler model,  VB  theory

2. Bloch  model,  molecular  orbital  theory
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erated as a collection of loop currents. The existence of such loop currents in the
cuprate is supported by the fact that the enhanced Nernst signal observed in the
pseudogap phase is explained by the flow of the loop currents. Lastly, we present
implications of the new current generation mechanism in the cuprate superconduc-
tivity; we will show that the superconducting transition in the underdoped cuprate
is explained as an order-disorder transition of the loop currents.

1 Introduction

High temperature superconductivity in cuprates occurs upon hole doping in half-
filled antiferromagnetic insulating parent compounds. More than 20 years has
passed since the discovery of the high temperature superconductivity in cuprates
[1]. Despite very extensive and intensive researches, the mechanism for it is still not
elucidated.

A family of materials called “cuprates” contain CuO2 planes (Fig. 1); the electron
conduction for superconductivity is believed to occur in these planes.

Cu

O(1)

O(2)

La/Ba
La/Ba

Cu

O

Fig. 1 The unit cell of a cuprate superconductor La1−xBaxCuO4.

The parent compounds (x = 0 in Fig. 2) are antiferromangetic insulators known as
Mott insulators where an insulating behavior with an antiferromagnetic spin-order
occurs due to strong Coulomb repulsion [2]. This insulating state is different from
the band insulator where the transport theory based on Bloch electrons is applicable.
Upon hole doping (x > 0), the long-range antiferromagnetic order disappears, and
an anomalous metallic phase appears between the pseudogap temperature T ∗ and
superconducting transition temperature Tc (Fig. 2). This metallic phase is called, the
“pseudogap phase”, and the elucidation of anomalous behaviors in this phase is one
of the key issues to understand the cuprate.

To investigate the hole-doping effect, the optical conductivity has been measured
[3] (Fig. 3). An energy gap of about 2 eV is observed in the parent compound;
it is well understood as arising from an energy gap between the ground state and

J. Phys. Soc. Jpn. FULL PAPERS

Fig. 1. Schematic set-up for the Josephson effect experiment. (a) Situation
considered by Josephson and found in textbooks.?, ?) Only current flow be-
tween the two superconductors S L and S R is taken into account. (b) Actual
experimental situation. A dc current flow through the leads connected to the
junction exists. Experiments indicate the dc current is an essential ingredient
for the observation of the Josephson effects. If the dc current flow exists the
contribution described by the dotted arrows arise in addition to the contribu-
tion given by the solid arrow.

cupied sites, the fourth is the hole-lattice interaction term that
makes doped holes small polarons, and the fifth is the Rashba
spin-orbit interaction term. The spin operator Ŝ j is given by

Ŝ j =
1
2

∑

σ,σ′
c†jσσσσ′c jσ′ , (2)

where σ is the vector of Pauli matrices.
The antiferromagnetic interaction term with coupling con-

stant Jh acts between electrons across the hole occupied sites,
including those in the right angle direction with respect to the
hole site (Fig. 1). From the first and second terms, the nearest
neighbor antiferromagnetic exchange interaction of coupling
constant 4t2/U arises, thus, the frustration of the spin config-
uration occurs. As a result, spin-vortices are created around
holes.

As for the Rashba spin-orbit interaction we use the follow-
ing,

Hso = λ
∑

h

[
c†h+y↓ch−x↑−c†h+y↑ch−x↓+i(c†h+y↓ch−x↑+c†h+y↑ch−x↓)

+ c†h+x↓ch−y↑ − c†h+x↑ch−y↓ + i(c†h−x↓ch−y↑ + c†h−x↑ch−y↓)

+ h.c.
]

(3)

where h is the site of hole, h + x (h − x) are nearest neighbor
sites of h in the x direction (−x direction); and h + y (h − y)
are nearest neighbor sites of h in the y direction (−y direction).
Here, we have assumed that the Rashba interaction exists only
around holes and the internal electric field is in the direction
perpendicular to the CuO2 plane.

HHF
EHFS = −t

∑

⟨i, j⟩l,σ
(c†iσc jσ + c†jσciσ)

+ U
∑

j

[
(
n j

2
− S z

j)c
†
j↑c j↑ + (

n j

2
+ S z

j)c
†
j↓c j↓

− (S x
j − iS y

j)c
†
j↑c j↓ − (S x

j + iS y
j)c
†
j↓c j↑
]

Fig. 2. Schematic set-up for the Josephson effect experiment. (a) Situation
considered by Josephson and found in textbooks.?, ?) Only current flow be-
tween the two superconductors S L and S R is taken into account. (b) Actual
experimental situation. A dc current flow through the leads connected to the
junction exists. Experiments indicate the dc current is an essential ingredient
for the observation of the Josephson effects. If the dc current flow exists the
contribution described by the dotted arrows arise in addition to the contribu-
tion given by the solid arrow.

+ Jh

∑

⟨i, j⟩h
Si · Ŝ j (4)

S x
j =

1
2
⟨c†j↑c j↓ + c†j↓c j↑⟩ = S j cos ξ j sin ζ j (5)

S y
j =

1
2
⟨−c†j↑ c j↓ + c†j↓c j↑⟩ = S j sin ξ j sin ζ j (6)

S z
j =

1
2
⟨c†j↑c j↑ − c†j↓c j↓⟩ = S j cos ζ j (7)

n j =
∑

σ

⟨c†jσc jσ⟩ (8)

We assume in the present work that the SVILCs exit in the
bulk of hole doped cuprates, and the following model is con-
structed under this assumption. However, this point has not
been confirmed, yet.

In the present model, we assume that the non-hole doped
(parent) compound is given by the Hubbard model with re-
pulsive on-site Coulomb interaction for a two-dimensional
square lattice. The transfer integral t and the Coulomb re-
pulsion parameter U satisfies the condition t ≪ U, and the
ground state of the parent compound is an antiferromagnetic
insulator with antiferromagnetic exchange parameter 4t2/U.
For the hole doped system, we assume that the doped holes
in the bulk become lattice small polarons and their mobil-
ity becomes negligible at low tempeartures. These small po-
larons provide an antiferromagnetic superexchange interac-
tion between paris of spins of the electrons reside across the
hole occupied sites (including the right angle directions with
respect to a hole occupied site). This antiferromagnetic ex-
change interaction and the antiferromagnetic exchange of the
parent compounds cause frustration in the spin arrangement,
yielding spin-vortices around the holes (Fig. ??).

According to the above arguments, the model Hamiltonian
we use is that for an electron system in the xy plane (assuming
the CuO2 plane in the cuprate) given by

2

Singularities	  of	  wave	  functions	  that	  are	  not	  singularities	  of	  the	  Hamiltonian	  emerge.

Spin-‐twisting	  itinerant	  motion	  of	  electrons

The	  energy	  minimizing	  wave	  function	  becomes	  multi-‐valued	  with	  respect	  to	  coordinates.
The	  fundamental	  assumption	  for	  the	  DFT	  is	  violated.

The	  energy	  minimizing	  wave	  function	  becomes	  multi-‐valued	  with	  respect	  to	  coordinates.
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To impose single-valued condition with including the
multi-valuedness of ξ , we replace ã

†
j and b̃

†
j by a

†
j and b

†
j :

|α⟩ =
∑

j

(
Aα

j a
†
j + Bα

j b
†
j

)
|vac⟩. (30)

Using {|α⟩}, E[Afic] is obtained from Eq. (25). Then, ∇χ is
obtained from the stationarity condition for F [Afic].

If |α⟩ is expressed with c
†
j↑ and c

†
j↓, it is given by

|α⟩ =
∑

j

(
e−i

ξj +χj
2

Aα
j − Bα

j√
2

c
†
j↑

+ ei
ξj −χj

2
Aα

j + Bα
j√

2
c

†
j↓

)
|vac⟩, (31)

where the values of ξ and χ are obtained by taking into ac-
count their multi-valuedness.

From the optimization of the functional given in Eq. (17),
values of (χℓ−χk) where ℓ and k are connected by the trans-
fer integral tℓk are obtained. The evaluation of ξj − χj and
ξj + χj must be done in a path integral manner; they are
evaluated along a path starting from an initial point with ini-
tial values. The path may have branches.

Then, (χℓ −χk) are obtained by the stationarity condition
of the functional given in Eq. (17), where wℓ must be sup-
plied to satisfy the condition in Eq. (9). Different combina-
tions of wℓ’s yield different current patterns. The difference
of χ between nearby sites is in the range

−π ≤ χℓ − χk < π. (32)

Values of η and χ are rebuilt from the values ηℓ − ηk and
χℓ −χk , respectively; the step where values of ηℓ and χℓ are
derived from the already evaluated values of ηk and χk is
given by

ηℓ = ηk + (ηℓ − ηk),

χℓ = χk + (χℓ − χk),
(33)

where the sites ℓ and k are connected by a bond in the path.
From ηj , the value of ξj is obtained using the relation in
Eq. (26). This process is continued until values at all acces-
sible sites are evaluated once and only once. Using ξj and
χj obtained from the above procedure, we obtain values of
ξj − χj and ξj + χj .

Since the values of ξ and χ are path-dependent, they
have 2πn (n is an integer) jumps between sites that are con-
nected by bonds but not used during the evaluation process
described above. Due to the condition in Eq. (9), the phase
jumps for ξ ± χ are 4πn (n is an integer). Then, values of

e−i
ξj +χj

2 and ei
ξj −χj

2 are path-independent because the 4πn

jumps are absorbed by ei2πn = 1. In this way, the single-
valued wave functions {|α⟩} are obtained.

4 An Example

For definiteness, we work out persistent current calculations
described in the previous section using the model system of
a 4 × 3 lattice depicted in Fig. 3.

Fig. 3 (a) Spin configuration
with one spin-vortex with
winding number +1 in the
antiferromagnetic background;
(b) loop current with winding
number +1; (c) loop current
with winding number −1
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Fig. 4 A 4 × 3 lattice with one hole-occupied site. The hole occupies
(1,1). There are three independent loops: C1 is a loop that connects
(0,0) → (2,0) → (2,2) → (0,2) → (0,0); C2 is a loop that connects
(2,1) → (3,1) → (3,2) → (2,2) → (2,1); C3 is a loop that connects
(2,0) → (3,0) → (3,1) → (2,1) → (2,0). τ indicates a difference of
χ values at two sites; for example, τ1 = χ(1,2) − χ(0,2)

There are three independent loops C1, C2, and C3 as seen
in Fig. 4; other loops are constructed from them; thus, the
constrains in Eq. (9) are imposed for those three loops.

The functional F in Eq. (17) for this system is given by

FEHFS[τ1, . . . , τ7, τa, . . . , τf ,λ1,λ2,λ3]

= EEHFS

[
c!
2q

τ1, . . . ,
c!
2q

τf

]

+ λ1

2π
(τ5 + τ6 + τe + τb − τ2 − τ1 − τa − τd − 2πw1)

+ λ2

2π
(τ4 + τc − τ3 − τb) + λ3

2π
(τ7 + τf − τ4 − τe),

(34)

where τj ’s are differences of the phase χ and λk’s are the
Lagrange multipliers introduced to impose the constraints
in Eq. (9); their definitions are given in Fig. 4.

Currents Jk for bonds k can be calculated using the fol-
lowing formula:

Jk = −2q

!
∂EEHFS

∂τk
, (35)

which corresponds to Eq. (15). Then, stationarity conditions
of the function FEHFS with respect to τ ’s yield relations cor-
responding to Eq. (19):

J1 = 2q

!
λ1, J2 = 2q

!
λ1, J3 = 2q

!
λ2,

J4 = 2q

!
(λ3 − λ2), J5 = −2q

!
λ1, J6 = −2q

!
λ1,

J7 = −2q

!
λ3, Ja = 2q

!
λ1, (36)

Jb = 2q

!
(λ2 −λ1), Jc = −2q

!
λ2, Jd = 2q

!
λ1,

Je = 2q

!
(λ3 −λ1), Jf = −2q

!
λ3.

We approximate Jk to be linear in τk as

Jk = −2q

!
∂2EEHFS

∂τ 2
k

τk, (37)

which is a good approximation if τk is so small that can be
approximated as sin τk

2 ≈ τk
2 .

Then, the constraints with respect to the winding num-
bers yield the following linear equations for λ1, λ2, and λ3:
⎛

⎝
2πw1
2πw2
2πw3

⎞

⎠ = M

⎛

⎝
λ1
λ2
λ3

⎞

⎠ , (38)

where the matrix M is given by

M =

⎛

⎜⎜⎜⎝

1
D1

+ 1
D2

+ 1
Db

+ 1
De

+ 1
D6

+ 1
D5

+ 1
Dd

+ 1
Da

− 1
Db

− 1
De

− 1
Db

1
D3

+ 1
Dc

+ 1
D4

+ 1
Db

− 1
D4

− 1
De

− 1
D4

1
D4

+ 1
Df

+ 1
D7

+ 1
De

⎞

⎟⎟⎟⎠
(39)

and

Dk = ∂2EEHFS

∂τ 2
k

. (40)

Then, from λ’s, we calculate the currents using Eq. (36). The
results are depicted in Fig. 3. A similar calculation yields the
current in Fig. 2.

Note that the current obtained by optimizing τ ’s satisfies
the conservation of charge since it is made as a sum of loop
currents.

Let us now consider the inclusion of real magnetic fields.
It is taken into account by replacing the phase factor in the
hopping term as

e
iq
c!

∫ k
j Afic·dr → e

iq
c!

∫ k
j (Aem+Afic)·dr

. (41)

This causes the replacement

E
[
Afic] → E

[
Afic + Aem]

. (42)



ξ is the polar angle in the xy-plane; hÔi denotes the
expectation value of the operator Ô. Here, we only consider
the self-consistent solution with Sz

j ¼ 0 for all j by assuming
that spins are lying in the xy-plane; thereby, we omit the term
with U0. The term with J0 is omitted by taking into account its
effect as creating spin-vortices, i.e., we calculate nonzero
winding number (actually, +1 or −1) states for ξ around the
holes, where the winding number of ξ for loop C‘ around the
hole is defined by

w‘½!# ¼
1

2"

XN‘

i¼1
ð!C‘ðiþ1Þ ' !C‘ðiÞÞ: ð6Þ

Here, C‘ is a loop in the xy-plane that encircles a hole, N‘ is
the total number of sites on the loop C‘, and C‘ðiÞ is the ith
site on it with the periodic condition C‘ðN‘ þ 1Þ ¼ C‘ð1Þ.

Through the self-consistent calculation using the
Hamiltonian in Eq. (3), we obtain the following Hartree–
Fock orbitals;6–8)

j ~#i ¼
X

j

½ ~D#
j"c
y
j" þ ~D

#
j#c
y
j##jvaci; ð7Þ

and fj ~#ig forms a basis that satisfies

h ~#jj ~#ki ¼ $jk: ð8Þ

It can be used as a basis for many-body total electron wave
functions constructed by the configuration interaction (CI)
method. The total wave function obtained by the CI method
is expressed as a linear combination of Slater determinants
composed of j ~#i’s.

When spin-vortices are formed, singularities arise in the
Hartree–Fock field; Eq. (3) contains the term

' U
X

j

½ðSx
j ' iSy

j Þc
y
j"cj# þ ðSx

j þ iSy
j Þc
y
j#cj"#

¼ 'U
X

j

½Sje'i!j cyj"cj# þ Sje
i!j cyj#cj"# ð9Þ

and Sje(i!j give rise to singularities at the centers of the spin-
vortices. In this situation, j ~#i is expressed as

j ~#i ¼
X

j

½e'i
!j
2D#

j"c
y
j" þ ei

!j
2D#

j#c
y
j##jvaci ð10Þ

due to the factors e(i!j in Eq. (9). The phase factors e(i
!j
2 in

j ~#i actually make it multi-valued as the function of the
coordinate. We modify fj ~#ig so that it satisfies the single-
valued requirement of wave function with respect to the
coordinate.

The single-valued requirement of the wave function is a
postulated adopted by Schrödinger;27) it may be rephrased as
the existence of the basis composed of the eigenfunctions jri
for the coordinate operator r̂. Here, jri satisfies

r̂jri ¼ rjri; ð11Þ

where r is the eigenvalue uniquely determined by jri. With
this basis, the wave function for a state vector j’i is given
by hrj’i, which must be single-valued with respect to the
coordinate since r is uniquely determined by jri.

The multi-valuedness of the factors e(i
!j
2 in j ~#i is described

by the winding number w‘½!#: for the shift of the coordinate
j! j along C‘, ξ transforms as !j ! !j þ 2"w‘½!#. Thus,
e(i

!j
2 become e(i

!j
2(i"w‘½!#. Then, if w‘½!# is odd, the sign

change occurs. This means that j ~#i is multi-valued.

If we construct a total wave function using fj ~#ig, the
obtained wave function becomes also multi-valued. On the
other hand, the exact total wave function is single-valued. We
remedy this discrepancy by adding a phase factor that
compensates the multi-valuedness of fj ~#ig; namely, we
construct the single-valued basis fj#ig given by

j#i ¼
X

j

e'i
%j
2 ½e'i

!j
2D#

j"c
y
j" þ ei

!j
2D#

j#c
y
j##jvaci; ð12Þ

where e'i
1
2% is the added phase factor that compensates the

sign change of e(i
!j
2 .

The condition for the compensation is given by

w‘½!# þ w‘½%# ¼ even number for any loop C‘: ð13Þ

Note that fj#ig form an orthonormal basis since we have

h#jj#ki ¼ h ~#jj ~#ki ¼ $jk: ð14Þ

We may use fj ~#ig as the new basis.
Due to the phase factor e'i

1
2%, the total wave function is

given in the following form,

!ðrð1Þ; . . . ; rðNÞÞ ¼ ~!ðrð1Þ; . . . ; rðNÞÞe'
i
2

PN

&¼1 %ðr
ð&ÞÞ; ð15Þ

where rð&Þ is the coordinate of the αth electron, N is the total
number of electrons. ~! is the multi-valued wave function
given as a linear combination of Slater determinants
constructed using the basis fj ~#ig.

We assume that the EHFS is realized in the bulk. Then,
the electronic structure there has an energy gap of order
U between the occupied orbitals and unoccupied orbitals of
the Hartree–Fock approximation. The SVILCs carrying state
has an energy of order tðt=UÞ2 higher than the non-current
carrying one.8) There are spin-wave excitations of order
tðt=UÞ, but they do not change the winding numbers of spin-
vortices at low temperatures. In this situation, it will be a
good approximation to take ~! as a single Slater determinant
of the occupied orbitals as far as the loop current excitations
brought about by the change of winding numbers for χ are
concerned. In the following we assume the above situation,
and only consider the low energy loop current excitations by
employing a single Slater determinant for ~!.

The angular variable χ is obtained from the optimization of
the following functional with respect to the variation of r%,

F½r%# ¼ E½r%# þ
XNloop

‘¼1
'‘

I

C‘

r% ) dr ' 2" "w‘

! "
; ð16Þ

where E½r%# is the energy functional given by

E½r%# ¼ h!jHHF
EHFSj!i: ð17Þ

The term with '‘’s imposes the constraint,
I

C‘

r% ) dr ¼ 2" "w‘; ð18Þ

where "w‘ is an integer, 0 or (1, specified by the requirement
of the single-valuedness of the wave function. Other integers
are possible but they make the total energy considerably
larger, thus, we do not consider them. By changing "w‘’s, the
current pattern can be changed. In Fig. 1, two current patterns
are shown. The sum over ‘ in Eq. (16) is taken over the
independent loops, and Nloop is the total number of
independent loops, where the independent loops are a set
of loops with which all loops are constructed.7)
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the total number of sites on the loop C‘, and C‘ðiÞ is the ith
site on it with the periodic condition C‘ðN‘ þ 1Þ ¼ C‘ð1Þ.

Through the self-consistent calculation using the
Hamiltonian in Eq. (3), we obtain the following Hartree–
Fock orbitals;6–8)

j ~#i ¼
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and fj ~#ig forms a basis that satisfies

h ~#jj ~#ki ¼ $jk: ð8Þ

It can be used as a basis for many-body total electron wave
functions constructed by the configuration interaction (CI)
method. The total wave function obtained by the CI method
is expressed as a linear combination of Slater determinants
composed of j ~#i’s.

When spin-vortices are formed, singularities arise in the
Hartree–Fock field; Eq. (3) contains the term
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due to the factors e(i!j in Eq. (9). The phase factors e(i
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2 in

j ~#i actually make it multi-valued as the function of the
coordinate. We modify fj ~#ig so that it satisfies the single-
valued requirement of wave function with respect to the
coordinate.

The single-valued requirement of the wave function is a
postulated adopted by Schrödinger;27) it may be rephrased as
the existence of the basis composed of the eigenfunctions jri
for the coordinate operator r̂. Here, jri satisfies

r̂jri ¼ rjri; ð11Þ

where r is the eigenvalue uniquely determined by jri. With
this basis, the wave function for a state vector j’i is given
by hrj’i, which must be single-valued with respect to the
coordinate since r is uniquely determined by jri.

The multi-valuedness of the factors e(i
!j
2 in j ~#i is described

by the winding number w‘½!#: for the shift of the coordinate
j! j along C‘, ξ transforms as !j ! !j þ 2"w‘½!#. Thus,
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2 become e(i
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2(i"w‘½!#. Then, if w‘½!# is odd, the sign

change occurs. This means that j ~#i is multi-valued.

If we construct a total wave function using fj ~#ig, the
obtained wave function becomes also multi-valued. On the
other hand, the exact total wave function is single-valued. We
remedy this discrepancy by adding a phase factor that
compensates the multi-valuedness of fj ~#ig; namely, we
construct the single-valued basis fj#ig given by

j#i ¼
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where e'i
1
2% is the added phase factor that compensates the

sign change of e(i
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The condition for the compensation is given by

w‘½!# þ w‘½%# ¼ even number for any loop C‘: ð13Þ

Note that fj#ig form an orthonormal basis since we have

h#jj#ki ¼ h ~#jj ~#ki ¼ $jk: ð14Þ

We may use fj ~#ig as the new basis.
Due to the phase factor e'i
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2%, the total wave function is

given in the following form,
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where rð&Þ is the coordinate of the αth electron, N is the total
number of electrons. ~! is the multi-valued wave function
given as a linear combination of Slater determinants
constructed using the basis fj ~#ig.

We assume that the EHFS is realized in the bulk. Then,
the electronic structure there has an energy gap of order
U between the occupied orbitals and unoccupied orbitals of
the Hartree–Fock approximation. The SVILCs carrying state
has an energy of order tðt=UÞ2 higher than the non-current
carrying one.8) There are spin-wave excitations of order
tðt=UÞ, but they do not change the winding numbers of spin-
vortices at low temperatures. In this situation, it will be a
good approximation to take ~! as a single Slater determinant
of the occupied orbitals as far as the loop current excitations
brought about by the change of winding numbers for χ are
concerned. In the following we assume the above situation,
and only consider the low energy loop current excitations by
employing a single Slater determinant for ~!.

The angular variable χ is obtained from the optimization of
the following functional with respect to the variation of r%,

F½r%# ¼ E½r%# þ
XNloop
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; ð16Þ

where E½r%# is the energy functional given by

E½r%# ¼ h!jHHF
EHFSj!i: ð17Þ

The term with '‘’s imposes the constraint,
I
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r% ) dr ¼ 2" "w‘; ð18Þ

where "w‘ is an integer, 0 or (1, specified by the requirement
of the single-valuedness of the wave function. Other integers
are possible but they make the total energy considerably
larger, thus, we do not consider them. By changing "w‘’s, the
current pattern can be changed. In Fig. 1, two current patterns
are shown. The sum over ‘ in Eq. (16) is taken over the
independent loops, and Nloop is the total number of
independent loops, where the independent loops are a set
of loops with which all loops are constructed.7)
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ξ is the polar angle in the xy-plane; hÔi denotes the
expectation value of the operator Ô. Here, we only consider
the self-consistent solution with Sz

j ¼ 0 for all j by assuming
that spins are lying in the xy-plane; thereby, we omit the term
with U0. The term with J0 is omitted by taking into account its
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the total number of sites on the loop C‘, and C‘ðiÞ is the ith
site on it with the periodic condition C‘ðN‘ þ 1Þ ¼ C‘ð1Þ.

Through the self-consistent calculation using the
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and fj ~#ig forms a basis that satisfies
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It can be used as a basis for many-body total electron wave
functions constructed by the configuration interaction (CI)
method. The total wave function obtained by the CI method
is expressed as a linear combination of Slater determinants
composed of j ~#i’s.
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postulated adopted by Schrödinger;27) it may be rephrased as
the existence of the basis composed of the eigenfunctions jri
for the coordinate operator r̂. Here, jri satisfies
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where r is the eigenvalue uniquely determined by jri. With
this basis, the wave function for a state vector j’i is given
by hrj’i, which must be single-valued with respect to the
coordinate since r is uniquely determined by jri.
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where rð&Þ is the coordinate of the αth electron, N is the total
number of electrons. ~! is the multi-valued wave function
given as a linear combination of Slater determinants
constructed using the basis fj ~#ig.

We assume that the EHFS is realized in the bulk. Then,
the electronic structure there has an energy gap of order
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the Hartree–Fock approximation. The SVILCs carrying state
has an energy of order tðt=UÞ2 higher than the non-current
carrying one.8) There are spin-wave excitations of order
tðt=UÞ, but they do not change the winding numbers of spin-
vortices at low temperatures. In this situation, it will be a
good approximation to take ~! as a single Slater determinant
of the occupied orbitals as far as the loop current excitations
brought about by the change of winding numbers for χ are
concerned. In the following we assume the above situation,
and only consider the low energy loop current excitations by
employing a single Slater determinant for ~!.

The angular variable χ is obtained from the optimization of
the following functional with respect to the variation of r%,
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where "w‘ is an integer, 0 or (1, specified by the requirement
of the single-valuedness of the wave function. Other integers
are possible but they make the total energy considerably
larger, thus, we do not consider them. By changing "w‘’s, the
current pattern can be changed. In Fig. 1, two current patterns
are shown. The sum over ‘ in Eq. (16) is taken over the
independent loops, and Nloop is the total number of
independent loops, where the independent loops are a set
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Fig. 5 The same 3×4 lattice as in Fig. 4 but current Jex is fed to (0,0)
and extracted from (3,2)

We approximate Jk to be linear in Aeff as

Jk = −2q

!
∂2EEHFS

∂τ 2
k

(τk + αk), (43)

where, for example, α1 is defined as

α1 = q

!c

∫ (1,2)

(0,2)
Aem · dr. (44)

Then, replacing Jk in Eq. (36) by that in Eq. (43), the
equations for λ’s become

⎛

⎝
2πw1 + α1 + α2 − αb − αe − α6 − α5 + αd + αa

2πw2 + α3 − αc − α4 + αb

2πw3 + α4 − αf − α7 + αe

⎞

⎠

= M

⎛

⎝
λ1
λ2
λ3

⎞

⎠ . (45)

The current in Eq. (43) indicates that the Meissner effect
will occur if the system is sufficiently large, since the dia-
magnetic current proportional to Aem flows.

Now let us consider the case where a current is fed from
outside. The current feeding is included in the following
manner: let us examine the system depicted in Fig. 5. We
include the hopping term between (0,0) and (3,2) and in-
troduce a loop C4 that connects (0,0) → (2,0) → (3,0) →
(3,1) → (3,2) → (0,0); the Lagrangian multiplier for this
loop is λ4.

Then, the equations for λ1, λ2, and λ3 are obtained as
⎛

⎜⎜⎝

2πw1 + ( 1
D5

+ 1
D6

)λ4

2πw2 + 1
Dc

λ4

2πw3 + ( 1
D7

+ 1
Df

)λ4

⎞

⎟⎟⎠ = M

⎛

⎝
λ1
λ2
λ3

⎞

⎠ . (46)

The parameter λ4 is treated as a parameter for the exter-
nal current, i.e., we relate the external current Jex to λ4 as

Jex = 2q

!
λ4, (47)

where the contributions from Aem are omitted. We may
choose other loop for C4 to include Jex; however, the current
distribution is unaffected by the choice of the added loop.

5 Connection Between Afic and London’s
Superpotential

Let us calculate single-particle wave functions from Eq. (31).
We define ⟨r| as

⟨r| = ⟨vac|
∑

j

[
cj↑wj↑(r) + cj↓wj↓(r)

]
. (48)

Then, the single-particle wave function is given by

⟨r|α⟩ =
∑

j

(
e−i

ξj +χj
2

Aα
j − Bα

j√
2

wj↑(r)

+ ei
ξj −χj

2
Aα

j + Bα
j√

2
wj↓(r)

)

≈
∑

j

(
e−i

ξj +χ(r)
2

Aα
j − Bα

j√
2

wj↑(r)

+ ei
ξj −χ(r)

2
Aα

j + Bα
j√

2
wj↓(r)

)

= e− i
2 χ(r)⟨r|ᾱ⟩, (49)

where wjσ (r) is the Wannier function at the j th site with
spin σ , and

⟨r|ᾱ⟩ =
∑

j

(
e−i

ξj
2

Aα
j − Bα

j√
2

wj↑(r)

+ ei
ξj
2

Aα
j + Bα

j√
2

wj↓(r)
)

. (50)

In the process of the replacement of e−i
χj
2 wjσ (r) by

e−i χ(r)
2 wjσ (r) in Eq. (49), we use the fact that wjσ (r) has

significant amplitude only near the j th site.
Then, the total wave function is give by

Ψ (r1, . . . , rN ; ξ,χ)

= 1√
N !

∣∣∣∣∣∣∣∣∣

⟨r1|1⟩ ⟨r2|1⟩ . . . ⟨rN |1⟩
⟨r1|2⟩ ⟨r2|2⟩ . . . ⟨rN |2⟩

...
...

. . .
...

⟨r1|N⟩ ⟨r2|N⟩ . . . ⟨rN |N⟩

∣∣∣∣∣∣∣∣∣

≈ e− i
2

∑
j χ(rj )

√
N !

∣∣∣∣∣∣∣∣∣

⟨r1|1̄⟩ ⟨r2|1̄⟩ . . . ⟨rN |1̄⟩
⟨r1|2̄⟩ ⟨r2|2̄⟩ . . . ⟨rN |2̄⟩

...
...

. . .
...

⟨r1|N̄⟩ ⟨r2|N̄⟩ . . . ⟨rN |N̄⟩

∣∣∣∣∣∣∣∣∣

= e− i
2

∑
j χ(rj )Ψ (r1, . . . , rN ; ξ,0). (51)

ξ is the polar angle in the xy-plane; hÔi denotes the
expectation value of the operator Ô. Here, we only consider
the self-consistent solution with Sz

j ¼ 0 for all j by assuming
that spins are lying in the xy-plane; thereby, we omit the term
with U0. The term with J0 is omitted by taking into account its
effect as creating spin-vortices, i.e., we calculate nonzero
winding number (actually, +1 or −1) states for ξ around the
holes, where the winding number of ξ for loop C‘ around the
hole is defined by

w‘½!# ¼
1

2"

XN‘

i¼1
ð!C‘ðiþ1Þ ' !C‘ðiÞÞ: ð6Þ

Here, C‘ is a loop in the xy-plane that encircles a hole, N‘ is
the total number of sites on the loop C‘, and C‘ðiÞ is the ith
site on it with the periodic condition C‘ðN‘ þ 1Þ ¼ C‘ð1Þ.

Through the self-consistent calculation using the
Hamiltonian in Eq. (3), we obtain the following Hartree–
Fock orbitals;6–8)

j ~#i ¼
X

j

½ ~D#
j"c
y
j" þ ~D

#
j#c
y
j##jvaci; ð7Þ

and fj ~#ig forms a basis that satisfies

h ~#jj ~#ki ¼ $jk: ð8Þ

It can be used as a basis for many-body total electron wave
functions constructed by the configuration interaction (CI)
method. The total wave function obtained by the CI method
is expressed as a linear combination of Slater determinants
composed of j ~#i’s.

When spin-vortices are formed, singularities arise in the
Hartree–Fock field; Eq. (3) contains the term

' U
X

j

½ðSx
j ' iSy

j Þc
y
j"cj# þ ðSx

j þ iSy
j Þc
y
j#cj"#

¼ 'U
X

j

½Sje'i!j cyj"cj# þ Sje
i!j cyj#cj"# ð9Þ

and Sje(i!j give rise to singularities at the centers of the spin-
vortices. In this situation, j ~#i is expressed as

j ~#i ¼
X

j

½e'i
!j
2D#

j"c
y
j" þ ei

!j
2D#

j#c
y
j##jvaci ð10Þ

due to the factors e(i!j in Eq. (9). The phase factors e(i
!j
2 in

j ~#i actually make it multi-valued as the function of the
coordinate. We modify fj ~#ig so that it satisfies the single-
valued requirement of wave function with respect to the
coordinate.

The single-valued requirement of the wave function is a
postulated adopted by Schrödinger;27) it may be rephrased as
the existence of the basis composed of the eigenfunctions jri
for the coordinate operator r̂. Here, jri satisfies

r̂jri ¼ rjri; ð11Þ

where r is the eigenvalue uniquely determined by jri. With
this basis, the wave function for a state vector j’i is given
by hrj’i, which must be single-valued with respect to the
coordinate since r is uniquely determined by jri.

The multi-valuedness of the factors e(i
!j
2 in j ~#i is described

by the winding number w‘½!#: for the shift of the coordinate
j! j along C‘, ξ transforms as !j ! !j þ 2"w‘½!#. Thus,
e(i

!j
2 become e(i

!j
2(i"w‘½!#. Then, if w‘½!# is odd, the sign

change occurs. This means that j ~#i is multi-valued.

If we construct a total wave function using fj ~#ig, the
obtained wave function becomes also multi-valued. On the
other hand, the exact total wave function is single-valued. We
remedy this discrepancy by adding a phase factor that
compensates the multi-valuedness of fj ~#ig; namely, we
construct the single-valued basis fj#ig given by

j#i ¼
X

j

e'i
%j
2 ½e'i

!j
2D#

j"c
y
j" þ ei

!j
2D#

j#c
y
j##jvaci; ð12Þ

where e'i
1
2% is the added phase factor that compensates the

sign change of e(i
!j
2 .

The condition for the compensation is given by

w‘½!# þ w‘½%# ¼ even number for any loop C‘: ð13Þ

Note that fj#ig form an orthonormal basis since we have

h#jj#ki ¼ h ~#jj ~#ki ¼ $jk: ð14Þ

We may use fj ~#ig as the new basis.
Due to the phase factor e'i

1
2%, the total wave function is

given in the following form,

!ðrð1Þ; . . . ; rðNÞÞ ¼ ~!ðrð1Þ; . . . ; rðNÞÞe'
i
2

PN

&¼1 %ðr
ð&ÞÞ; ð15Þ

where rð&Þ is the coordinate of the αth electron, N is the total
number of electrons. ~! is the multi-valued wave function
given as a linear combination of Slater determinants
constructed using the basis fj ~#ig.

We assume that the EHFS is realized in the bulk. Then,
the electronic structure there has an energy gap of order
U between the occupied orbitals and unoccupied orbitals of
the Hartree–Fock approximation. The SVILCs carrying state
has an energy of order tðt=UÞ2 higher than the non-current
carrying one.8) There are spin-wave excitations of order
tðt=UÞ, but they do not change the winding numbers of spin-
vortices at low temperatures. In this situation, it will be a
good approximation to take ~! as a single Slater determinant
of the occupied orbitals as far as the loop current excitations
brought about by the change of winding numbers for χ are
concerned. In the following we assume the above situation,
and only consider the low energy loop current excitations by
employing a single Slater determinant for ~!.

The angular variable χ is obtained from the optimization of
the following functional with respect to the variation of r%,

F½r%# ¼ E½r%# þ
XNloop

‘¼1
'‘

I

C‘

r% ) dr ' 2" "w‘

! "
; ð16Þ

where E½r%# is the energy functional given by

E½r%# ¼ h!jHHF
EHFSj!i: ð17Þ

The term with '‘’s imposes the constraint,
I

C‘

r% ) dr ¼ 2" "w‘; ð18Þ

where "w‘ is an integer, 0 or (1, specified by the requirement
of the single-valuedness of the wave function. Other integers
are possible but they make the total energy considerably
larger, thus, we do not consider them. By changing "w‘’s, the
current pattern can be changed. In Fig. 1, two current patterns
are shown. The sum over ‘ in Eq. (16) is taken over the
independent loops, and Nloop is the total number of
independent loops, where the independent loops are a set
of loops with which all loops are constructed.7)
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Abstract A theoretical calculation for the superconduct-
ing transition temperature of the hole-doped cuprate is
performed based on supercurrent generation by the spin-
twisting itinerant motion of electrons. The superconducting
transition temperature, Tc, is determined by a numerical
simulation as the stabilization temperature of the coherence-
length-sized loop currents, “spin-vortex-induced loop cur-
rents (SVILCs),” generated by the spin-twisting itinerant
motion of electrons. The simulation indicates that the stabi-
lization of the SVILCs occurs in two steps; when temper-
ature is decreased from room temperature, first, the phase
where the sum of the winding numbers of the SVILCs
is zero appears; with further decrease of the temperature,
the phase where the winding numbers of the SVILCs are
fixed appears. We identify the latter to the superconduct-
ing phase, and the former to the temperature below which
the Kerr rotation is observed. The calculated Tc value is
close to the experimental value around the optimal doping.
It scales as t2

U in a similar manner to the antiferromagnetic
spin-fluctuation, where t is the nearest neighbor transfer
integral and U is the on-site Coulomb repulsion parameter.
The calculated Tc disagrees in the underdoped and over-
doped regions. These disagreements are explained as due to
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the reduction of Tc by the quantum criticality arising from
the two quantum critical points at the lowest and highest
ends of the hole density x of the superconducting phase,
where the former corresponds to the percolation thresh-
old of the spin-vortices, and the latter to the spin-vortex
formation-destruction critical point.

Keywords Cuprate superconductors · Transition
temperature · Spin-vortex-induced loop currents

1 Introduction

Accumulating experimental results indicate that the BCS
theory is not capable of explaining the superconductiv-
ity in the cuprates. For example, a theoretical estimate
revealed that the superconducting transition temperature Tc
is not determined by the energy gap formation as in the
BCS superconductor [1], but corresponds to the stabilization
temperature of the coherence-length-sized persistent loop
currents [2]. The STM experiment has observed that the
superconducting transition temperature is determined by the
percolation of nano-sized superconducting regions [3].

Since the single-particle dispersion of the energy band
structure is observed by the ARPES experiment, it is tempt-
ing to consider that the Cooper pair formation of the band
electrons is the origin of the superconductivity [4]. How-
ever, since the ARPES results reflect largely the electronic
state in the surface region, the bulk electronic state may be
different from the one derived thoroughly by the ARPES
experiment. Indeed, other experimental methods indicate
the intimate relation between the superconductivity and the
inhomogeneity of the bulk electronic state, which is difficult
to be observed by the ARPES experiment. The inhomogene-
ity in the electronic state is vividly observed in the STM
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fully covered by SVQs at x = 0.25 as seen in Fig. 2a. Then,
extra holes beyond x = 0.25 system may destruct the spin-
vortices, leading to the superconductor-insulator transition.
We attribute the disagreement in this region to the neglect of
the spin-vortex formation problem.

If we prohibit the hole arrangement with adjacent hole
pairs due to a large energy cost of the Coulomb repulsion
between the holes, there is only one kind of positions where
the hole can be added (Fig. 6a). If a hole is added in one
of those positions and the spin-configuration is optimized
after that, the nearby four spin-vortices around the added
hole are destroyed as seen in Fig. 6a. This means that the
4a × 4a unit with an extra hole added at the center is a non-
spin-vortex unit. If the CuO2 plane is fully covered by these
non-spin-vortex units, all the spin-vortices disappear. The
hole concentration for this situation is x = 5/16 = 0.3125.

In reality, the spin-vortex formation-destruction criti-
cal point will lie between 0.25 < x < 0.3125 due to
the movement of the holes that accelerates the spin-vortex
destruction. For example, if the added hole moves as shown
in Fig. 6b (to the position where adjacent hole pair does not
arise), spin-vortices are further destroyed; when it is moved
again (Fig. 6c), it creates behind a ferromagnetic domain
(Fig. 6d), where electron hopping becomes easier since the
energy cost due to the spin-exchange by the itinerant motion
is absent. By the continuous movement, all the spin-vortices
are destroyed, and a Fermi liquid will be realized. The hole
hopping occurs when the current is generated by an appli-
cation of magnetic field or a current feeding through leads.
The dissipationless current by the SVILCs requires flipping
of some of the loop currents, thus, requires a certain amount
of energy. Due to this energy cost, the dissipatioless current
generation may not be possible, instead, the dissipative cur-
rent generation by the hole hopping may occur, resulting the
destruction of the spin-vortices.

If we identify x = xmax as the spin-vortex formation-
destruction quantum critical point, it explains the Fermi
liquid behavior in x > xmax and the non-Fermi liquid
behavior in x < xmax since the electric current genera-
tion mechanism in x > xmax is the normal one, while it
is the new one by the spin-vortex-induced loop currents in
x < xmax. Due to the spin-vortex formation-destruction
transition critical point at x = xmax, Tc will be reduced from
T1 as schematically shown in Fig. 7.

Now, we examine the Kerr rotation temperature TK. In
the experiment, TK follows closely the pseudogap tempera-
ture T ∗ deduced from the change in the slope of resistivity
with temperature [24, 25], and crosses Tc curve at around
the optimal doping. We explain the closeness of TK and
T ∗ as follows: the change of the slope is due to the for-
mation of the spin-vortices; at this same point, the phase
with the zero-sum winding numbers of the loop currents
is realized, simultaneously. This explanation also suggests

Fig. 7 Schematic plots of doping dependence of Tc and TK. The
superconducting transition temperature is reduced from T1 to Tc due
to the criticality arising from the quantum critical points at x = xmin
and x = xmax. The Kerr rotation temperature is reduced from T2 to
TK due to criticality arising from the quantum critical point at around
x ≈ 0.18. TK below Tc is disclosed as the peak of Tc by the applica-
tion of a magnetic field that destabilizes the loop-currents and reduces
Tc [25]

that beyond the crossing point of Tc and T ∗ (or TK), Tc is
the point where the stabilizations of the spin-vortices and
loop-currents occur, simultaneously. This will be attributed
to the enhancement of the stability of the spin-vortices by
the loop-current stabilization since the destruction of the
spin-vortices by the hole hopping causes the change in the
loop current patterns, which requires a certain amount of the
activation energy.

If a magnetic field is applied, the stabilization of loop-
currents is reduced, resulting in the destruction of the spin-
vortices. Then, T ∗ below Tc with zero magnetic field will
be disclosed as the peak in Tc with a magnetic field. Exper-
imental results which seem to show this phenomenon have
been obtained [25], where the peak of Tc goes down to x ≈
0.18 at T = 0 K by the application of the magnetic field.
The present work suggests that x ≈ 0.18 is the quantum
critical point for the spin-vortex formation without the loop-
current stabilization. This value is considerably smaller than
x = 0.25; this suggests that the current generation is due to
the hole hopping if the loop-current stabilization is absent
in the overdoped region. On the other hand, the spin-vortex
formation occurs without the help of the loop current stabi-
lization in the underdoped region. We attribute the reduction
of T2 to TK to the criticality arising from the quantum critical
point at x ≈ 0.18.

6 Conclusion

In the present work, we estimate Tc of the hole-doped
cuprate based on the supercurrent generation mechanism
due to the spin-twisting itinerant motion of electrons. The
calculation includes only the stabilization of coherence-
length-sized loop currents, the spin-vortex-induced loop
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a b

c d

Fig. 3 Current patterns for the ground states. “m” and “a” denote the centers of the SVILCs with the winding number +1 and −1, respectively.
Their spin configurations are depicted in Fig. 2

starts nonzero, T2 as the temperature where Wsum starts
nonzero, and T3 as the peak position of the heat capacity.
They satisfy T1 ≤ T2 < T3. Figure 4 shows that T1 also cor-
responds to the temperature where the heat capacity starts to
rise. Below T1 the current pattern is fixed. We identify T1 as
the superconducting transition temperature Tc. Below T2 the
sum of the winding numbers of the loop currents is zero; at
this temperature, the winding numbers of the loop currents
do not change except by the exchange of the winding num-
bers of two loop currents. We regard T2 corresponds to the
temperature TK bellow which the Kerr rotation is observed
[10] since the sum of the winding numbers of the loop cur-
rents may remain constant after the system is trained in a

magnetic field. Above T3, the winding numbers of the loop
currents are random, indicating that loop currents are no
more detectable. The hole concentration dependence of T1,
T2, and T3 are depicted in Fig. 5. In real material, Tc is zero
below x = 0.05 and x = 0.25; however, the present result
does not show such behaviors.

5 Discussion

The present simulation is a very simple one that only takes
into account the stabilization of the loop currents. However,
it clearly indicates that there are two steps for the occurrence

Author's personal copy



J Supercond Nov Magn

a

b

c

d

Fig. 4 Temperature, T , dependencies of the heat capacity C (left), the
average of the sum of the deviations of the winding numbers of χ from
the ground state values, Wdev (middle), and the average of the sum of
the winding numbers of χ , Wsum (right). The units of the temperature
and energy are t . U = 8t . a x = 0.25; b x = 0.152; c x = 0.117;

and d x = 0.0586. T1 is the temperature where Wdev starts non-zero,
T2 as the temperature where Wsum starts non-zero, and T3 as the peak
position of the heat capacity. The spin configurations are shown in Fig.
2
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Figure 1. Spin structure of SVQ. An arrow on each lattice point indicates the electron spinwhose direction is specified by xj , where j is
the site index. ‘M’ and ‘A’ denote spin-vortexwith x =[ ]w 1l and x = -[ ]w 1l , respectively, whereℓ denotes the loop of 8 sites
around each center.

Figure 2. Sixteen current patterns for SVQ states. These 16 states are derived by applying amagneticfield in the z direction given by
= + + +B x x y y0.178 6.0 0.07 6.02 2 T (the unit of x and y is a, where a is the lattice constant of theCuO2 plane). The arrows

indicate current directions. ‘L’ and ‘R’ denote the centers of SVILCswith c =[ ]w 1l and c = -[ ]w 1l , respectively, where c[ ]wl is the
winding number ofχ around each center.
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There are cases inwhich the coupling is not negligible even if themagnitude of the coupling energies is very
small. They occurwhen the current direction around the site located a2 to the right of the center ofα qubit, and
that around the site located a2 to the left of the center ofϒ qubit are neither parallel nor anti-parallel. In this case,
the coupling energy does notmonotonically decrease with the increase of rx. Concretely, whenα is (e) or (f) and
ϒ is (b), (a), (c) or (d), the coupling energy is small even at small separations but the two qubits are coupled. For
example, the energy difference between ñ∣ec and ñ∣ed is only - t10 9 at = ( )r a6x , however, the coupling exists and
the coupling energy does not decreasemonotonically with the increase of rx. This behavior occurs because the
coupling of SVQs are governed not only by the separation distance but also by the direction and intensity of the
current at the qubit sites.

Next, we calculate the coupling energywhen some of theCu atoms are replaced by other atoms (barrier
atoms). The barrier atomsmay be used to reduce the coupling between the two SVQqubits. The effect of the
barrier atom substitution is taken into account by the change of the transfer integral for the bonds that include
the barrier atom sites to ¢ =t t0.5 and theCoulomb repulsion on the barrier atom sites to ¢ =U t10 . Infigure 6,

Table 1.Transition dipolemoments between states with different current patterns for
the spin-vortex quartet (SVQ) depicted in figure 2. The value of the y (x) component is
tabulated in the lower-left (upper-right) triangle positions of the table. The unit of the
moment is 10−30 Cm.Underlined ones have extremely large values; they are the y

component of dipole transitionmoment between (e) in figure 2 (denoted by ‘RL
RL

’ in the

table) and (f) (denoted by ‘ LR
LR

’ in the table), and the x component between (c) (‘ LL
RR

’ )

and (d) (‘RR
LL

’ ).

m -( )10 Cmkl
x 30

l RL LL RL LR RR LR
k RL RR LR RL LL LR

RL 0.334 2.67 2.769 6.82 1.998
RL
LL 0.0501 8.882 8.595 22.721 6.82
RR

mkl
y RL 8.837 2.871 0.662 8.595 2.769

LR
LR 8.642 2.650 0.581 8.882 2.67
RL
RR 7.47 2.457 2.656 2.871 0.334
LL
LR 22.2 7.47 8.642 8.837 0.501
LR

Figure 4.Two SVQs on the ´a a44 6 sized lattice of theCuO2 plane. rx is the distance between the centers of the two SVQs. (i)The
spin structurewhen = ( )r a8x . (ii)The spin structure when = ( )r a36x .
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that feeding external current larger than �( )et0.08 2 reverse the order of ñ∣DU and ñ∣DD , and the order of ñ∣UU
and ñ∣UD .

Let us examine the effect of using barrier atoms on the performance of the current feeding coupler.We
calculate the energy levels and dipolemoments between the qubit states of the twoDCQ systemwith barrier
atoms. The barrier atoms are located at (x, y)= ( ) ( )22, 1 , 22, 2 ," ( ), 22, 7 and (x, y)= ( ) ( )24, 1 , 24, 2 ,
" ( ), 24, 7 as shown infigure 6. The transfer integral of all the bonds including barrier atoms is taken to be
¢ =t t0.5 and theCoulombparameter on the sites of barrier atom is ¢U is t10 .

We feed and drain one of the external currents through the sites between the two arrays of the barrier atoms.
Remarkably, we canminimize the effect of the barrier atoms on the current feeding couplers in this way; as you

Figure 8.The current distribution of four states of the twoDCQqubit system.One lattice distance corresponds to the current of the
magnitude 1/3 in the units of �et2 . The four states are indicated as ñ∣DU , ñ∣UU , ñ∣DD and ñ∣UD , respectively. The centers of the two
DCQs are =( ) ( )x y, 5, 4 and ( )41, 4 .

Figure 9.The current distribution of four states of 2-qubit systemofDCQwith feeding currents Jex . The external currents enter the
system at =( ) ( )x y, 10, 1 and ( )23, 7 , and exit at =( ) ( )x y, 23, 1 and ( )35, 7 . Themagnitude of the external currents is

�( )et0.049 2 for each source and drain. The blue arrow indicates the source or drain of the external currents.
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system is about 100μs. This is enough to accommodate error corrections for a small number of qubits; however,
for a large number of qubit system, amuch longer coherence timemay be required.

Recently, a new qubit has been proposed thatmay overcome the abovementioned difficulties. It utilizes
nano-sized persistent loop currents predicted to exist in the cuprate superconductor (Wakaura et al [6]).
Superconductivity in the cuprate (the cuprate superconductivity) is believed to be different from the
conventional one explained by the BCS theory (the BCS superconductors). It showsmarked differences inmany
properties compared to those found in the BCS superconductors. For example, the normal state fromwhich the
superconducting state emerges is not a bandmetal. A theory for the cuprate superconductivity has been
proposedwhere it is explained from the view point of the appearance of a new current generationmechanism
that occurs when holes are doped in theMott insulator. In the new theory, the persistent loop current plays the
role of the current element, and amacroscopic current is generated as a collection of them [7–9].

The loop current is called, the spin-vortex induced loop current (SVILC), and it is predicted to exist in the
CuO2 plane of the bulk of hole-doped cuprate superconductors. It is induced by the spin-vortex created by the
itinerant electronswith a doped hole at its center. It is protected by the topological winding number associated
with thewave function. The direction of each SVILC can be either clockwise (winding number−1) or
counterclockwise (winding number+1); and the currentless winding number zero is forbidden by the single-
valued requirement of thewave functionwith respect to the electron coordinates.

Although the presence of the SVILC is not verified, yet, there is evidence that such loop currents exist: (1) the
existence of loop currents is inferred by neutron scatteringmeasurement [10]; (2) themagnetic excitation
spectrum calculated by assuming the existence of spin-vortices agrees with that obtained by the neutrons
scattering experiment [11], indicating the presence of spin-vortices is very plausible; (3) the polar Kerr effect
measurement [12] and the enhancedNernst effectmeasurement [13] suggest the presence of loop currents.

Assuming the existence of the SVILC, we have demonstrated, theoretically, that SVILCs can be used as qubits
[6].We list expected properties of the SVILC qubits, below.

(i) All qubits can be differentiated in a controlled manner by modifying the environment of them. The
controlledmodificationmay be achieved by applying amagnetic field, applying an electric field, or feeding
external currents.

(ii) The qubit operation can be achieved by irradiating an electromagnetic field with the frequency that
corresponds to the energy difference between the two qubit states.

(iii) Our previous calculation indicates that the gate-operation time is in the nanosecond order when an
electromagnetic fieldwith electric field intensity 105 Vm–1 is used [6].

(iv) Coupling between qubits can be turned-on and off in a controlled manner as will be demonstrated in this
work. The coupling is turned-off by placing qubits at a distance; the separation distancemay be shortened
by using barrier atoms (substituted atoms for Cu’s) between the qubits. The coupling is turned-on by
feeding external currents in the region between the two target qubits.

(v) The size of each qubit is about 10 nm2. The size of the qubit-coupler using the external current feeding is
also in the nanometer scale.

(vi) The stabilization temperature for the SVILCs corresponds to the superconducting transition temperature
Tc for the cuprates [9]which is above the liquid nitrogen temperature. Thus, the qubit operation at
temperatures above the liquid nitrogen temperaturemight be possible.

(vii) Readout process will be performed by measuring the magnetic field produced by SVILCs after turning-off
the appliedmagnetic field and external feeding currents. It is also possible to use the response currents to the
external feeding currents [14].

(viii) The SVILC is protected by the topological winding number, thus, it is expected to be robust against external
perturbations. Besides, it does not require theCooper pair formation, thus, it is free from the relaxation
caused by unpaired electrons that is believed to be themajor cause of limiting coherent time for the
superconducting qubits using the Josephson junctions [15–19].

The purpose of the present work is to demonstrate, theoretically, that coupling between two SVILC qubits
placed at a long distance and uncoupled can be turned-on by increasing the current density in the region
between themby feeding external current.We also consider the substitution effect of the Cu atoms by some
other atoms (we call them, ‘barrier atoms’). The couplingmethod proposed in this workwill enable the
construction of nano-sized qubit-couplers. This will provide a scalability for the SVILC qubit quantum
computer.
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composed of SVQs are located there. The separation of the nearby qubits is long enough to decouple each qubit;
this will require the distance longer than 14 nm. Leads are connected to a strip of theCuO2 plane; they are used
to control the energy levels of each qubit, and also used as couplers of the qubits. By controlling the qubit energy
levels, each qubit becomes differentiated and can bemanipulated, separately. The qubit coupling is achieved by
feeding currents in the region between two qubits. The leads considered in the present work is in the order of the
lattice distance, however,much thicker lead (say 10 nm)may be used. It has been theoretically demonstrated
that such a thick lead also brings about a similar effect [14]. Then, a reasonable parameter for the qubit distance
will be about 30 nm if the current feeding leadswith thickness 10 nm is used.

The third layer contains electrodes that fix the locations of the SVQ’s in themiddle layer. Experimental data
suggest that holes in theCuO2 plane aremore stable in the place close to the doping ion (for example, Sr2+ for
La -x2 SrxCuO4) in the reservoir layers of the cuprate. If this is the case, the location of the SVQ’smay befixed
using the negatively biased electrodes. Also the number of holes in theCuO2 planewill be controlled by them.

There are threemajor sources of the relaxation of the qubit state. Thefirst one is theflipping of the loop
current directions. Second one is the destruction of spin-vortices by flipping of spin directions. Third one is the
hopping of the hole. At present, we do not know exactmagnitude of each contribution; however, theoretical
estimates for the energy scales are, t U3 2 (the values used in this work are t = 130meV and =U t8 ) for the
loop currentfluctuation [23], t U2 for the spin-vortex fluctuation, and 0.2 eV for the hole hopping [24]. Thus,
theywill be negligible in the liquid nitrogen temperature. The charge fluctuation for the SVQqubit will be
negligible since the on-site Coulomb repulsion parameterU for the SVQqubit system is very large (in the order
of eV). The loop currents and spin-vortices are protected by topology, and the hole hopping requires the
destruction of loop currents and spin-vortices, thus, allmajor qubit relaxation processes are topologically
protected collective one. Therefore, the SVQqubit should be a robust one.We also speculate that the coherence
time of the SVQqubits is rather long by the same reason.

The applicability of the present couplingmethod is only between nearby qubits. However, it is possible to
construct a fault tolerant quantum computer using the surface code [25–28]. Infigure 16, a schematic layout for
an implementation of two-dimensional surface code using the SVILC qubits is depicted. This is a two-
dimensional extension of the one shown infigure 15. There are sections that are not theCuO2 plane. From these
regions, two types of external currents are fed, one for the coupling between nearby SVQqubits, and the other
for the controlling the single qubit states of SVQs. The qubit controlling external currentmay be used to
initialize the qubit since the energy of states with different current patterns depend on the external current
pattern [14]. Itmay be possible to change the energy levels of (e) and (f) infigure 2 so that they become single and
first excited states by controlling the environment. The above each qubit, amolecule thatmeasures themagnetic
field from the qubit is placed. This two-dimensional version is ideal one since it is compact and equippedwith
the error correction.However, the construction of itmay be highly demanding at present.

Figure 16. Implementation of two-dimensional surface code using the SVILC qubits. Each qubit is an SVQqubit composed of four
SVILCs.White square regions are non-CuO2 plane regions used for feeding external currents. There are two types of external currents:
onewith filled arrow is for the coupling between nearby SVQqubits, and onewith open arrow is for the controlling the single qubit
states of SVQs.
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compact; thus, it enables a construction of a nano-sized coupler. This nano-sized couple will be an advantage of
the SVILC quantum computer from the scalability view point.

We have also examined the effect of replacing someCu atomswith some other atoms (barrier atoms)
existing between the two qubits. It is shown that the introduction of the barrier atoms does not significantly
change the effect of external currents as the coupler. However, it enables the shortening of the distance for the
uncoupling, thus, the size of the SVQqubit system is reduced. This will further increase the scalability of the SVQ
qubit quantum computer.

Infigure 15, an architecture thatmight be used to implement SVQqubits is depicted. It uses a strip of CuO2

plane, where SVQqubits are arranged in one-dimension. It composed of three layers; they are readout layer,
qubit controlling layer, and qubit fixing layer. In the top layer, the qubit states are determined bymeasuring the
magnetic field produced by the SVILCs; thismay be achieved by placing atoms ormolecules with unpaired
electrons andmeasuring the energy level spacing by ESRdevices [22]. Themiddle layer is the qubit layer; qubits

Figure 14.The current distribution of four states of the twoDCQqubit systemwith barrier atoms at =( ) ( )x y, 22, 1 ,
"( ) ( )22, 2 , , 22, 7 and "( ) ( ) ( )24, 1 , 24, 2 , , 24, 7 . The two states ñ∣DU and ñ∣UU out of four are shown, respectively. The centers of

the twoDCQs are =( ) ( )x y, 5, 4 and ( )41, 4 . The current distributionwith feeding currents are depicted in bottom twofigures,
where the external currents enter the system at =( ) ( )x y, 10, 1 and ( )23, 7 , and exit at =( ) ( )x y, 23, 1 and ( )35, 7 . Themagnitude
of the external currents is �( )et0.049 2 for each source and drain. The blue arrow indicates the source or drain of the external
currents.

Figure 15. Implementation of SVQqubits with a three layer architecture. Top layer: qubit state readout layer. SVQ states are
determined usingmagnetic field detectors.Middle: qubit layer. SVQquits are generated in a strip of the CuO2 plane of the cuprate.
Leads are connected to the strip and currents are fed. They control each qubit state and also coupling between qubits. Bottom layer:
qubit fixing layer. Negatively biased electrodes are used tofix the positions of qubits.
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``We  know  of  no  other  place  in  physics  where  such  a  simple  and  accurate  
general  principle  requires  for  its  real  understanding  an  analysis  in  terms  of  
two  different  phenomena.  Usually  such  a  beautiful  generalization  is  found  to  
stem  from  a  single  deep  underlying  principle.  Nevertheless,  in  this  case  
there  does  not  appear  to  be  any  such  profound  implication.  We  have  to  
understand  the  ``rule’’  as  the  combined  effects  of  two  quite  separate  
phenomena’’  (excerpt  from  ``The  Feynman  Lectures  on  Physics,  Vol.  II’’,  17-
1,  Addison-Wesley  Publishing  Company,  Reading,  Massachusetts,  1964).

Flux	  Rule	   emf =−"#
"$
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Abstract We examine some consequences of the duality
that a U(1) phase factor added on a wave function describes
a whole system motion and also plays the role of a U(1)
gauge potential. First, we show that the duality solves a
long-standing puzzling problem that the ‘flux rule’ (the
Faraday’s induction formula) and the Lorentz force calcu-
lation for an emf emerging in an electron system moving
in a magnetic field give the same result (Feynman et al.
1963). Next, we examine a U(1) phase factor induced on
the wave function for an electron system due to the single-
valuedness requirement of the wave function with respect to
the electron coordinates, and its consequential appearance
of a U(1) instanton. This instanton explains the Meiss-
ner effect, supercurrent generation, flux quantization in the
units of h

2e , and the voltage quantization in the units of hf
2e

across the Josephson junction in the presence of a radiation
field with frequency f . In the experiment, a radiation field
must be present to have a finite voltage across the Joseph-
son junction; but a clear explanation for it has been lacking.
The present work provides an explanation for it, and also
explains the high precision of the quantized voltage as due
to a topological effect.
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The role played by the electromagnetic gauge potential
(vector+ scalar potentials) is different in quantum theory
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and classical theory. In classical theory, the gauge poten-
tial is a supplementary tool that can be used to facilitate
calculations involving the magnetic field Bem and electric
field Eem. On the other hand, it is a real physical entity in
quantum theory. The physical reality of the gauge potential
has been predicted [2] and experimentally verified [3]. The
explanation of the Meissner effect observed in supercon-
ductors is explained using the London formula that directly
connects the current density to the vector potential [4]. It is
also notable that a new approach of electrodynamics using
the quantum nature of matter with the gauge potential rather
than using Maxwell’s equations has been proposed [5].

From the viewpoint that the vector potential Aem and
scalar one ϕem are more fundamental thanBem andEem, two
of Maxwell’s equations, ∇ ·Bem = 0 and ∇×Eem = − ∂Bem

∂t
become the equations that define Bem and Eem from the
fundamental gauge potential,

Bem = ∇ × Aem; Eem = −∂Aem

∂t
− ∇ϕem (1)

The interaction of the quantum system and electromag-
netic field is introduced by the following changes in the
material Hamiltonian,

p = !
i
∇ → !

i
∇ − qAem; i! ∂

∂t
→ i! ∂

∂t
− qϕem (2)

where q = −e is the electron charge. This way of including
the interaction gives rise to a duality that aU(1) phase factor
added on a wave function describes a whole system motion,
and also works as a U(1) gauge potential.

Let us see this point more, closely. We denote
the wave function of a system with Ne electrons as
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the ordinary vector potential and the instanton gauge potential. It is invariant with respect

to the choice of the gauge of the ordinary gauge potential due to the fact that the instanton

is obtained as a solution to classical equations of motion; the arbitrariness in the gauge of

the ordinary gauge potential is absorbed or compensated in the evaluation process of the

instanton. This provides a new way to achieve the gauge invariance in materials, i.e., the

appearance of the gauge-invariant effective gauge potential in the materials.

In classical theory, the gauge invariance is the invariance for the electric field Eem and the

magnetic field Bem,

Eem = −∂tAem − ∇ϕem; Bem = ∇ × Aem (1)

with respect to the following modifications of the gauge potential,

Aem → Aem − !
2q
∇φ; ϕem → ϕem +

!

2q
∂tφ (2)

where q = −e is the charge on the electron.

In quantum mechanics, the gauge invariance in the usual meaning requires an additional

change in the phase of the wave function for the material interacting with the electromagnetic

field

ψ(x, t)→ e−
i
2φψ(x, t) (3)

This means that we need to adjust the U(1) phase factor of the wave function for the material

when we consider the gauge invariance. In non-perturbative electronic state calculations, the

gauge is chosen first, and the wave function for the material is calculated second. In this

order, the obtained wave function is that for the first chosen gauge. This means that the gauge

is fixed by the material wave function on the first chosen one.

In the BCS calculation, the magnetic field response is calculated by employing the pertur-

bation theory by treating Aem as a perturbation for the wave function obtained for the gauge

Aem = 0. In this case, the wave function is obtained first, and the gauge is chosen second,

which is the reverse order of the non-perturbative calculation. Thus, the adjustment of the

U(1) phase factor of the wave function may be necessary.

In the BCS derivation,?) the following gauge is employed;

∇ · Aem = 0; Aem = 0 if the magnetic field is zero. (4)

The second assumption, ‘Aem = 0 if the magnetic field is zero’, is actually not fulfilled in the

situation where the magnetic flux quantization is observed. In this case, the vector potential
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Inseparable	  relation	  between	  electromagnetic	  field	  and	  charged	  particles.	  

The duality that a U (1) phase factor on a wave function describes a 
whole system motion and also plays the role of a U(1) gauge potential..

-‐ Hiroyasu	  Koizumi	  “	  Flux	  Rule,	  U(1)	  instanton,	  and	  superconductivity”,
J.  Supercond.  Nov.  Magn.  30,  3345–3349  (2017)  



Conclusions

SVILC	  (spin-‐vortex-‐induced	  loop	  current	  )	  qubits	  may	  be	  promising	  for	  realizing	  
fully	  fault-‐tolerant	  quantum	  computing.	  


