
OpenCL-ready FPGA Programming
for Large-scale Parallel Processing

Ryohei Kobayashi

Assistant Professor, CCS

CCS ‒ LBNL Collaborative Workshop @ CCS, U. Tsukuba
13:30 - 14:00, March 5, 2018

1

Background

Accelerators in HPC

lThe most popular one: GPU
lGPU-based HPC clusters

ØHA-PACS/TCA, TSUBAME3, ABCI, etc.
lGPUs are good at

Øparallel applications depending on very wide and regular
computation
ü large scale SIMD (STMD) fabric in a chip
ü high bandwidth memory (GDR5, HBM) and local memory

lGPUs do not work well on applications that employ
Øpartially poor parallelism
Ønon-regular computation (warp divergence)
Øfrequent inter-node communication (kernel switch, go back
to CPU)

2

FPGAs have been emerging in HPC

lStrengths of today’s FPGA for HPC
Ø true co-designing with applications (indispensable)
Ø programmability improvement

ü OpenCL-based FPGA development toolchains are available
Ø high bandwidth interconnect: 40 ~ 100 Gbps/link
Ø implementing computation engines with specialized precision is possible
Ø relatively low power (it depends on implemented logics)

lProblems
Ø OpenCL is not good enough! Programming effort is still high!

ü Programmers must consider carefully how application’s algorithms are
implemented on an FPGA in order to exploit desired performance

Ø FPGAs still cannot beat GPU in terms of absolute performance (FLOPS)
ü Don’t try what GPU can perform well

Ø Memory bandwidth is two generation older than high-end CPU/GPU
ü Good news: this is improved by HBM (Stratix10 MX)

3

Each device’s pros and cons

lEach device’s strength and weakness are different
lA technology to compensate with each other is
needed for more driving HPC forward
Øoffering large degree of strong scalability

4

performance
(FLOPS) external comm. programming

effort

CPU △ ○ ◎

GPU ◎ △ ○

FPGA ○ ◎ × -> △?
recently getting better

Accelerator in Switch (AiS) concept

lWhat’s this?
Ø using FPGA for not only computation offloading but also communication
Ø covering GPU non-suited computation by FPGA
Ø combining computation offloading and ultra-low latency communication
among FPGAs

Ø especially effective on communication-related small/medium computation
(such as collective communication)

Ø OpenCL-enable programming for application users

5

High-speed
interconnect

CPU Accelerator
(GPU)Accelerator
(GPU)

PCIe switch

Communication
Logic

Computation
Logic

FPGA

Network Switch

Node

Node Node Node

<- currently we are working on

Accelerator in Switch (AiS) concept

lWhat’s this?
Ø using FPGA for not only computation offloading but also communication
Ø covering GPU non-suited computation by FPGA
Ø combining computation offloading and ultra-low latency communication
among FPGAs

Ø especially effective on communication-related small/medium computation
(such as collective communication)

Ø OpenCL-enable programming for application users

6

High-speed
interconnect

CPU Accelerator
(GPU)Accelerator
(GPU)

PCIe switch

Communication
Logic

Computation
Logic

FPGA

Network Switch

Node

Node Node Node

specialized comp. or collective comm.

Computation model

invoke GPU/FPGA kernels

data movement via PCIe
(kicked from FPGA)

<- currently we are working on

Previous studies about FPGA for HPC

lwith OpenCL
Ø Zohouri et al., “Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs”, SC’16, pp.35:1 - 35:12

Ø Weller et al., “Energy Efficient Scientific Computing on FPGAs using
OpenCL”, FPGA2017, pp.247 - 256

Ø Lee et al., “OpenACC to FPGA: A Framework for Directive-Based High-
Performance Reconfigurable Computing”, IPDPS2016, pp.544 - 554

lwith multi-FPGA based system
Ø Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services”, ISCA’14, pp.13 - 24

Ø Sano et al., “Multi-FPGA Accelerator for Scalable Stencil Computation
with Constant Memory Bandwidth”, IEEE TPDS, Vol. 25, No. 3, pp. 695‒
705, March 2014

Ø Weerasinghe et al., “Network-attached FPGAs for data center
applications”, FPT2016, pp.36 - 43

7

・focusing on how to implement and optimize high-performance and energy-efficient
computation units with OpenCL capabilities and a single FPGA

・focusing on building a huge pipelined computation unit across FPGAs
・not assuming OpenCL utilization
・basically point-to-point comm. (hard to be scaled to hundred or thousand nodes)

Previous studies about FPGA for HPC

lwith OpenCL
Ø Zohouri et al., “Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs”, SC’16, pp.35:1 - 35:12

Ø Weller et al., “Energy Efficient Scientific Computing on FPGAs using
OpenCL”, FPGA2017, pp.247 - 256

Ø Lee et al., “OpenACC to FPGA: A Framework for Directive-Based High-
Performance Reconfigurable Computing”, IPDPS2016, pp.544 - 554

lwith multi-FPGA based system
Ø Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services”, ISCA’14, pp.13 - 24

Ø Sano et al., “Multi-FPGA Accelerator for Scalable Stencil Computation
with Constant Memory Bandwidth”, IEEE TPDS, Vol. 25, No. 3, pp. 695‒
705, March 2014

Ø Weerasinghe et al., “Network-attached FPGAs for data center
applications”, FPT2016, pp.36 - 43

8

・focusing on how to implement and optimize high-performance and energy-efficient
computation units with OpenCL capabilities and a single FPGA

・focusing on building a huge pipelined computation unit across FPGAs
・not assuming OpenCL utilization
・basically point-to-point comm. (hard to be scaled to hundred or thousand nodes)

All of people including us don’t know well
how a combination (OpenCL + FPGA + comm.) is

-> then let’s do it!!

Today’s main topic:
OpenCL-ready high speed network
lOpenCL environment is available

Øe.g. Intel FPGA SDK for OpenCL
Øbasic computation can be written in OpenCL without
Hardware Description Languages (HDLs)

lBut, current FPGA board is not ready for OpenCL on
interconnect access

lProposal
Øa method of high-performance FPGA-to-FPGA data
movement that can be controlled using OpenCL code

lOur goal
Øenabling OpenCL description by users including inter-FPGA
communication

Øproviding basic set of HPC applications such as collective
communication, basic liner library

Øproviding 40 ~ 100 Gbps Ethernet access with external
switches for large scale systems

9

10

Intel FPGA SDK for OpenCL

Programming model

11

__kernel void vecadd
(__global float *a,
__global float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

int main(int argc, char *argv[]) {
init();
clEnqueueWriteBuffer(...);
clEnqueueNDRangeKernel(...,vecadd,...);
clEnqueueReadBuffer(...);
display_result(...);
return 0;

}

x86 host PC

FPGA
accelerator

OpenCL host code OpenCL kernel code

Intel
Offline
Compiler

Standard
C

Compiler
Verilog HDL
Files

aocxexe

PCIe

Schematic of the Intel FPGA SDK for an
OpenCL platform

12

+
Kernel

Load a

Load b

Store c

Interconnect

Memory
Controller

PCIe
Controller

Driver

FPGA

Host Application

External
Memory

Host PC

Translated by
Intel Offline Compiler

__kernel void vecadd
(__global float *a,
__global float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

OpenCL kernel code

int main(int argc, char *argv[]) {
init();
clEnqueueWriteBuffer(...);
clEnqueueNDRangeKernel(...,vecadd,...);
clEnqueueReadBuffer(...);
display_result(...);
return 0;

}

OpenCL host code

These features like peripheral
controllers are provided from
Board Support Package (BSP)

FPGA board

Network
Port

Schematic of the Intel FPGA SDK for an
OpenCL platform

13

+
Kernel

Load a

Load b

Store c

Interconnect

Memory
Controller

PCIe
Controller

Driver

FPGA

Host Application

External
Memory

Host PC

FPGA board

BSP

Network
Port

l description specifying FPGA chip
and board peripherals
configuration and access/control
method

Ø a sort of virtualization to enable same
kernel development on an FPGA

Ø independent for each board with FPGA
l Basically, only minimum interface
is supported

Ø minimum interface:
external (DDR) memory and PCIe

OpenCL kernel

Schematic of the Intel FPGA SDK for an
OpenCL platform

14

+
Kernel

Load a

Load b

Store c

Interconnect

Memory
Controller

PCIe
Controller

Driver

FPGA

Host Application

External
Memory

Host PC

FPGA board

BSP

Network
Port

l description specifying FPGA chip
and board peripherals
configuration and access/control
method

Ø a sort of virtualization to enable same
kernel development on an FPGA

Ø independent for each board with FPGA
l Basically, only minimum interface
is supported

Ø minimum interface:
external (DDR) memory and PCIe

Ø to perform inter-FPGA comm.,
implementing network controller and
integrating it into the BSP are required

Network
Controller

additionally implemented

OpenCL kernel

15

OpenCL-enabled inter-FPGA
data movement

Implementation overview

16

Our FPGA board
(BittWare A10PL4)

DDR4
mem

QSFP+

OpenCL
kernel

In
te
rc
on
ne
ct

PCIe
Controller

DDR4
Controller

DDR4
Controller

FPGA

FPGA board (A10PL4)

DDR4
mem

QSFP+

QSFP+

DDR4
mem

Driver

Host Application

Host PC

BSP

Ethernet IP
Controller
Ethernet IP
Controller

Ethernet
IP Core
Ethernet
IP Core

additionally implemented
I/O channel

specified access
QSFP+ port

calibration is needed

Ethernet Intellectual Property (IP) Core

lLow-latency 40- and 100-Gbps Ethernet MAC and PHY
MegaCore function

Ø provided from Intel
Ø offering essential features of the physical and media access control
layers for Ethernet comm.

17

SerDes

Frame
Generator
Extractor
&

Error Checker

Frame
(for send)

Frame
(for recv)

Ethernet IP Core

QSFP+

MAC Addresses
(12 bytes)

Payload
(39 bytes ~)

MAC Addresses Payload

l client data
Ø be handled as a
jumbo frame if it is
beyond 1500 bytes

Preamble
(8 bytes)

MAC Addresses
(12 bytes)

Payload
(39 bytes ~)

CRC
(4 bytes)

EFD
(1 byte)

Added by the Ethernet IP coreAdded by OpenCL kernel code

Ethernet IP Controller

la joint module for OpenCL and Ethernet IP core
Ø our homemade hardware unit implemented with Verilog HDL

lmanaging the client data
Ø Prepender

ü sends the MAC addresses to the IP core at first, and then extracts data from
the client payload stored in the FIFO buffer

Ø Remover
ü getting payload data

lcurrently, error-handling logic such as a retransmission
feature is not supported

18

Prepender

Remover
FIFO Buffer

FIFO Buffer

Ethernet IP Controller client data

client data

Ethernet
IP Core

QSFP+

recv data

user-specified data
from OpenCL

send data

MAC Addresses

OpenCL code snippets for ping-pong

l Data movement is performed with I/O channel API

19

// Set MAC Addresses
write_channel_intel(SET_SRC , src_addr);
write_channel_intel(SET_DST, dst_addr);

// Set send data
for (i = 0 ; i < data_size ; i++) write_channel_intel(SEND, send_data[i]);

sender

// Get recv data
for (i = 0 ; i < data_size ; i++) recv_data[i] = read_channel_intel(RECV);

receiver

Prepender

Remover
FIFO Buffer

FIFO Buffer

Ethernet IP Controller
src_addr
dst_addr
send_data[i]
recv_data[i]

OpenCL
kernel SET_SRC

SET_DST
SEND
RECV In

te
rc
on
ne
ct

Channel ID

OpenCL code for ping-pong (ping side)

20

/***** I/O channel id definition *****/
channel int set_src_addr __attribute__((depth(0))) __attribute__((io("kernel_send_sadr")));
channel int set_dst_addr __attribute__((depth(0))) __attribute__((io("kernel_send_dadr")));
channel int8 set_data __attribute__((depth(0))) __attribute__((io("kernel_send_data")));
channel int8 get_data __attribute__((depth(0))) __attribute__((io("kernel_recv_data")));

__kernel void ether_test(
const global int8 *restrict send_data,
global int8 *restrict recv_data,
const int src_addr,
const int dst_addr,
const int datanum)

{
int i;

// Set MAC Addresses
write_channel_intel(set_src_addr, src_addr);
write_channel_intel(set_dst_addr, dst_addr);

// Set payload for sending
for (i = 0; i < datanum; i++) write_channel_intel(set_data, send_data[i]);

// Get payload recieved
for (i = 0; i < datanum; i++) recv_data[i] = read_channel_intel(get_data);

}

MAC Addresses are sent from OpenCL host code

specifying how many data chunks are sent and received

21

Evaluation

Evaluation testbed

lPre-PACS-X (PPX)
Ø PACS-X prototype
Ø CCS, U. Tsukuba

22

A10PL4 P100

IB HCA
CPU

NVMe

Host OS CentOS 7.3

Host Compiler gcc 4.8.5

FPGA
toolchain

Intel FPGA SDK for OpenCL,
Intel Quartus Prime Pro
Version 17.0.0 Build 289

CPU:
Intel Xeon
E5-2660 v4 x2 GPU:

NVIDIA P100 x2

FPGA:
BittWare A10PL4

HCA:
Mellanox IB/EDR

QSFP+: 40Gbps x2

IB/EDR: 100Gbps
comp. node

For more detail, please refer to our paper

Communication paths
for FPGA-to-FPGA data movement

23

CPU0

CPU1

QPI (307.2 Gbps)

A10PL4

PCIe Gen3 x8
(56 Gbps)

IB HCA

PCIe Gen3 x16
(112 Gbps)

Ethernet Switch (Mellanox MSN2100-CB2R)

IB EDR (100 Gbps)

QSFP+ (40 Gbps)

Node

IB (InfiniBand) Switch (Mellanox MSB7790-ES2F)

CPU0

CPU1

QPI

A10PL4

PCIe Gen3 x8

IB HCA

PCIe Gen3 x16

IB EDR

QSFP+

Node

Node Node

via CPU + IB (traditional method)

via Ethernet (proposed method)

1.33

29.03

0.99

0

5

10

15

20

25

30

via IB via Ethernet

La
te
nc
y
[u
se
c]

FPGA<->CPU1

CPU1->CPU1

Communication latency

lvia Ethernet: ~1μsec
lvia CPU + IB: 29.03μsec

ØCPU-FPGA comm. is dominant
ü CPU-FPGA interface offered
by current BSP is not good

24

Inter-node communication latency
(1 byte data)

via CPU + IB
(traditional method)

via Ethernet
(proposed method)

La
te
nc
y
[μ
se
c]

Be
tte
r 27.70
FPGA -> CPU

and
CPU -> FPGA

0

0.2

0.4

0.6

0.8

1

1.2

via Ethernet

La
te
nc
y
[u
se
c]

Ethernet IP
Controller

Ethernet IP

Ethernet Switch

Latency breakdown of
the Ethernet communication

via Ethernet

La
te
nc
y
[μ
se
c]

Communication bandwidth

lOur proposed method (via Ethernet) achieves 4.97 GB/s
Ø 99.4 % of theoretical peak (w/o error handling)
Ø the maximum effective bandwidth is achieved at the earlier phase by
short latency, compared the traditional method (via CPU + IB)

lThe traditional method achieves 2.32 GB/s
Ø non-pipelined communication (store-and-forward manner)
Ø no special feature (e.g. GPUDirect RMA) between FPGA and IB HCA

25

be
tte
r

Inter-node communication bandwidth

via CPU + IB

via Ethernet

26

Conclusion and future work

Conclusion

lProposal
ØOpenCL-ready FPGA-to-FPGA Ethernet communication

ü through a QSFP+ optical interconnect
ü using I/O Channel API to perform data movement

• be realized by implementing QSFP+ controller and integrating it
into the BSP

lEvaluation: ping-pong communication
Ø latency: ~1μsec, bandwidth: 4.97 GB/s

ü Low latency and high bandwidth comm. can be achieved
ØFPGA resource usage (total)
ALMs: 11.9 % | Registers: 5.9 % | M20K: 13.2 % | Transceivers: 25.0 %

ü plenty of resources are still available, but we must consider carefully how
to use them

ØThe results suggest that our proposed approach is a
promising means to realize the AiS concept

27

Future work

lImplementing communication error-handling logics
Øe.g. retransmission, flow control

lUsability improvement
Øe.g. supporting collective communication

lPerforming evaluation using more practical apps
Øastrophysics is mainly targeted

28

We will promote the reconfigurable HPC to offer strong scalability!
Thank you for your attention!!

