Oakforest-PACS and PACS-X: Present and Future of CCS Supercomputers

Taisuke Boku

Deputy Director, Center for Computational Sciences University of Tsukuba

2018/03/05 CCS-LBNL Workshop 2018

Oakforest-PACS

2018/03/05 CCS-LBNL Workshop 2018

JCAHPC

- Joint Center for Advanced High Performance Computing (<u>http://jcahpc.jp</u>)
- Very tight collaboration for "post-T2K" with two universities
 - For main supercomputer resources, *uniform specification* to single shared system
 - Each university is financially responsible to introduce the machine and its operation
 - -> unified procurement toward single system with *largest scale in Japan*
 - To manage everything smoothly, a joint organization was established
 - -> JCAHPC

2018/03/05

Oakforest-PACS (OFP)

U. Tokyo convention U. Tsukuba convention

⇒ Don't call it just "Oakforest" ! "OFP" is much better

- 25 PFLOPS peak
- 8208 KNL CPUs
- FBB Fat-Tree by
 OmniPath
- HPL 13.55 PFLOPS #1 in Japan #6 in World
- HPCG #3 in World
- Green500 #6 in World
- Full operation started Dec. 2016
- Official Program started on April 2017

Computation node & chassis

Computation node (Fujitsu next generation PRIMERGY) with single chip Intel Xeon Phi (Knights Landing, 3+TFLOPS) and Intel Omni-Path Architecture card (100Gbps)

5

CCS-LBNL Workshop 2018 2018/03/05

Water cooling pipes and IME (burst buffer)

CCS-LBNL Workshop 2018

2018/03/05

Specification of Oakforest-PACS

Total peak performance		e	25 PFLOPS	
Total number of compute nodes		te nodes	8,208	
Compute node	Compute Product node		Fujitsu Next-generation PRIMERGY server for HPC (under development)	
	Processor		Intel® Xeon Phi™ (Knights Landing) Xeon Phi 7250 (1.4GHz TDP) with 68 cores	
	Memory	High BW	16 GB , > 400 GB/sec (MCDRAM, effective rate)	
		Low BW	96 GB, 115.2 GB/sec (DDR4-2400 x 6ch, peak rate)	
Inter-	Product		Intel® Omni-Path Architecture	
connect	Link speed		100 Gbps	
	Тороlоду		Fat-tree with full-bisection bandwidth	
Login	n Product		Fujitsu PRIMERGY RX2530 M2 server	
node	# of servers		20	
	Processor		Intel Xeon E5-2690v4 (2.6 GHz 14 core x 2 socket)	
	Memory		256 GB, 153 GB/sec (DDR4-2400 x 4ch x 2 socket)	

Specification of Oakforest-PACS (I/O)

Parallel File	Туре		Lustre File System
System	Total Capacity		26.2 PB
	Meta	Product	DataDirect Networks MDS server + SFA7700X
	data	# of MDS	4 servers x 3 set
		MDT	7.7 TB (SAS SSD) x 3 set
	Object	Product	DataDirect Networks SFA14KE
	storage	# of OSS (Nodes)	10 (20)
		Aggregate BW	~500 GB/sec
Fast File	Туре		Burst Buffer, Infinite Memory Engine (by DDN)
Cache System	Total capacity		940 TB (NVMe SSD , including parity data by erasure coding)
	Product		DataDirect Networks IME14K
	# of serve	ers (Nodes)	25 (50)
	Aggregate BW		~1,560 GB/sec

CCS-LBNL Workshop 2018

2018/03/05

Full bisection bandwidth Fat-tree by Intel® Omni-Path Architecture

Facility of Oakforest-PACS system

Power consumption			4.2 MW (including cooling) → actually 3.2MW (in average)
# of racks			102
Cooling system	Compute Node	Туре	Warm-water cooling Direct cooling (CPU) Rear door cooling (except CPU)
		Facility	Cooling tower & Chiller
	Others	Туре	Air cooling
		Facility	PAC

Software of Oakforest-PACS

	Compute node	Login node				
OS	CentOS 7, McKernel	Red Hat Enterprise Linux 7				
Compiler	gcc, Intel compiler (C, C++, Fo	rtran)				
MPI	Intel MPI, MVAPICH2					
Library	Intel MKL					
	LAPACK, FFTW, SuperLU, PETSc, METIS, Scotch, ScaLAPACK, GNU Scientific Library, NetCDF, Parallel netCDF, Xabclib, ppOpen-HPC, ppOpen-AT, MassiveThreads					
Application	mpijava, XcalableMP, OpenFOAM, ABINIT-MP, PHASE system, FrontFlow/blue, FrontISTR, REVOCAP, OpenMX, xTAPP, AkaiKKR, MODYLAS, ALPS, feram, GROMACS, BLAST, R packages, Bioconductor, BioPerl, BioRuby					
Distributed FS	Globus Toolkit, Gfarm					
Job Scheduler	Fujitsu Technical Computing Suite					
Debugger	Allinea DDT					
Profiler	Intel VTune Amplifier, Trace Analyzer & Collector					

CO JCAHPC

TOP500 list on Nov. 2016 (first appearance)

#	Machine	Architecture	Country	Rmax (TFLOPS)	Rpeak (TFLOPS)	MFLOPS/W
1	TaihuLight, NSCW	MPP (Sunway, SW26010)	China	93,014.6	125,435.9	6051.3
2	Tianhe-2 (MilkyWay-2), NSCG	Cluster (NUDT, CPU + KNC)	China	33,862.7	54,902.4	1901.5
3	Titan, ORNL	MPP (Cray, XK7: CPU + GPU)	United States	17,590.0	27,112.5	2142.8
4	Sequoia, LLNL	MPP (IBM, BlueGene/Q)	United States	17,173.2	20,132.7	2176.6
5	Cori, NERSC-LBNL	MPP (Cray, XC40: KNL)	United States	14,014.7	27,880.7	???
6	Oakforest-PACS, JCAHPC	Cluster (Fujitsu, KNL)	Japan	13,554.6	25,004.9	4985.1
7	K Computer, RIKEN AICS	MPP (Fujitsu)	Japan	10,510.0	11,280.4	830.2
8	Piz Daint, CSCS	MPP (Cray, XC50: CPU + GPU)	Switzerland	9,779.0	15,988.0	7453.5
9	Mira, ANL	MPP (IBM, BlueGene/Q)	United States	8,586.6	10,066.3	2176.6
10	Trinity, NNSA/ LABNL/SNL	MPP (Cray, XC40: MIC)	United States	8,100.9	11,078.9	1913.7

2018/03/0 CCS-LBNL Workshop 2018 5

12

HPCG on Nov. 2016 (first appearance)

Rank	Site	Computer	Cores	Rmax Pflops	HPCG Pflops	HPCG /HPL	% of Peak
1	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	705,024	10.5	0.603	5.7%	5.3%
2	NSCC / Guangzhou	Tianhe-2 NUDT, Xeon 12C 2.2GHz + Intel Xeon Phi 57C + Custom	3,120,000	33.8	0.580	1.7%	1.1%
3	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS – PRIMERGY CX600 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel OmniPath, Fujitsu	557,056	24.9	0.385	2.8%	2.8%
4	National Supercomputing Center in Wuxi, China	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway, NRCPC	10,649,600	93.0	0.3712	0.4%	0.3%
5	DOE/SC/LBNL/NERSC USA	Cori – XC40, Intel Xe Cray Aries, Cray	HPC	G			
6	DOE/NNSA/LLNL USA	Sequoia – IBM Blue 16C 1.6GHz, 5D Toru	**************************************	MORNEO 15 2014			
7	DOE/SC/Oak Ridge Nat Lab	Titan - Cray XK7 , Op 2.200GHz, Cray Gem NVIDIA K20x	And Aron Arthree Arthr	PLORE ADREVED PHop/s		0	A
8	DOE/NNSA/LANL/SNL	Trinity - Cray XC40, I custom, Cray					
9	NASA / Mountain View	Pleiades - SGI ICE X, 2680v2, E5-2680v3, FDR, HPE/SGI					
10	DOE/SC/Argonne National Laboratory	Mira - BlueGene/Q, 1.60GHz, 5D Torus, I					
2018/03	3/05	CCS-LBN					

OFP resource sharing program (nation-wide)

- JCAHPC (20%)
 - HPCI HPC Infrastructure program in Japan to share all supercomputers (free!)
 - Big challenge special use (full system size)
- U. Tsukuba (23.5%)
 - Interdisciplinary Academic Program (free!)
 - Large scale general use
- U. Tokyo (56.5%)
 - General use
 - Industrial trial use
 - Educational use
 - Young & Female special use

CCS-LBNL Workshop 2018

2018/03/05

14

Machine location: Kashiwa Campus of U. Tokyo

Google マップ

https://www.google.com/maps/@?dg=dbrw&newdg=1

Oakforest-PACS

SALMON/ARTED

- Electron Dynamic
- Lattice QCD
 - Particle Physics

NICAM-COCO

- Atmosphere/Ocean combined
- GHYDRA
 - 3D Earth Quake (FEM)

Seism3D/OpenSWPC

2018/03/05

3D Wide Region Seismic (FDM)

(FDM-mes

center for computational sciences, univ.

Xeon Phi tuning on ARTED (with Y. Hirokawa under

collaboration with Prof. K. Yabana, CCS) → SALMON now

- ARTED Ab-initio Real-Time Electron Dynamics simulator
- Multi-scale simulator based on RTRSDFT (Real-Time Real-Space Density Functional Theory) developed in CCS, U. Tsukuba to be used for Electron Dynamics Simulation
 - RSDFT : basic status of electron (no movement of electron)
 - RTRSDFT : electron state under external force
- In RTRSDFT, RSDFT is used for ground state
 - RSDFT : large scale simulation with 1000~10000 atoms (ex. K-Computer)

SAIM

RTRSDFT : calculate a number of unit-cells with 10 ~ 100 atoms

Stencil computation (3D) performance

>2x faster than KNC (at maximum) -> up to 25% of theoretical peak of KNL

18 CCS-LBNL Workshop 2018

2018/03/05

Weak Scaling

2018/03/05 CCS-LBNL Workshop 2018

Accelerators in HPC

Traditionally...

- Cell Broadband Engine, ClearSpeed, GRAPE....
- then GPU (most popular)
- Is GPU perfect ?
 - good for many applications (replacing vector machines)
 - depending on very wide and regular computation
 - Iarge scale SIMD (STMD) mechanism in a chip
 - high bandwidth memory (GDR5, HBM) and local memory
 - bad for
 - not enough parallelism
 - not regular computation (warp spliting)
 - frequent inter-node communication (kernel switch, go back to CPU)

CCS-LBNL Workshop 2018

2018/03/05

FPGA in HPC

- Goodness of recent FPGA for HPC
 - True codesigning with applications (essential)
 - Programmability improvement: OpenCL, other high level languages
 - High performance interconnect: 40Gb~100Gb
 - Precision control is possible
 - Relatively low power
- Problems

22

- Programmability: OpenCL is not enough, not efficient
- Low standard FLOPS: still cannot catch up to GPU
 - -> "never try what GPU works well on"
- Memory bandwidth: 2-gen older than high end CPU/GPU
 - -> be improved by HBM (Stratix10)

2018/03/05

Simple pros/cons

	performance (FLOPS)	external communication (sec, B/s)	programming cost
CPU	Δ	Ο	Ø
GPU	Ô	Δ	Ο
FPGA	0	Ø	×→∆?

How to compensate with each other toward large degree of strong scaling?

CCS-LBNL Workshop 2018

2018/03/05

AiS

- AiS: Accelerator in Swtich
 - Using FPGA not only for computation offloading but also for communication
 - Combining computation offloading and communication among FPGAs for ultralow latency on FPGA computing
 - Especially effective on communicationrelated small/medium computation (such as collective communication)
 - Covering GPU non-suited computation by FPGA
 - OpenCL-enable programming for application users

2018/03/05

24

AiS computation model

CCS-LBNL Workshop 2018 2018/03/05

PACS-X (ten) Project at CCS, U. Tsukuba

PACS (Parallel Advanced system for Computational Sciences)

- a series of co-design base parallel system development both on system and application at U. Tsukuba (1978~)
- recent systems focus on accelerators
 - PACS-VIII: HA-PACS (GPU cluster, Fermi+Kepler, PEACH2, 1.1PFLOPS)
 - PACS-IX: COMA (MIC cluster, KNC, 1PFLOPS)
- Next generation of TCA implementation
 - PEACH2 with PCIe is old and with several limitation
 - new generation of GPU and FPGA with high speed interconnection
 - more tightly co-designing with applications
 - system deployment started from 2016

CCS-LBNL Workshop 2018

2018/03/05

26

PPX: testbed under AiS concept (12 nodes)

PPX mini-cluster system

CCS-LBNL Workshop 2018

2018/03/05

Center for Computational Sciences, Univ. of Tsukuba

28

Ethernet IP Controller

OpenCL code example for pingpong

CCS-LBNL Workshop 2018

Center for Computational Sciences, Univ. of Tsukuba

30

AiS application example: ARGOT

- **ARGOT** (Accelerated Radiative transfer on grids using Oct-Tree)
 - Radiative transfer simulation code developed in CCS
 - Two basic computing methods for radiation transfer
 - ARGOT method
 - from a light source
 - ART
 - from spatially spread light sources
- CPU version and GPU version with MPI
- ART method occupies >90% of computation even on GPU, and we need more speedup
 - → making FPGA offloading in AiS concept

CCS-LBNL Workshop 2018

31

ART method

- radiative transfer computing on spatially spread light sources
- ray-tracing on 3-D space with grid decomposed partitions
 - rays are in parallel
 - different input angles
 - no reflection nor refraction (different from 3-D graphics ray-tracing)
 - HEALPix algorithm for ray generation
- Iarge scale for parallel processing
 - mesh size: 100^{3~}1000³
 - ray angles: 768~ >1000

CCS-LBNL Workshop 2018

2018/03/05

Center for Computational Sciences, Univ. of Tsukuba

32

Performance (single FPGA) on ART method

Device	Perf. [M mesh/sec]	vs CPU
CPU	117.49	-
GPU	105.28	0.90
FPGA@228.57MHz (w/o autorun)	593.11	5.05
FPGA@236.11MHz (w/ autorun)	1714.97	14.60

- up to 14.6x faster than CPU (GPU doesn't speed up)
- 93% of computation time of ARGOT is dominated by ART method
 - \rightarrow 7.48x speedup on entire code is expected
- It is just on BRAM (in-house memory) and changing the code for DDR utilization

CCS-LBNL Workshop 2018

2018/03/05

33

Circuit resource utilization

			\frown				
	ALMs	Registers	M20K	MLAB	MLAB size	DSP	Freq.
w/o autorun	228,610 (54%)	473,747 (55%)	1,839 (68%)	4,330	47,968 bits	536 (35%)	228.57 MHz
w/ autorun	228,835 (54%)	467,225 (55%)	1,716 (63%)	7,350	138,288 bits	536 (35%)	236.11 MHz
difference	+225	-6,255	-123	+3,020	+90,320	0	+7.54

- largest resource use is on M20K (63%)
 - actually 53.3% (without BSP use)
- DSP utilization is only 53%
- We can achieve up to 2x more speed

GPU-FPGA communication

- FPGA is only ready for CPU-FPGA data exchange through PCIe
- We developed FPGA-GPU DMA module to be activated by FPGA
 - Currently, still needs CPU help → FPGA standalone

Performance comparision

Latency (minimum)

GPU -> FPGA DMA

Communication	Min. Latency
GPU-CPU-FPGA	3.92 µsec
GPU-FPGA	1.45 µsec

FPGA -> GPU DMA

Communication	Min. Latency
FPGA-CPU-GPU	3.63 µsec
FPGA=GPU	0.43 µsec

36

Next Step

- Precision controlling
 - for ART and ARGOT, SP is too much, HP is not balanced
 - finding best (e, m, s) combination
 e=exponent m=mantissa s=(exponent digit shift)
- Combining communication and computation
 - OpenCL computing kernels binding with OpenCL Ethernet communication layer kernels with OpenCL Channel (by Intel SDK)
- Combining GPU and FPGA
 - Basic system is done, but not yet combined for full-control by FPGA
- Final work: How to Program ???
 - FPGA-parallel programming framework with high level parallel language XcalableACC
 - Will be started as a new theme for DOE-MEXT collaboration with FTG of ORNL (Jeff Vetter) to welcome OpenARC compiler for OpenACC->FPGA

CCS-LBNL Workshop 2018

2018/03/05

37

PACS-X

- Procurement started from last week toward complete installation on March 2019
- System consists of two parts
 - Base System: only with CPU+GPU (2 GPU devices/node) and ordinary InfiniBand or similar (200Gbps?)
 - FPGA-ready System: CPU+GPU+FPGA, additionally with 2-4 channels of 100Gbps Ethernet
 - By switch ?
 - By directly connected 2D-Torus ?
 - Node configuration balance is still under designing
- Development of GPU based applications and GPU+FPGA applications is under going

Summary

- OFP is on stable operation phase to support many CSE research with nation wide researchers under collaboration with U. Tokyo
- FPGA for HPC is very attractive theme for next generation of accelerated platform with combined computation and communication
- 360-degree system to cover highly parallel SPMT computing by GPU and flexible processing on FPGA with communication feature
- OpenCL-enabled programming including communication for application users
- CCS, U. Tsukuba is moving forward to realize AiS concept on next generation multi-hetero supercomputing through PACS-X Project

CCS-LBNL Workshop 2018

2018/03/05