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Arithmetic,
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Neuro-

Inspired
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Cognitive Computing, ombinatorial/NP,
Pattern Recognition Annealing/Optimization,
Simulated Atoms
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Ssomior: - Future of Computing

EXASCALE DESIGN SPACE EXPLORATION

N Carbon
nanotubes
and
raphene

New models of
computation

/ Adabiatic
reversible

Dataflow

New devices and materials
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CMOS Reconfigurable

computing
General Dark
}A purpose IV silicon

New architectures and packaging

‘I 20+ years (10 year lead time)

More Efficient Architectures and Packaging
The next 10 years after exascale
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EXASCALE DESIGN SPACE EXPLORATION

Present - Heterogeneous Future - Post CMOS Extreme
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Towards Extreme Heterogeneity

Dilip Vasudevan 2016
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T Extreme HW Specialization Happening Now

This trend is already well underway in broader electronics industry

Cell phones and even megadatacenters (Google TPU, Microsoft FPGA accel)

(and it will happen to HPC too... will we be ready?)

System Control
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[Y. Shao 2015]

[www.anandtech.com/show/8562/chipworks-a8]
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A productive, flexible language for hardware design and simulation

3

Not “Scala to Gates” — it is structural.
— Describe hardware functionality

— Creates graph representation of HW
that is flattened as each node translated
to Verilog or C++

Get benefits of modern high level
languages X
— Inheritance \

— Complex Types
— Modularity
— Polymorphism

Mux(x > vy, X, V)

Hardware Generators are a more
efficient technique for generating
designs
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Infrastructure for Synthesis with Integrated Simulation
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Chisel Design
Description
v
A}Chisel Compilerg‘
y
C++ FPGA ASIC
code Verilog Verilog

<C++C!o{ne> \T \/\

_FPGATools > ¢ ASIC Tools >

C++ FPG\A !
Simulator Emulation GDS

ayout
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class Cache (cache type: Int = DIR MAPPED,
associativity: Int =1,
Parameters line size: Int = 128,
cache depth: Int = 16,
write policy: Int = WRITE THRU
) extends Component {
val io = new Bundle() {
(@) val cpu = new IoCacheToCPU() ;
Connections val mem = new IoCacheToMem() .flip() ;
val addr idx width = log2(cache depth) .tolInt
val addr off width = log2(line size/32) .tolInt
val addr tag width = 32 - addr idx width -
Local B - addr_of_f_w:i:ith - 2
Parameters val log2 assoc = log2 (associativity) .toInt
| if (cache type == DIR MAPPED)
Generator
Body }
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The Rise of Open Source Software: Will Hardware Follow Suit?

Open Source Software Open Source Hardware

80% of companies run
Open Source Software

3
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1991 Today Today Future
Linux 1.0 and the rise Open Source Software
of Open Source Software ubiquitous

 Rapid growth in the adoption and number of open source software projects
* More than 95% of web servers run Linux variants, approximately 85%

of smartphones run Android variants
 Will open source hardware ignite the semiconductor industry?

Is RISC-V the hardware industry’s Linux?
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* More productive and credible hardware research
— Generate *real™ hardware that can be measured
— by Reducing the cost of development (Chisel)
— by creating and sharing open hardware (RISCV, OpenSOC)
* More innovation
— Don’t need to be a big company to play
— Engage academic, lab research community in DSE
* Lower Cost / Complexity for Development
— Share software stack (complete compilers, debug, Linux ports)
— Focus NRE and license on new/innovative IP blocks

— Stop squeezing license costs out of items that students can
implement in a summer (license *hard™* stuff)

 Whether future is ASICs or FPGAs, you need more productive
hardware generation!!!
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3@?55355%55E RISC-V Processors

DESIGN SPACE EXPLORATION

Open source, chisel based processors based on a Open ISA

 RISC-V Core Taxonomy
— Qut-of-order (BOOM)
— In-Order (Rocket)
— loT (Z-Scale, Sodor)

« Can Generate for Different
Addressing Widths
— 32, 64, 128-bit addressing
— Double precision floating point
— Vector accelerators

« Complete SW stack available
— GNU and LLVM compilers
— Linux implementations
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pen-Source”’doesn’t mean “Low Performance”

Category ARM Cortex A5 RISC-V Rocket
ISA 32-bit ARM v7 64-bit RISC-V v2
Architecture Single-Issue In-Order 8- Single-Issue In-Order 5-stage

stage

Performance 1.57 DMIPS/MHz 1.72 DMIPS/MHz
Process TSMC 40GPLUS TSMC 40GPLUS
Area w/o Caches 0.27 mm? 0.14 mm?
Area with 16K 0.53 mm? 0.39 mm?
Caches
Area Efficiency 2.96 DMIPS/MHz/mm? 4.41 DMIPS/MHz/mm?
Frequency >1GHz >1GHz
Dynamic Power <0.080 mW/MHz 0.034 mW/MHz
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covevrer - Performance Comparison Across RISC-V
.. Processor Families and ARM Equivalents
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 Part of the CoDEXx tool suite
 Written in Chisel

 Dimensions, topology, VCs all
configurable

 Fast functional C++ model for OpenSoC
. . . Fabric
functional validation

* Verilog based description for

FPGA or ASIC E
— Synthesis path enables accurate ?

power / energy modeling
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EXASCALE DESIGN SPACE EXPLORATION
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oo (Gl @SPECES Of NOC parameterized, including topology)
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Some common topologies
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= A . o . . .
,:,},I UM An analysis of on-chip interconnection networks for large-scale chip multiprocessors
ACM Transactions on computer architecture and code optimization (TACO), April 2010
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SC16 Demonstration of
Scalable SoC Emulation on FPGAs

A 96 core SoC with local-store and HBC
Memory Subsystem

Full RTL implementation of SOC
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v The Demo: 96 Core SoC Design for HPC

®

Shockingly (but accidentally) similar
to Sunway node architecture

Z-Scale processors
connected in a
Concentrated Mesh

4 Z-scale processors

2x2 Concentrated mesh
with 2 virtual channels

 Micron HMC Memory

http://www.codexhpc.org/?p=367
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Energy/Power Estimates for Co-design Toolflow

ASCA E N A XPLORATION

@ Derive energy and power estimates automatically through scripted builds to
enable parameter-sweep-driven optimization. Input files obtained from
Chisel automatically generated Verilog output.

@ Based on Synopsys DC synthesis, 32nm SAEG libraries.

¢ Explore on-chip network topologies useful for HPC and characterize based
upon realizable physical parameters for cost extraction.

@ Early evaluation of OpenSOC components (8x8 crossbar switch illustrated).

¢ Closes the co-design loop with physical artifacts from analytical input data.
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SU5 FPGA s, ASIC

Cost for first FPGA (NRE):
Cost for 20,000 :
Clock Rate:

FPGA

$1,200-$3,000
$1,200-$3,000
0.1-0.3Ghz

Cost for
Cost for 20,000 :
Clock Rate:

Area Efficiency:
Energy Efficiency :

$100

1-2 Ghz (10x)
10x FPGA
10x-100x FPGA
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sampier “‘quote” from a design firm (probably a bit low, but gives you an

3

idea of rough cost model) (again: anonymized)

Parameter Value Component Amount

Foundry TSMC Manufacturing NRE $1,512,970
Masks, 12 Prototype Char Wafers, 150 Prototypes,

Process 40nm 1P10M (m1 7x2y) Process Eng, Product Eng, Project Management

Technology RDL, Bump, VTCp, ESD Package NRE $23,460
Package Tooling and Package Engineering

Die size T

_ 16mm x 16mm est Development NRE $82,800
estimate Test Engineering and Tester Rental Time
IP See IP Summary Slide IP NRE $918,000

IP Licensing Fees, Support and Maintenance

1156 FCBGA, 3:2:3-layer,
Package 35x35 body size, 1 mm Characterization NRE $52,000

Char units, Tester rental, Test Engineering,

ball pitCh Process Engineering, Char report
Tester : Qualification NRE $225,000
Platform Agilent-93K-640-300MHz Q&R Engineering, HTOL, TMCL, HTSL, UHAST,
ESD & LU
Wafer Sort: 10s
_ Test Time ___ Total NRE $2,814,230

Final Test: 10s

IP Description
PCle Gen 2 PHY $200k (could be IB)
PCle Gen 2 End point controller $80K
DDR3 PHY $338K

DDR3 Controller $100K

First 2.5 Next2.5 Next5 Next10 Additio

Ku Ku Ku Ku nal
$121.60 $119.76 $117.97 $87.78 $74.80

With Marty Deneroff




See http IIWwWw. socf;hpc orgl

Multi-agency + industry and academia workshop
to flesh out this approach to HPC.

Accelerate how to exploit hardware Customization
Beyond Exascale
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Exponentially Increasing Parallelism (central challenge for ECP)
o Trend: End of exponential clock frequency scaling (end of Dennard scaling)
o Consequence: Exponentially increasing parallelism

End of Lithography as Primary Driver for Technology Improvements
o Trend: Tapering of lithography Scaling
o Consequence: Many forms of heterogeneous acceleration (not just GPGPUSs)

Data Movement Heterogeneity and Increasingly Hierarchical Machine
o Trend: Moving data operands costs more than computation performed on them
o Consequence: More heterogeneity in data movement performance and energy

Performance Heterogeneity
o Trend: Heterogeneous execution rates from contention and power management
o Consequence: Extreme variability and heterogeneity in execution rates

Diversity of Emerging Memory and Storage Technologies
o Trend: Emerging memory technologies and stall in performance improvements
o Consequence: Disruptive changes to our storage environment

980 1985 1990 1995 2000 2005 2010 20152020/2025 2030
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 More credible hardware research
— Generate *real™ hardware that can be measured
— by Reducing the cost of development (Chisel)
— by creating and sharing open hardware (RISCV, OpenSOC)

* More innovation
— Don’t need to be a big company to play
— Engage academic, lab research community in DSE

* Lower Cost / Complexity for Development
— Focus NRE and license on new/innovative IP blocks

— Stop squeezing license costs out of items that students can
implement in a summer (license *hard™* stuff)
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The End

For more information go to
http://www.cal-design.org/

OpenSOC: http://www.opensocfabric.org/
SOCforHPC: http://www.socforhpc.org/



http://www.cal-design.org/
http://www.opensocfabric.org/
http://www.socforhpc.org/
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seoreone - HOW IS Architecture Research Done Today?

International Symposium on Computer Architecture (ISCA)
2010, 44 accepted papers (18% accept rate)

Types of papers:
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Proposals (no/few numbers): 2 papers

Modeling techniques: 4 papers

Real machines (analyzed, or used for eval.): 6 papers
New device technology (photonics, MTRAM): 4 papers
Outer memory system (LLC/DRAM/NVM): 9 papers
Processor or inner-cache mechanisms: 19 papers
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