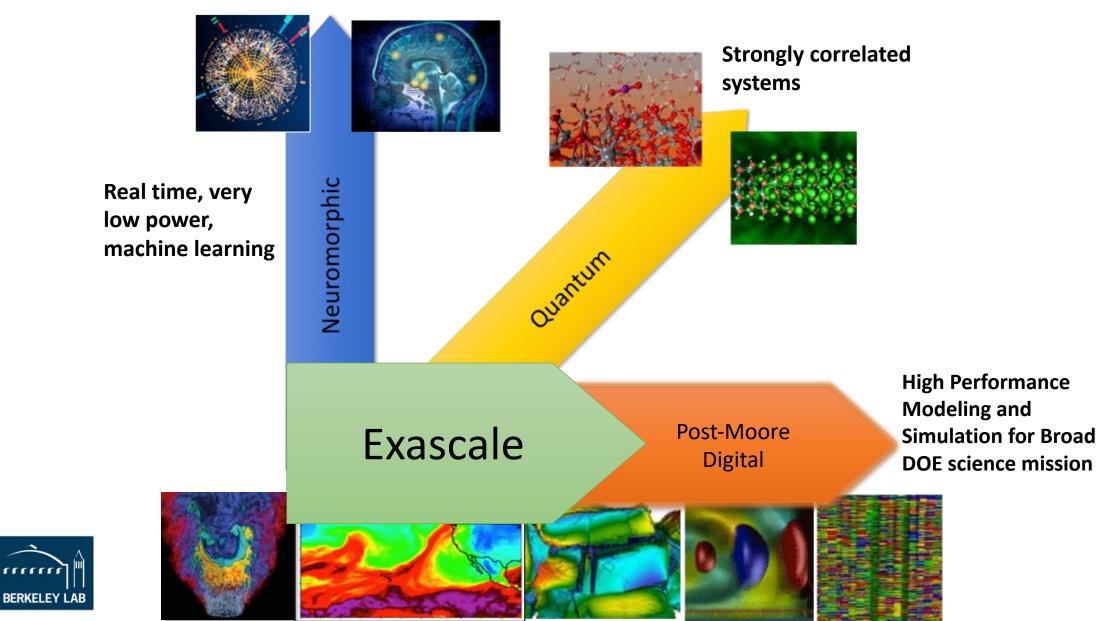
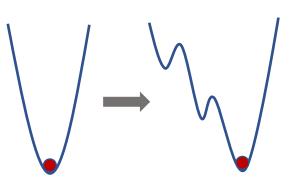
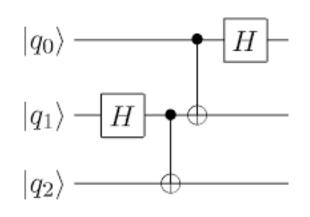
Berkeley Lab Quantum Computing

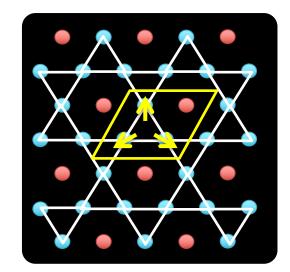
Jonathan Carter, Irfan Siddiqi, Bert de Jong



This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

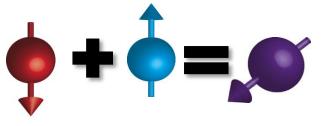

ENERGY Office of Science


Berkeley Lab Novel Computing Technologies Roadmap



mm

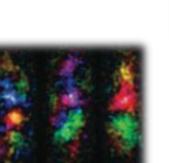
Quantum Computing Devices



Adiabatic Quantum ComputingDigital (Circuit-based) QuantumQuantum AnnealingComputing

Analog Quantum Computing

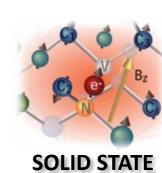
Analog example from D. Stamper-Kurn lab (UC Berkeley) simulating frustrated magnetism with ultracold atoms


Quantum Computing Requires Qubits

ELECTRONS SPIN UP + SPIN DOWN

IONS

CIRCUITS


ATOMS

Tradeoffs in generality, coherence time, operation speed Physical Qubit errors > 10⁻⁴ Bit errors < 10⁻¹⁰

MSD, Berkeley Lab

Physics, UC Berkeley

Berkeley AQuES Testbe

Quantum Algorithms

Fastest

- Grover's search (1996)
- QFT
- HHL Linear Algebra (2009)

Faster than best-known classical

- Shor's prime factoring (1994)
- Optimization (2014-)

Faster

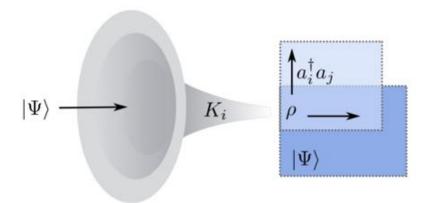
- Algorithm development is difficult and relatively slow
 - Need hardware to test
 heuristics
- Opportunities in Chemistry, Materials, and Physics Simulations

ullet

Slower or no speedup

Slower

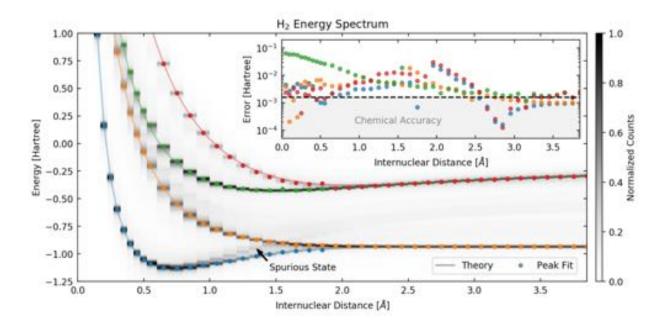
Compared with classical computation


Recent Algorithm Development for Chemistry

Benefits of interdisciplinary collaboration

Year	Reference	Representation	Algorithm	Time Step Depth	Coherent Repetitions	Total Depth
2005	Aspuru-Guzik et al. [1]	JW Gaussians	Trotter	$\mathcal{O}(\text{poly}(N))$	O(poly(N))	$\mathcal{O}(\text{poly}(N))$
2010	Whitfield et al. [2]	JW Gaussians	Trotter	$O(N^5)$	$\mathcal{O}(\text{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2012	Seeley et al. [3]	BK Gaussians	Trotter	$\tilde{O}(N^4)$	O(poly(N))	$\mathcal{O}(\operatorname{poly}(N))$
2013	Perruzzo et al. [4]	JW Gaussians	UCC	Variational	Variational	$\mathcal{O}(\operatorname{poly}(N))$
2013	Toloui et al. [5]	CI Gaussians	Trotter	$O(\eta^2 N^2)$	$\mathcal{O}(\text{poly}(N))$	$\mathcal{O}(\operatorname{poly}(N))$
2013	Wecker et al. [6]	JW Gaussians	Trotter	$O(N^5)$	$O(N^6)$	$O(N^{11})$
2014	Hastings et al. [7]	JW Gaussians	Trotter	$O(N^4)$	$O(N^4)$	$O(N^8)$
2014	Poulin et al. [8]	JW Gaussians	Trotter	$O(N^4)$	$\sim N^2$	$\sim N^6$
2014	McClean et al. [9]	JW Gaussians	Trotter	$\sim N^2$	$O(N^4)$	$\sim N^6$
2014	Babbush et al. [10]	JW Gaussians	Trotter	$O(N^4)$	$\sim N$	$\sim N^5$
2015	Babbush et al. [11]	JW Gaussians	Taylor	$\tilde{O}(N)$	$\tilde{O}(N^4)$	$\overline{O}(N^5)$
2015	Babbush et al. [12]	CI Gaussians	Taylor	$\widetilde{O}(N)$	$\tilde{O}(\eta^2 N^2)$	$\tilde{O}(\eta^2 N^3)$
2015	Wecker et al. [13]	JW Gaussians	UCC	Variational	Variational	$O(N^4)$
2016	McClean et al. [14]	BK Gaussians	UCC	Variational	Variational	$O(\eta^2 N^2)$
2017	Babbush et al. [15]	JW Plane Waves	Trotter	O(N)	$O(\eta^{1.83}N^{0.67})$	$O(\eta^{1.83}N^{1.67})$
2017	Babbush et al. [15]	JW Plane Waves	Taylor	$\tilde{O}(1)$	$\tilde{O}(N^{2.67})$	$\tilde{O}(N^{2.67})$
2017	Babbush et al. [15]	JW Plane Waves	TASP	Variational	Variational	O(N)

Bounding computational complexity ever more tightly, from O(N¹¹) in 2013 to O(N³)-O(N) in 2017 Source: McClean & Babbush (Google)

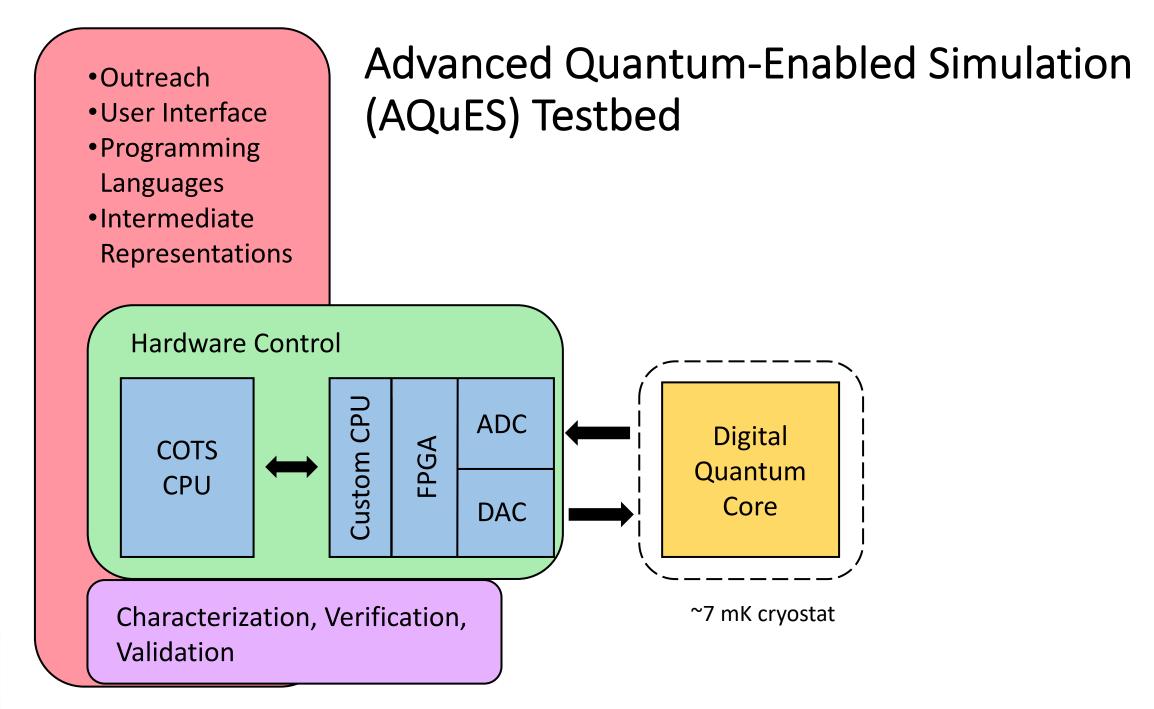

Quantum Subspace expansion to allow for simulation of excited state and error mitigation

Adapting algorithms to achieve useful accuracy with imperfect qubits

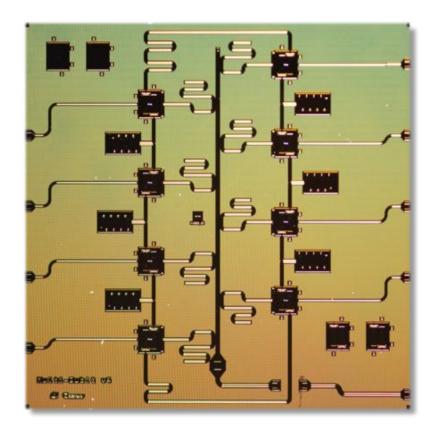
Early Results: Variational Quantum Eigensolver

Robust determination of molecular spectra on a quantum processor

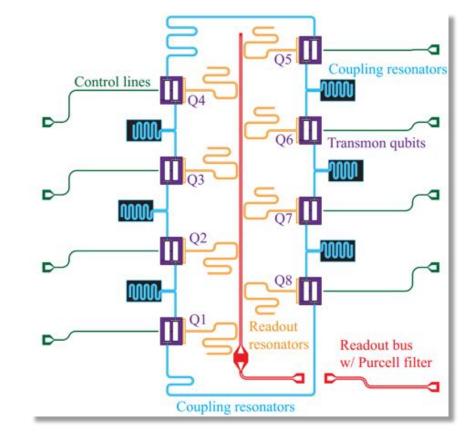
J. I. Colless,^{1,2} V. V. Ramasesh,^{1,2} D. Dahlen,^{1,2} M. S. Blok,^{1,2} J. R. McClean,³ J. Carter,³ W. A. de Jong,³ and I. Siddiqi^{1,2,4,*}



- 2-qubit implementation for H₂ molecule attains chemical accuracy
 - QSE (work by J. McClean @ LBNL), extraction of excited states and error mitigation



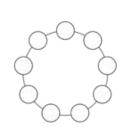
Universal Quantum Computing

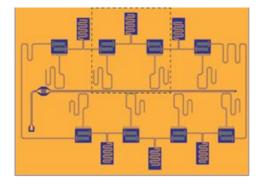


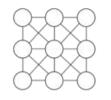
Current Device Architecture

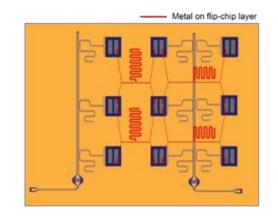
rrrrr

BERKELEY LAE

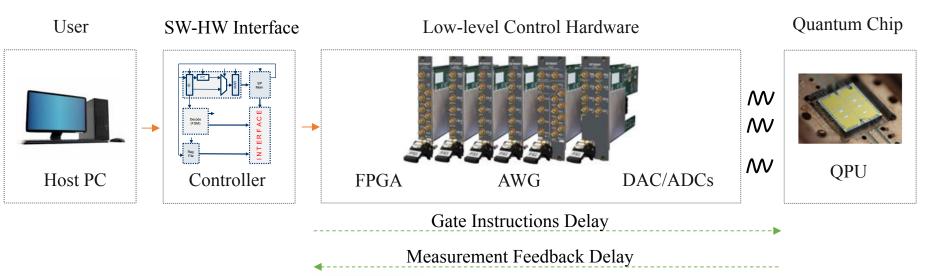





- 8-Qubit ring topology with nearest-neighbor coupling
- Independent control and simultaneous readout
- Measured lifetimes (T₂) consistently > 60 ms


Collaboration with Quantum Nanoelectronics Lab at UC Berkeley Irfan Siddiqi, James Colless, Kevin O'Brien

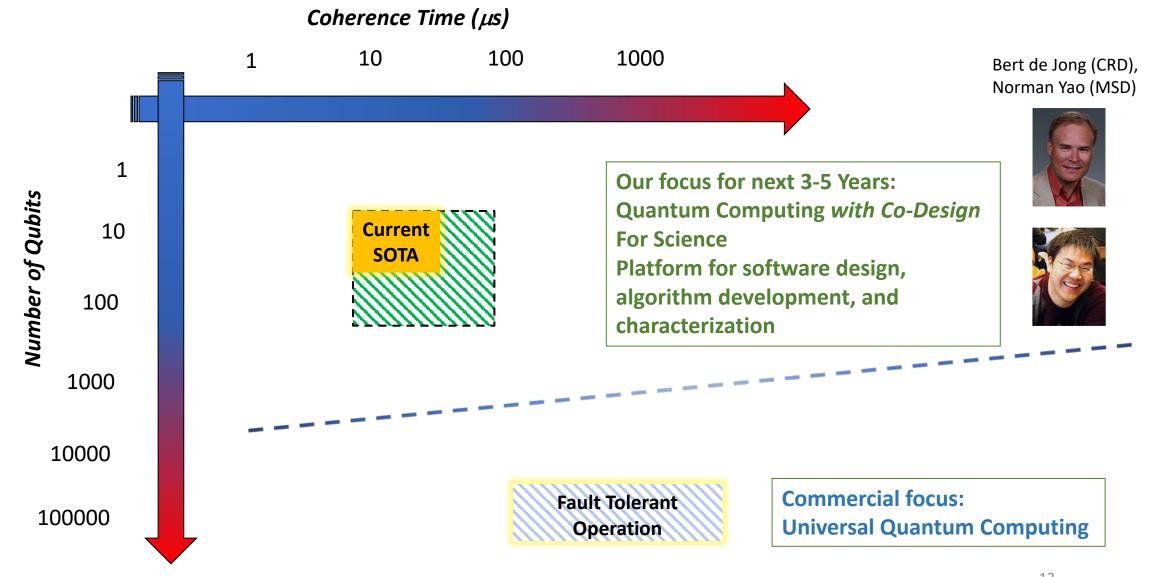
Explore Device Connectivity & Topology



- Flip-chip architecture allows improved qubit connectivity
- Requisite tools available at Molecular Foundry
- Reductions in circuit depth requirements enables co-design
- Directly impacts scale of experiments
- Impact of noise in highly-connected architectures not well understood

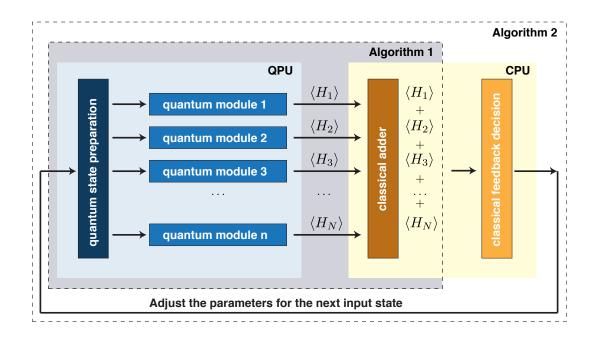
Quantum Controllers

- Quantum Controller that supports specialized Instruction Set
- Can be placed close to the Low-level HW
- Reduce Host-to-HW delay and amount of data to be transferred



Anastasiia Butko (CRD), Gang Huang (ATAP), Larry Dolittle (Eng)

Testbed Roadmap


mmm

BERKELEY LAE

Berkeley Lab QAT: Quantum Algorithms, Mathematics and Compilation Tools for Chemical Sciences

- *Bert de Jong*, Norman Yao, Jonathan Carter, Costin Iancu, Aydin Buluc (LBL), Alan Aspuru-Guzik (Harvard), Stefan Wild (ANL)
- Dynamics of chemical systems
 - Non-equilibrium behavior
 - Electron transport, response to external perturbations or driving forces
 - Exploring first and second quantization
- Quantum machine learning (led by Harvard)
- Improving software stack with better compilers and optimizers
- Advancing stochastic optimizers and linear algebra

Opportunities for postdoctoral fellows in both projects Contact jtcarter@lbl.gov or wadejong@lbl.gov

Questions

