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Agenda

● Background and motivation
– architecture paradigm shift and workload diversity

● High-level synthesis technology
– pros and cons

● Software challenges
– abstraction and data movement
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Argonne National Laboratory

● A DOE national laboratory 
located near Chicago, Illinois

– 1,700 acres campus

– Beautiful 15km trail 
around the campus!

● Multidisciplinary

– Hard X-ray, materials, 
energy storage, nuclear, 
environmental,  high-
energy physics, HPC, etc

● A21: the first exascale 
machine in 2021!

APS accelerator

Supercomputers
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CMOS Scaling Is Coming to An End

● Requires significant investment

– e.g., Intel spent $5B on 14nm

– Rock’s law: cost of new plant doubles every 
four years

● Benefits are shrinking

– thermal, leakage, reliability, etc

● # of manufacturing companies is 20 to 5 in the 
past 15 years!

● “The number of people predicting the death of 
Moore’s law doubles every two years.”

IEEE International Roadmap for Devices and Systems (2017)
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How Can We Survive in The Post-Moore Era?

● Our demands for computational power 
keeps growing exponentially

– scientific discoveries depends on 
computational power

● New types of computers?

– quantum computers may not be 
ready in a timely manner

– different concept, the applicability 
of classical algorithms is 
questionable

● Still depend on general-purpose 
processors

– Performance is driven by  
transistor scaling

Specialization?

Reconfigurable?
(co-design)
 

Quantum computers,
Brain-inspired computers, etc

“Re-form” LDRD project  was funded in 2015

Investigators: 
Kazutomo Yoshii, Franck Cappello, 

Hal Finkel, Fangfang Xia

General-Purpose
Processors

new switching technologies
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Data analytics: genomic analysis

Mapping
Aligning

Position
sorting

Duplicate
marking

Variant
calling

FASTQ VCF

● Complicated pipelines
– different implementation

– integer heavy computation on some 
stages

● Scaling study is still new
– end up in runtime system development

● Edico Genome currently holds the 
Guinness world record for fastest 
time
– 1,000 FPGA Amazon EC2 F1

instances for 1,000 human genomes
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Global Race on AI-Enabled Super Computers

● Machine learning (ML) 
acceleration is becoming 
mandatory to future HPC!

● Workload characteristics are 
different from ordinal numerical 
computing

– ML algorithms and 
implementation techniques 
keep evolving

● mixed/reduced precision, 
stochastic rounding, zero-
pruning, etc

● hard for ASICs

– Latency sensitive for some 
application
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Edge/HPC integration

SensorSensorSensorSensorSensor

Edge node

Data acquisition node

more sensors
data rate is increasing

limited bandwidth
higher latency

Opportunity here!

old-school to non-FPGA developers

Cloud

HPC

disk
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Edge computing

 A Waggle platform node
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High-level Synthesis Technology
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Field Programmable Gate Array (FPGA)
● The first FPGA chip (1985)

– 64 flip flops, 128 3 lookup 
tables

● Practical reconfigurable 
architecture

● Lower non-recurring engineering 
cost compared to ASICs

– once a design gets fixed, no 
one touches

● Application

– prototype ASICs

– signal processing

– data acquisition system

Logic block

Switch
block

Switch
Block
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Cutting-edge FPGA technology

● Floating point capability
– Intel Stratix 10’s theoretical peak is 10 Tflops (SP)

● Run faster
– Technology like Hyperflex helps 

– > 600 MHz is not a dream

● More internal memory
– up to ~40MB of SRAM (e.g., Xilinx VU37P)

● Off-chip memory improvement
– HBM2 integration

● High-speed transceivers
– ~56 Gbps

– can be used for direct FPGA-FPGA communication

● The advent of FPGA-CPU hybrid 
platforms
– ARM-FPGA, Xeon-FPGA, etc

● Embedded-class FPGAs
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Can software folks exploit the power of FPGAs?

● Off-the-shell software solutions?

– OpenCV, tensorflow, cafe, etc

→ very limited now

● Open source FPGA designs?

– git clone, configure and run easily?

→ not much

● Benchmark results widely available?

– individual results can be found in 
scientific publications

– only a few standard benchmark 
results

● e.g., ResNet

→ same here
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Can software folks exploit the power of FPGAs?

● Can high-level synthesis 
technology help translate users 
code into HDL efficiently?

– following slides

● OS/Runtime questions:

– How to abstract and manage 
resources? 

– How to scale?

● multiple FPGAs, multiple 
nodes with FPGAs, etc

– How to virtualize resources?

● Traditional FPGA design flow is 
hard for software developers
– Verilog, VHDL

● HDL itself may not be a big 
challenge

● Too many variations: chip 
models, boards, tool 
versions, IP versions, etc

– longer development, painful 
verification cycle, lack of 
abstraction, portability, 
debugability
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For conventional HPC codes

OpenMP4
frontend

OpenMP4
runtime

Src2src
optimization

High-level
Synthesis

e.g., OpenCL

App-specific
optimizations

Program slicing,
Custom datapath,
Systolic

HPC Apps
nuclear physics,cosmology, 
bioinfomatics, etc

Host executable FPGA configuration

develop both software and 
hardware (firmware) concurrently

extension

Created a prototype 
based on LLVM clang
OpeMP 4 target offload
to compile codes for
OpenCL FPGAs
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Evaluation of OpenCL for FPGAs

● Most popular high-level synthesis 
tool
– Intel FPGA SDK for OpenCL

– Xilinx SDAccell

● Support heterogeneous platforms

● Support both task and data 
parallelism (conceptually)

● FPGA specific behavior or 
extensions
– # of work-items

– loop unrolling, SIMDization

– # of compute units

– Relaxed floating-point operations

– control flags for registers, BRAMs

global size (N)

local size (M)

global_id=0
local_id=0
group_num=0

global_id=N-1
local_id=M-1
group_num=N/M-1

OpenCL data-parallel model: 1D example
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Pipeline Parallelism and Dispatcher

6

3

7

4
5

2

1

0

Load A Load B

Store C

C=A+B

8 __kernel void ndrange_add(A, B, C)
{
    int idx = get_global_id(0);

    C[idx] = A[idx] + B[idx];
}

Compute unit

__kernel void single_task_add(A, B, C, n) 
{
    int i;

    for (i = 0; i < n; i++)
         C[i] = A[i] + B[i];
}

Dispatcher

● OpenCL creates a single pipeline for both
● Deeper pipeline, higher throughput
● # of compute units is one by default 

(Intel FPGA SDK for OpenCL)
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Multiple Compute Units

9

6

10

7
8

11

2

1

0

Load A Load B

Store C

C=A+B

Compute unit #1

Dispatcher

5

4

3

Load A Load B

Store C

C=A+B

Compute unit #2

Load-store unit
To

Memory devices

● # of compute units are fixed 
on CPUs/GPUs

● OpenCL allows us to create 
multiple compute units
● at the cost of resources
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Experiments on Intel Arria10 FPGA

● One of the most popular FPGA chips today

● The first FPGA that supports native IEEE 
floating-point operations in hardware

● 20nm technology

● Heterogeneous design

● ~1,500 SP hardened FPUs (~3,000 fixed 
point DSPs)

– theoretically 1.5 TFlops (SP)

● ~5MB of internal memory

● Hard memory controller

– supports DDR3/4

– typical bandwidth 34GB/s (per board)

● PCIe accelerator or CPU-FPGA SoC

● Board vendors generally supports OpenCL
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Advance Encryption Standard (AES) Computation

● Ported the AES kernel originally developed 
by Liu et al. at Virginia Tech to OpenCL

– AES 256-bit algorithm

– lots of bit-wise integer operations

– Input data size: 2GB for 16 blocks

● OpenCL parameters

– global work size
● set to the problem size

– CU: # of computer units
● one by default

– local work size
● how many work-items per CU

– SIMD: SIMDization

● The performance gain against “default”

– 3x gain with “simd16+cu2”
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Floating-Point Vector Streaming Add

● Memory-bound kernel

● OpenCL parameters

– CU: # of computer units

– SIMD: SIMD lane size

– and combinations

● Observation:

– Too many compute units cause 
contentions

● a diminishing return at cu16

– The performance gain against 
“default”

● 8x gain with 
“SIMD16+CU4”!
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Irregular Memory Access

● # work-units is 256

– multiple compute units do not improve 
performance

● CPU: Sandy Bridge with 16 HTs

– 4ch memory

● FPGA: Arria 10

– 2ch memory

for (int i = 0; i < M; i++) {
   double8 tmp;
   index = rand() % len;
   tmp = array[index];
   sum += (tmp.s0 + tmp.s1) / 2.0;
   sum += (tmp.s2 + tmp.s3) / 2.0;
   sum += (tmp.s4 + tmp.s5) / 2.0;
   sum += (tmp.s6 + tmp.s7) / 2.0;
} 

> 3x better
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Irregular Memory Access

for (int i = 0; i < M; i++) {
   double8 tmp;
   index = rand() % len;
   tmp = array[index];
   sum += (tmp.s0 + tmp.s1) / 2.0;
   sum += (tmp.s2 + tmp.s3) / 2.0;
   sum += (tmp.s4 + tmp.s5) / 2.0;
   sum += (tmp.s6 + tmp.s7) / 2.0;
} 

> 5x better

> 2x better
● # work-units is 256

– multiple compute units do not improve 
performance

● CPU: Sandy Bridge with 16 HTs

– 4ch memory => 2ch memory 

● FPGA: Arria 10

– 2ch memory
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Off-chip data movement optimization

512 bits DDR rate

Tweaking parameters manually

# of work-items
# of compute units
SIMDization
vector load, store
unrolling
etc

Tools should automate

get rid of such parameters

compiler-level optimizations
e.g., program slicing, custom cache

energy-aware data movement
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TRIP: An Ultra-Low Latency, TeraOps/s Reconfigurable 
Inference Processor for Multi-Layer Perceptrons

● In-memory computation

– no off-chip memory access

● Demonstrate the current 
limitation of OpenCL

● OpenCL-Verilog hybrid design

– MLP engine is written in 
Verilog

● use both DSPs and logic 
blocks for multipliers

● store weights in BRAM Power GPU[1] TPU[1] TRIP

Idle 
Power 24 W 38 W 30 W

Active 
Power 99 W 5 W 2 W

Total 
Power 123 W 43 W 32 W
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OpenCL-HDL Hybrid Programming Model

● Intel OpenCL library feature allows 
us to link OpenCL codes with HDL 
modules

– resemble in-line assembly for 
CPU codes

● The TRIP code needed HDL

– to implement multipliers using 
ALMs in addition to DSPs

– to instantiate BRAMs

● Like HDL development, developers 
are responsible for verification

– required to describe latency, 
stall-free or not, side-effect, etc

● Is this right direction?
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Summary: porting kernels to OpenCL

● Pros

– CPU emulator is available

– no timing verification is required

– medium size kernels such as 
XSBench, required a week, 
including debugging

● Cons

– Performance portability issue

● FPGA-specific attributes can 
possibly affect portability

– OpenCL HDL library offers no 
portability

– Longer compilation time affect 
productivity

__attribute__((num_compute_units(2))
__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void foobar(
   __global double *a,
   __attribute__((local_mem_size(4096))) __local float * b,
   __global __attribute__((buffer_location("QDR"))) int *c) {

   int __attribute__((memory,
       numbanks(1),
       bankwidth(128),
       doublepump,
       numwriteports(1),
       numreadports(4)) c[32]; // too much hardware detail

   ...
   ...
}

__attribute__((num_compute_units(2))
__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void foobar(
   __global double *a,
   __attribute__((local_mem_size(4096))) __local float * b,
   __global __attribute__((buffer_location("QDR"))) int *c) {

   int __attribute__((memory,
       numbanks(1),
       bankwidth(128),
       doublepump,
       numwriteports(1),
       numreadports(4)) c[32]; // too much hardware detail

   ...
   ...
}

● Also need to investigate

– Compiler-level optimiztion

● e.g., Falcon computing’s 
Merlin compiler

– overlay/coarse-grain designs

– domain specific languages
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Software challenges
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Heterogeneous node designs

● Gain performance and energy 
efficiency

● Heterogeneous designs are already 
adopted by smartphones

– iPhone7 has an FPGA chip

● Accelerating:

– computation. e.g., simulation, 
data, learning

– OS and system-level tasks

– network/storage

● compression, streaming 
computing, etc 

CPUsCPUsMemoriesMemories

RA
(smart NIC)

RA
(smart NIC)

Specialized
logic

(e.g., nueromorphic)

Specialized
logic

(e.g., nueromorphic)

RA
(compute)

RA
(compute)

GPUsGPUs

Software lag behind hardware!!!
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Lack of abstraction

● So many FPGA chips, different 
boards/platforms

● No compatibility, even source-
level

– longer compilation time

– so many different Xeon chips, 
too, but they offer binary 
compatibility and shorter 
compilation time

● HLS can abstract FPGA resources 
to some degree

● Need to abstract off-chip 
memory, I/O, debugging APIs, etc

PCIe

Every FPGA chip has a big product ta
ble!

Tightly-coupled
w/ beefy CPUs

Standalone
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Existing abstraction layers for FPGAs

● OpenCL BSPs

– provide low-level software APIs

– limit board choices, less extensible

● or build a custom BSP

– OpenCL features may be an overkill

● Intel Open Programmable Acceleration Engine 
(OPAE)

– abstract accelerator such as FPGA

– consists of kernel drivers, userspace 
libraries and tools (e.g., discover, 
reconfigure)

– Supported platforms ?

● AWS EC2 FPGA hardware and software 
development kits

– FPGA shells and software APIs

– https://github.com/aws/aws-fpga.git

● Questions

– support our edge-to-HPC needs?

– support various programming 
models?

● offload, streaming, pure 
dataflow, hybrid dataflow, etc 
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Identifying requirements for abstract layers (on-going)

Middle Layer
(task, dataflow,

etc)

Userspace APIs
and runtime

Kernel
drivers

User app

FPGA shells

User code
or library
or overlay

Interconnect

CPU

FPGA

CPU

FPGA

CPU

FPGA

reconfigure
diagnostic
data stream, copy
....

Swift/T

Argobots
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Extreme heterogeneity

CMOS-based
processors

Organic
processors

Quantum
processorsCMOS-based

processorsCMOS-based
processorsCMOS-based
processors

Organic
processorsOrganic
processors?

Quantum
processorsQuantum
processorsQuantum
processors

data

data path

M
or

e 
pr

oc
es

si
ng

ev
er

y 
ge

ne
ra

tio
n

more processing power

The “Memory wall” problem seems to be a huge issue

Data path will possibly depend on CMOS-based technology
(e.g., CPU) and software
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Conclusion

● Identify right-level of 
abstraction

– learn from Andoid?

● Leverage dataflow, task-based 
model

– to hide details

– optimize data movement
● deal with deep hierarchy
● energy-aware manner

● Study OS/R-level concepts 

– flexibility and performance
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People Involved in The “Re-form” Project

Franck Cappello
(MCS)

Hal Finkel
(ALCF)

Zheming Jin (ALCF)

Fangfang Xia
(CELS)
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(MCS)

[Students]

Yingyi Luo (Northwestern University)

Ahmed Sanaullah (Boston University)

Chen Yang (Boston University)
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