
Key software challenges in
FPGA-enabled heterogeneous platforms

3rd International Workshop for FPGA for HPC (IWFH)
Tokyo, Japan
March 12, 2018

Kazutomo Yoshii <ky@anl.gov>
Mathematics and Computer Science

Argonne National Laboratory

2

Agenda

● Background and motivation
– architecture paradigm shift and workload diversity

● High-level synthesis technology
– pros and cons

● Software challenges
– abstraction and data movement

3

Argonne National Laboratory

● A DOE national laboratory
located near Chicago, Illinois

– 1,700 acres campus

– Beautiful 15km trail
around the campus!

● Multidisciplinary

– Hard X-ray, materials,
energy storage, nuclear,
environmental, high-
energy physics, HPC, etc

● A21: the first exascale
machine in 2021!

APS accelerator

Supercomputers

4

CMOS Scaling Is Coming to An End

● Requires significant investment

– e.g., Intel spent $5B on 14nm

– Rock’s law: cost of new plant doubles every
four years

● Benefits are shrinking

– thermal, leakage, reliability, etc

● # of manufacturing companies is 20 to 5 in the
past 15 years!

● “The number of people predicting the death of
Moore’s law doubles every two years.”

IEEE International Roadmap for Devices and Systems (2017)

5

How Can We Survive in The Post-Moore Era?

● Our demands for computational power
keeps growing exponentially

– scientific discoveries depends on
computational power

● New types of computers?

– quantum computers may not be
ready in a timely manner

– different concept, the applicability
of classical algorithms is
questionable

● Still depend on general-purpose
processors

– Performance is driven by
transistor scaling

Specialization?

Reconfigurable?
(co-design)

Quantum computers,
Brain-inspired computers, etc

“Re-form” LDRD project was funded in 2015

Investigators:
Kazutomo Yoshii, Franck Cappello,

Hal Finkel, Fangfang Xia

General-Purpose
Processors

new switching technologies

6

Data analytics: genomic analysis

Mapping
Aligning

Position
sorting

Duplicate
marking

Variant
calling

FASTQ VCF

● Complicated pipelines
– different implementation

– integer heavy computation on some
stages

● Scaling study is still new
– end up in runtime system development

● Edico Genome currently holds the
Guinness world record for fastest
time
– 1,000 FPGA Amazon EC2 F1

instances for 1,000 human genomes

7

Global Race on AI-Enabled Super Computers

● Machine learning (ML)
acceleration is becoming
mandatory to future HPC!

● Workload characteristics are
different from ordinal numerical
computing

– ML algorithms and
implementation techniques
keep evolving

● mixed/reduced precision,
stochastic rounding, zero-
pruning, etc

● hard for ASICs

– Latency sensitive for some
application

8

Edge/HPC integration

SensorSensorSensorSensorSensor

Edge node

Data acquisition node

more sensors
data rate is increasing

limited bandwidth
higher latency

Opportunity here!

old-school to non-FPGA developers

Cloud

HPC

disk

9

Edge computing

 A Waggle platform node

10

High-level Synthesis Technology

11

Field Programmable Gate Array (FPGA)
● The first FPGA chip (1985)

– 64 flip flops, 128 3 lookup
tables

● Practical reconfigurable
architecture

● Lower non-recurring engineering
cost compared to ASICs

– once a design gets fixed, no
one touches

● Application

– prototype ASICs

– signal processing

– data acquisition system

Logic block

Switch
block

Switch
Block

12

Cutting-edge FPGA technology

● Floating point capability
– Intel Stratix 10’s theoretical peak is 10 Tflops (SP)

● Run faster
– Technology like Hyperflex helps

– > 600 MHz is not a dream

● More internal memory
– up to ~40MB of SRAM (e.g., Xilinx VU37P)

● Off-chip memory improvement
– HBM2 integration

● High-speed transceivers
– ~56 Gbps

– can be used for direct FPGA-FPGA communication

● The advent of FPGA-CPU hybrid
platforms
– ARM-FPGA, Xeon-FPGA, etc

● Embedded-class FPGAs

13

Can software folks exploit the power of FPGAs?

● Off-the-shell software solutions?

– OpenCV, tensorflow, cafe, etc

→ very limited now

● Open source FPGA designs?

– git clone, configure and run easily?

→ not much

● Benchmark results widely available?

– individual results can be found in
scientific publications

– only a few standard benchmark
results

● e.g., ResNet

→ same here

14

Can software folks exploit the power of FPGAs?

● Can high-level synthesis
technology help translate users
code into HDL efficiently?

– following slides

● OS/Runtime questions:

– How to abstract and manage
resources?

– How to scale?

● multiple FPGAs, multiple
nodes with FPGAs, etc

– How to virtualize resources?

● Traditional FPGA design flow is
hard for software developers
– Verilog, VHDL

● HDL itself may not be a big
challenge

● Too many variations: chip
models, boards, tool
versions, IP versions, etc

– longer development, painful
verification cycle, lack of
abstraction, portability,
debugability

15

For conventional HPC codes

OpenMP4
frontend

OpenMP4
runtime

Src2src
optimization

High-level
Synthesis

e.g., OpenCL

App-specific
optimizations

Program slicing,
Custom datapath,
Systolic

HPC Apps
nuclear physics,cosmology,
bioinfomatics, etc

Host executable FPGA configuration

develop both software and
hardware (firmware) concurrently

extension

Created a prototype
based on LLVM clang
OpeMP 4 target offload
to compile codes for
OpenCL FPGAs

16

Evaluation of OpenCL for FPGAs

● Most popular high-level synthesis
tool
– Intel FPGA SDK for OpenCL

– Xilinx SDAccell

● Support heterogeneous platforms

● Support both task and data
parallelism (conceptually)

● FPGA specific behavior or
extensions
– # of work-items

– loop unrolling, SIMDization

– # of compute units

– Relaxed floating-point operations

– control flags for registers, BRAMs

global size (N)

local size (M)

global_id=0
local_id=0
group_num=0

global_id=N-1
local_id=M-1
group_num=N/M-1

OpenCL data-parallel model: 1D example

17

Pipeline Parallelism and Dispatcher

6

3

7

4
5

2

1

0

Load A Load B

Store C

C=A+B

8 __kernel void ndrange_add(A, B, C)
{
 int idx = get_global_id(0);

 C[idx] = A[idx] + B[idx];
}

Compute unit

__kernel void single_task_add(A, B, C, n)
{
 int i;

 for (i = 0; i < n; i++)
 C[i] = A[i] + B[i];
}

Dispatcher

● OpenCL creates a single pipeline for both
● Deeper pipeline, higher throughput
● # of compute units is one by default

(Intel FPGA SDK for OpenCL)

18

Multiple Compute Units

9

6

10

7
8

11

2

1

0

Load A Load B

Store C

C=A+B

Compute unit #1

Dispatcher

5

4

3

Load A Load B

Store C

C=A+B

Compute unit #2

Load-store unit
To

Memory devices

● # of compute units are fixed
on CPUs/GPUs

● OpenCL allows us to create
multiple compute units
● at the cost of resources

19

Experiments on Intel Arria10 FPGA

● One of the most popular FPGA chips today

● The first FPGA that supports native IEEE
floating-point operations in hardware

● 20nm technology

● Heterogeneous design

● ~1,500 SP hardened FPUs (~3,000 fixed
point DSPs)

– theoretically 1.5 TFlops (SP)

● ~5MB of internal memory

● Hard memory controller

– supports DDR3/4

– typical bandwidth 34GB/s (per board)

● PCIe accelerator or CPU-FPGA SoC

● Board vendors generally supports OpenCL

20

Advance Encryption Standard (AES) Computation

● Ported the AES kernel originally developed
by Liu et al. at Virginia Tech to OpenCL

– AES 256-bit algorithm

– lots of bit-wise integer operations

– Input data size: 2GB for 16 blocks

● OpenCL parameters

– global work size
● set to the problem size

– CU: # of computer units
● one by default

– local work size
● how many work-items per CU

– SIMD: SIMDization

● The performance gain against “default”

– 3x gain with “simd16+cu2”

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2000

4000

6000

8000

10000

12000

Compute kernel throughput (Mbps) vs. local work size

cu1
cu2
cu4
cu8
cu16

Local work size using the exponent representation

de
fau

lt
cu
2

cu
4

cu
8

cu
16

sim
d2

sim
d4

sim
d8

sim
d1
6

sim
d1
6+

cu
2

0
2000
4000
6000
8000

10000
12000

3384
5072

6908
8354

9675

5084
7114

8759
9926 10540

Compute kernel throughput (Mbps)

21

Floating-Point Vector Streaming Add

● Memory-bound kernel

● OpenCL parameters

– CU: # of computer units

– SIMD: SIMD lane size

– and combinations

● Observation:

– Too many compute units cause
contentions

● a diminishing return at cu16

– The performance gain against
“default”

● 8x gain with
“SIMD16+CU4”!

def
au

lt
cu

2
cu

4
cu

8
cu

16
cu

32
cu

48

SIM
D2

SIM
D4

SIM
D8

SIM
D16

SIM
D16

+cu
2

SIM
D16

+cu
4

SIM
D16

+cu
8

SIM
D16

+cu
16

SIM
D16

+cu
32

SIM
D16

+cu
48

25

30

35

40

45

FPGA power consumption (Watts)

de
fa

ult

SIM
D2

SIM
D4

SIM
D8

SIM
D16 cu

2
cu

4
cu

8
cu

16

SIM
D16

+cu
2

SIM
D16

+cu
4

SIM
D16

+cu
8

SIM
D16

+cu
16

0.0
5.0

10.0
15.0
20.0
25.0
30.0

3.1
6.4

12.7

18.3
21.1

6.3
10.3

19.5
17.4

24.4 25.8
23.6 22.1

Compute kernel bandwidth (GB/s)

22

Irregular Memory Access

● # work-units is 256

– multiple compute units do not improve
performance

● CPU: Sandy Bridge with 16 HTs

– 4ch memory

● FPGA: Arria 10

– 2ch memory

for (int i = 0; i < M; i++) {
 double8 tmp;
 index = rand() % len;
 tmp = array[index];
 sum += (tmp.s0 + tmp.s1) / 2.0;
 sum += (tmp.s2 + tmp.s3) / 2.0;
 sum += (tmp.s4 + tmp.s5) / 2.0;
 sum += (tmp.s6 + tmp.s7) / 2.0;
}

> 3x better

23

Irregular Memory Access

for (int i = 0; i < M; i++) {
 double8 tmp;
 index = rand() % len;
 tmp = array[index];
 sum += (tmp.s0 + tmp.s1) / 2.0;
 sum += (tmp.s2 + tmp.s3) / 2.0;
 sum += (tmp.s4 + tmp.s5) / 2.0;
 sum += (tmp.s6 + tmp.s7) / 2.0;
}

> 5x better

> 2x better
● # work-units is 256

– multiple compute units do not improve
performance

● CPU: Sandy Bridge with 16 HTs

– 4ch memory => 2ch memory

● FPGA: Arria 10

– 2ch memory

24

Off-chip data movement optimization

512 bits DDR rate

Tweaking parameters manually

of work-items
of compute units
SIMDization
vector load, store
unrolling
etc

Tools should automate

get rid of such parameters

compiler-level optimizations
e.g., program slicing, custom cache

energy-aware data movement

25

TRIP: An Ultra-Low Latency, TeraOps/s Reconfigurable
Inference Processor for Multi-Layer Perceptrons

● In-memory computation

– no off-chip memory access

● Demonstrate the current
limitation of OpenCL

● OpenCL-Verilog hybrid design

– MLP engine is written in
Verilog

● use both DSPs and logic
blocks for multipliers

● store weights in BRAM Power GPU[1] TPU[1] TRIP

Idle
Power 24 W 38 W 30 W

Active
Power 99 W 5 W 2 W

Total
Power 123 W 43 W 32 W

26

OpenCL-HDL Hybrid Programming Model

● Intel OpenCL library feature allows
us to link OpenCL codes with HDL
modules

– resemble in-line assembly for
CPU codes

● The TRIP code needed HDL

– to implement multipliers using
ALMs in addition to DSPs

– to instantiate BRAMs

● Like HDL development, developers
are responsible for verification

– required to describe latency,
stall-free or not, side-effect, etc

● Is this right direction?

27

Summary: porting kernels to OpenCL

● Pros

– CPU emulator is available

– no timing verification is required

– medium size kernels such as
XSBench, required a week,
including debugging

● Cons

– Performance portability issue

● FPGA-specific attributes can
possibly affect portability

– OpenCL HDL library offers no
portability

– Longer compilation time affect
productivity

__attribute__((num_compute_units(2))
__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void foobar(
 __global double *a,
 __attribute__((local_mem_size(4096))) __local float * b,
 __global __attribute__((buffer_location("QDR"))) int *c) {

 int __attribute__((memory,
 numbanks(1),
 bankwidth(128),
 doublepump,
 numwriteports(1),
 numreadports(4)) c[32]; // too much hardware detail

 ...
 ...
}

__attribute__((num_compute_units(2))
__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void foobar(
 __global double *a,
 __attribute__((local_mem_size(4096))) __local float * b,
 __global __attribute__((buffer_location("QDR"))) int *c) {

 int __attribute__((memory,
 numbanks(1),
 bankwidth(128),
 doublepump,
 numwriteports(1),
 numreadports(4)) c[32]; // too much hardware detail

 ...
 ...
}

● Also need to investigate

– Compiler-level optimiztion

● e.g., Falcon computing’s
Merlin compiler

– overlay/coarse-grain designs

– domain specific languages

28

Software challenges

29

Heterogeneous node designs

● Gain performance and energy
efficiency

● Heterogeneous designs are already
adopted by smartphones

– iPhone7 has an FPGA chip

● Accelerating:

– computation. e.g., simulation,
data, learning

– OS and system-level tasks

– network/storage

● compression, streaming
computing, etc

CPUsCPUsMemoriesMemories

RA
(smart NIC)

RA
(smart NIC)

Specialized
logic

(e.g., nueromorphic)

Specialized
logic

(e.g., nueromorphic)

RA
(compute)

RA
(compute)

GPUsGPUs

Software lag behind hardware!!!

30

Lack of abstraction

● So many FPGA chips, different
boards/platforms

● No compatibility, even source-
level

– longer compilation time

– so many different Xeon chips,
too, but they offer binary
compatibility and shorter
compilation time

● HLS can abstract FPGA resources
to some degree

● Need to abstract off-chip
memory, I/O, debugging APIs, etc

PCIe

Every FPGA chip has a big product ta
ble!

Tightly-coupled
w/ beefy CPUs

Standalone

31

Existing abstraction layers for FPGAs

● OpenCL BSPs

– provide low-level software APIs

– limit board choices, less extensible

● or build a custom BSP

– OpenCL features may be an overkill

● Intel Open Programmable Acceleration Engine
(OPAE)

– abstract accelerator such as FPGA

– consists of kernel drivers, userspace
libraries and tools (e.g., discover,
reconfigure)

– Supported platforms ?

● AWS EC2 FPGA hardware and software
development kits

– FPGA shells and software APIs

– https://github.com/aws/aws-fpga.git

● Questions

– support our edge-to-HPC needs?

– support various programming
models?

● offload, streaming, pure
dataflow, hybrid dataflow, etc

32

Identifying requirements for abstract layers (on-going)

Middle Layer
(task, dataflow,

etc)

Userspace APIs
and runtime

Kernel
drivers

User app

FPGA shells

User code
or library
or overlay

Interconnect

CPU

FPGA

CPU

FPGA

CPU

FPGA

reconfigure
diagnostic
data stream, copy
....

Swift/T

Argobots

33

Extreme heterogeneity

CMOS-based
processors

Organic
processors

Quantum
processorsCMOS-based

processorsCMOS-based
processorsCMOS-based
processors

Organic
processorsOrganic
processors?

Quantum
processorsQuantum
processorsQuantum
processors

data

data path

M
or

e
pr

oc
es

si
ng

ev
er

y
ge

ne
ra

tio
n

more processing power

The “Memory wall” problem seems to be a huge issue

Data path will possibly depend on CMOS-based technology
(e.g., CPU) and software

34

Conclusion

● Identify right-level of
abstraction

– learn from Andoid?

● Leverage dataflow, task-based
model

– to hide details

– optimize data movement
● deal with deep hierarchy
● energy-aware manner

● Study OS/R-level concepts

– flexibility and performance

35

People Involved in The “Re-form” Project

Franck Cappello
(MCS)

Hal Finkel
(ALCF)

Zheming Jin (ALCF)

Fangfang Xia
(CELS)

Kazutomo Yoshii
(MCS)

[Students]

Yingyi Luo (Northwestern University)

Ahmed Sanaullah (Boston University)

Chen Yang (Boston University)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Thank you

