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Overview
• Recent trends in extreme-scale HPC paint an uncertain future

– Contemporary systems provide evidence that power constraints are driving architectures to change 
rapidly

– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, 
memory systems, I/O

– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures
– Programming and operating systems need major redesign to address these architectural changes
– Procurements, acceptance testing, and operations of today’s new platforms depend on performance 

prediction and benchmarking.

• We need performance prediction and portable programming models now more than 
ever!

• Programming systems must provide performance portability (beyond functional 
portability)!!
– Heterogeneous systems: FPGAs are a great example
– New memory hierarchies

• Our prototype OpenACC to FPGA compilation infrastructure shows promise
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In the news
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System attributes
NERSC

Now

OLCF

Now

ALCF 

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180 

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High 

Bandwidth Memory 

(HBM)+1.5PB 

persistent memory 

> 1.74 PB DDR4 + 

HBM + 2.8 PB 

persistent memory

>480 TB DDR4 + 

High Bandwidth 

Memory (HBM)

> 7 PB High Bandwidth 

On-Package Memory 

Local Memory and 

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy 

Bridge 

AMD 

Opteron

Nvidia

Kepler  

64-bit 

PowerPC 

A2

Intel Knights Landing  

many core CPUs 

Intel Haswell CPU in 

data partition

Multiple IBM 

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing 

Xeon Phi many core 

CPUs

Knights Hill Xeon Phi 

many core CPUs  

System size (nodes)
5,600 

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data 

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail 

EDR-IB
Aries

2nd Generation Intel 

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s 

GPFS™

28 PB

744 GB/s 

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s 

Lustre initial

150 PB

1 TB/s

Lustre®

Current ASCR Computing At a Glance

Complexity α T

Binkley, ASCAC, April 2016



8

DOE Workshop on Extreme Heterogeneity 
23-25 Jan 2018
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Bob Colwell, Jan 2018 

Tom Conte, Jan 2018 
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Workshop Organization and Topics

● Gov shutdown forced cancellation of physical meeting
● Moved to virtual meeting

○ Kept to original agenda (with some minor changes for timezones)
○ Approximately  200 participants viewed plenary sessions!!

● Breakout groups converged on priority research directions



12

Status

• Initial Priority Research Directions (Categories)

– Programmability and Software Development Productivity

– Execution, Scheduling in Runtime and OS

– Reproducibility including Correctness, Debugging, Resilience

– Modeling and Simulation for Performance, Power

• Working on report now… Stay tuned
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…Yields Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …
Memory use, 
coalescing

Data orchestration
Fine grained 
parallelism

Hardware features

• This approach is not 
scalable, affordable, 
robust, elegant, etc.

• Not performance 
portable



Our Approach – Try to map 
FPGAs into an Existing 
Programming Framework
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Standard, Portable Programming Models for Heterogeneous 
Computing

• OpenCL

– Open standard portable across diverse heterogeneous platforms (e.g., CPUs, GPUs, 
DSPs, Xeon Phis, FPGAs, etc.)

– Much higher than HDL, but still complex for typical programmers.

• Directive-based accelerator programming models

– OpenACC, OpenMP4, etc.

– Provide higher abstraction than OpenCL.

– Most of existing OpenACC/OpenMP4 compilers target only specific architectures; 
none supports FPGAs.
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Performance Portability of High-level Programming Models for 
Contemporary Heterogeneous Systems 

• Problem

– Directive-based, high-level accelerator 
programming models such as OpenACC provide 
code portability. 

• How does it fare on performance portability? 

• And what architectural features/compiler optimizations 
affect the performance portability? And how much?

• Solution

– Proposed a high-level, architecture-independent 
intermediate language (HeteroIR) to map high-
level programming models (e.g., OpenACC) to 
diverse heterogeneous devices while maintaining 
portability. 

– Using HeteroIR, port and measure the 
performance portability of various OpenACC 
applications on diverse architectures.

• Results

– Using HeteroIR, OpenARC ported 12 OpenACC 
applications to diverse architectures (NVIDIA CUDA, 
AMD GCN, and Intel MIC), and measured the 
performance portability achieved across all 
applications.

– HeteroIR abstracts out the common architecture 
functionalities, which makes it easy for OpenARC 
(and other compilers) to support diverse 
heterogeneous architectures.

– HeteroIR, combined with rich OpenARC directives 
and built-in tuning tools, allows OpenARC to be used 
for various tuning studies on diverse architectures.

A. Sabne, P. Sakdhnagool et al., “Understanding Portability of a High-Level Programming Model on 

Contemporary Heterogeneous Architectures,” IEEE Micro, 35(4):48-58, 2015, 10.1109/MM.2015.73.
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OpenARC System Architecture
OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End

Kernels  & 

Host Program

Generator

Device 

Specific 

Optimizer

OpenARC

IR

LLVM

Back-End

Extended 

LLVM IR

Generator

NVL

Passes

Standard

LLVM

Passes

Kernels for

Target 

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io

NVM Library
Executable

OpenARC

Auto-Tuner

Tuning 

Configuration 

Generator

Search Space

Pruner

CUDA, OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

GCN

GPU

Xeon

Phi

Input C Program

Feedback

Run

Run
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Intelligent selection of optimizations based on target architecture
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Approach for FPGA support

• Design and implement an OpenACC-to-FPGA translation framework, which is 
the first work to use a standard and portable directive-based, high-level 
programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma extensions to 
improve performance.

• Evaluate the functional and performance portability of the framework across 
diverse architectures (Altera FPGA, NVIDIA GPU, AMD GPU, and Intel Xeon 
Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 

International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.
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OpenARC System Architecture
OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End

Kernels  & 

Host Program

Generator

Device 

Specific 

Optimizer

OpenARC

IR

LLVM

Back-End

Extended 

LLVM IR

Generator

NVL

Passes

Standard

LLVM

Passes

Kernels for

Target 

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io

NVM Library
Executable

OpenARC

Auto-Tuner

Tuning 

Configuration 

Generator

Search Space

Pruner

CUDA, OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

GCN

GPU

Xeon

Phi

Input C Program

Feedback

Run

Run

Altera

FPGA
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Baseline Translation of OpenACC-to-FPGA

• Use OpenCL as the output model and the Altera Offline Compiler (AOC) as its 
backend compiler.

• Translates the input OpenACC program into a host code containing HeteroIR
constructs and device-specific kernel codes.

– Use the same HeteroIR runtime system of the existing OpenCL backends, except for 
the device initialization.

– Reuse most of compiler passes for kernel generation.
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OpenARC Extensions and Optimizations for Efficient FPGA 
Programming

• Key benefit of using FPGAs is that they support wide, heterogeneous, and 
deeply pipelined parallelism customized for the input program.

• In FPGA programming with OpenCL, the OpenCL compiler synthesizes all the 
hardware logic for the input program. 

– The efficiency of the compiler is critical.

• We extend OpenARC to generate output OpenCL codes in a manner friendly 
to the underlying AOC OpenCL backend compiler. 
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FPGA OpenCL Architecture

FPGA

Memory

Local Memory

Interconnect

Local Memory

Interconnect

Local Memory

Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory 

Controller and PHY

External Memory 

Controller and PHY

H
o
s
t P

ro
c
e
s
s
o
r

External DDR Memory External DDR Memory

Kernel

PipelineKernel

PipelineKernel

PipelineKernel

Pipeline

Kernel

PipelineKernel

PipelineKernel

PipelineKernel

Pipeline

Kernel

PipelineKernel

PipelineKernel

PipelineKernel

Pipeline

Pipeline 
Depth

Vector 
Width

Number of Replicated Compute Units
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Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC

– Device kernels can communicate with each 
other only through the device global 
memory.

– Synchronizations between kernels are at 
the granularity of a kernel execution.

• Altera OpenCL channels

– Allows passing data between kernels and 
synchronizing kernels with high efficiency 
and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through 
global memory in OpenACC

Kernel communications with 
Altera channels
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Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;

__kernel void kernel1(__global float* a) {

int i = get_global_id(0);

write_channel_altera(pipe_b, a[i]*a[i]);

}

__kernel void kernel2(__global float* c) {

int i = get_global_id(0);

c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel
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Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)

{

#pragma acc kernels loop gang worker pipeout (b) present (a)

For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker pipein (b) present (c)

For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining 
transformation

Valid under 
specific conditions
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Dynamic Memory-Transfer Alignment Optimization (2)

Host DeviceHtoD

N-byte N-byte

(a) Aligned-host & Aligned-device

(b) Unaligned-host with Offset p (0 

< p < 64) & Aligned-device

Device

Host Copy

Host

64-byte

p

64-byte Aligned Address

(c) Unaligned-host & Unaligned-

device with the Same Offset p (0 

< p < 64)

HtoD

HtoD

Host Device

64-byte

p p

64-byte

Unaligned Transfer Aligned Transfer (DMA)

HtoD

HtoD

Host Device

Host Copy

p q

q

64-byte 64-byte

(d) Aligned- or Unaligned-host 

with Offset p (0 ≤ p < 64)

& Unaligned-device with Offset 

q (0 < q < 64)



35

Application Used

Applic

ation
Description Input A B C D E

Jacobi Jacobi iterative method
8192x8192, 

10 iters
X X

MatMul Dense matrix multiplication 2048x2048 X X

SpMul Sparse matrix multiplication
2063494 x 

2063494
X X

HotSpo

t
Compact thermal modeling

1024x1024, 

1000 iters
X

NW Needleman-Wunsch algorithm 8192x8192

SRAD Speckle reducing anisotropic diffusion 8192x8192 X

FFT-1D 1D radix-4 complex fast Fourier transform
4096,

100 iters
X X

FFT-2D 2D radix-4 complex fast Fourier transform 256x256 X X X

A: Boundary check elimination, B: Work-item ID-dependent backward 
branching, C: Loop unrolling, D: Single work-item kernel, E: Kernel pipelining

OpenARC Compiler Suite Rodinia Benchmark Suite Altera SDK for OpenCL
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Speedup over CU, SIMD (1,1)
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Jacobi and MatMul show better 
performance with increase in CU 
and SIMD, thanks to regular 
memory accesses.

SpMul and SRAD perform worse 
with multiple CUs, mainly due to 
memory contention.

Performance of HotSpot and NW 
increases with multiple CUs, but 
decreases with vectorization.
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Overall Performance

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p
e
e

d
u

p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and 
FFT-2D), performing much higher than other accelerators.

For traditional HPC applications with abundant parallel floating-point operations, 
it seems to be difficult for FPGAs to beat the performance of other accelerators, 
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point 
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators, 
while remaining power-efficient.
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Hardware Resource Utilization (%)

App
Number of the replicated CUs, SIMD width in the kernel vectorization

1,1 1,2 1,4 1,8 1,16 2,1 2,2 2,4 2,8 2,16 4.1 4,2 4,4 4,8 4,16 8,1 8,2

Jacobi 29 33 37 41 49 36 43 51 59 74 48 62 78 95 124 73 101

MatMul 28 34 45 67 109 35 46 68 110 195 48 69 112 197 367 72 115

SpMul 35 - - - - 46 - - - - 69 - - - - 114 -

HotSpot 56 79 124 214 443 89 134 224 445 863 154 245 467 866 1704 285 518

NW 35 46 68 112 200 46 68 112 200 377 69 113 201 377 730 115 202

SRAD 54 65 80 110 170 84 106 136 197 317 145 189 249 370 621 266 354

FFT-1D 80 - - - - - - - - - - - - - - - -

FFT-2D 56 - - - - - - - - - - - - - - - -

Hardware resource utilization (%) depending on the number of the replicated 
compute units (CUs) and SIMD width in the kernel vectorization

# of CU affects the resource utilization more than the SIMD width.

If a resource utilization is larger than 100%, the compiler cannot generate kernel 
execution file.
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Additional optimizations to exploit FPGA architectural features
within this directive-based framework

• Pipe directive to reduce accesses to global memory

• Collapse directive to put more work into deep pipelines

• Use shift registers
– Sliding window

– Reductions
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Recap
• Recent trends in extreme-scale HPC paint an uncertain future

– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures

• Programming systems must provide performance portability (beyond 
functional portability)!!

– Reconfigurable systems are the ultimate challenge ☺

• Extending OpenACC to target FPGAs

– Extend standard programming model to include FPGA targets

– Addressing shortcomings with extensions to OpenACC and compiler infrastructure

– Promising results with initial prototypes 

• Push these improvements into OpenACC/OpenMP
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