
ORNL is managed by UT-Battelle

for the US Department of Energy

Working Toward Performance
Portability for FPGAs in High
Performance Computing

Jeffrey S. Vetter

Seyong Lee
Many contributions from FTG Group and
Colleagues

http://ft.ornl.gov vetter@computer.org

Presented to

3rd International Workshop on FPGA for HPC (IWFH)

Tokyo

Monday, 12 March 2018

http://ft.ornl.gov/
mailto:vetter@computer.org

2

Overview
• Recent trends in extreme-scale HPC paint an uncertain future

– Contemporary systems provide evidence that power constraints are driving architectures to change
rapidly

– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design,
memory systems, I/O

– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures
– Programming and operating systems need major redesign to address these architectural changes
– Procurements, acceptance testing, and operations of today’s new platforms depend on performance

prediction and benchmarking.

• We need performance prediction and portable programming models now more than
ever!

• Programming systems must provide performance portability (beyond functional
portability)!!
– Heterogeneous systems: FPGAs are a great example
– New memory hierarchies

• Our prototype OpenACC to FPGA compilation infrastructure shows promise

6

In the news

7

System attributes
NERSC

Now

OLCF

Now

ALCF

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High

Bandwidth Memory

(HBM)+1.5PB

persistent memory

> 1.74 PB DDR4 +

HBM + 2.8 PB

persistent memory

>480 TB DDR4 +

High Bandwidth

Memory (HBM)

> 7 PB High Bandwidth

On-Package Memory

Local Memory and

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy

Bridge

AMD

Opteron

Nvidia

Kepler

64-bit

PowerPC

A2

Intel Knights Landing

many core CPUs

Intel Haswell CPU in

data partition

Multiple IBM

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing

Xeon Phi many core

CPUs

Knights Hill Xeon Phi

many core CPUs

System size (nodes)
5,600

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail

EDR-IB
Aries

2nd Generation Intel

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s

GPFS™

28 PB

744 GB/s

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s

Lustre initial

150 PB

1 TB/s

Lustre®

Current ASCR Computing At a Glance

Complexity α T

Binkley, ASCAC, April 2016

8

DOE Workshop on Extreme Heterogeneity
23-25 Jan 2018

9

10

Bob Colwell, Jan 2018

Tom Conte, Jan 2018

11

Workshop Organization and Topics

● Gov shutdown forced cancellation of physical meeting
● Moved to virtual meeting

○ Kept to original agenda (with some minor changes for timezones)
○ Approximately 200 participants viewed plenary sessions!!

● Breakout groups converged on priority research directions

12

Status

• Initial Priority Research Directions (Categories)

– Programmability and Software Development Productivity

– Execution, Scheduling in Runtime and OS

– Reproducibility including Correctness, Debugging, Resilience

– Modeling and Simulation for Performance, Power

• Working on report now… Stay tuned

13

16

…Yields Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …
Memory use,
coalescing

Data orchestration
Fine grained
parallelism

Hardware features

• This approach is not
scalable, affordable,
robust, elegant, etc.

• Not performance
portable

Our Approach – Try to map
FPGAs into an Existing
Programming Framework

18

Standard, Portable Programming Models for Heterogeneous
Computing

• OpenCL

– Open standard portable across diverse heterogeneous platforms (e.g., CPUs, GPUs,
DSPs, Xeon Phis, FPGAs, etc.)

– Much higher than HDL, but still complex for typical programmers.

• Directive-based accelerator programming models

– OpenACC, OpenMP4, etc.

– Provide higher abstraction than OpenCL.

– Most of existing OpenACC/OpenMP4 compilers target only specific architectures;
none supports FPGAs.

19

Performance Portability of High-level Programming Models for
Contemporary Heterogeneous Systems

• Problem

– Directive-based, high-level accelerator
programming models such as OpenACC provide
code portability.

• How does it fare on performance portability?

• And what architectural features/compiler optimizations
affect the performance portability? And how much?

• Solution

– Proposed a high-level, architecture-independent
intermediate language (HeteroIR) to map high-
level programming models (e.g., OpenACC) to
diverse heterogeneous devices while maintaining
portability.

– Using HeteroIR, port and measure the
performance portability of various OpenACC
applications on diverse architectures.

• Results

– Using HeteroIR, OpenARC ported 12 OpenACC
applications to diverse architectures (NVIDIA CUDA,
AMD GCN, and Intel MIC), and measured the
performance portability achieved across all
applications.

– HeteroIR abstracts out the common architecture
functionalities, which makes it easy for OpenARC
(and other compilers) to support diverse
heterogeneous architectures.

– HeteroIR, combined with rich OpenARC directives
and built-in tuning tools, allows OpenARC to be used
for various tuning studies on diverse architectures.

A. Sabne, P. Sakdhnagool et al., “Understanding Portability of a High-Level Programming Model on

Contemporary Heterogeneous Architectures,” IEEE Micro, 35(4):48-58, 2015, 10.1109/MM.2015.73.

20

OpenARC System Architecture
OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End

Kernels &

Host Program

Generator

Device

Specific

Optimizer

OpenARC

IR

LLVM

Back-End

Extended

LLVM IR

Generator

NVL

Passes

Standard

LLVM

Passes

Kernels for

Target

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io

NVM Library
Executable

OpenARC

Auto-Tuner

Tuning

Configuration

Generator

Search Space

Pruner

CUDA, OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

GCN

GPU

Xeon

Phi

Input C Program

Feedback

Run

Run

21

Intelligent selection of optimizations based on target architecture

22

Approach for FPGA support

• Design and implement an OpenACC-to-FPGA translation framework, which is
the first work to use a standard and portable directive-based, high-level
programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma extensions to
improve performance.

• Evaluate the functional and performance portability of the framework across
diverse architectures (Altera FPGA, NVIDIA GPU, AMD GPU, and Intel Xeon
Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE

International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.

23

OpenARC System Architecture
OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End

Kernels &

Host Program

Generator

Device

Specific

Optimizer

OpenARC

IR

LLVM

Back-End

Extended

LLVM IR

Generator

NVL

Passes

Standard

LLVM

Passes

Kernels for

Target

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io

NVM Library
Executable

OpenARC

Auto-Tuner

Tuning

Configuration

Generator

Search Space

Pruner

CUDA, OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

GCN

GPU

Xeon

Phi

Input C Program

Feedback

Run

Run

Altera

FPGA

24

Baseline Translation of OpenACC-to-FPGA

• Use OpenCL as the output model and the Altera Offline Compiler (AOC) as its
backend compiler.

• Translates the input OpenACC program into a host code containing HeteroIR
constructs and device-specific kernel codes.

– Use the same HeteroIR runtime system of the existing OpenCL backends, except for
the device initialization.

– Reuse most of compiler passes for kernel generation.

25

OpenARC Extensions and Optimizations for Efficient FPGA
Programming

• Key benefit of using FPGAs is that they support wide, heterogeneous, and
deeply pipelined parallelism customized for the input program.

• In FPGA programming with OpenCL, the OpenCL compiler synthesizes all the
hardware logic for the input program.

– The efficiency of the compiler is critical.

• We extend OpenARC to generate output OpenCL codes in a manner friendly
to the underlying AOC OpenCL backend compiler.

26

FPGA OpenCL Architecture

FPGA

Memory

Local Memory

Interconnect

Local Memory

Interconnect

Local Memory

Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory

Controller and PHY

External Memory

Controller and PHY

H
o
s
t P

ro
c
e
s
s
o
r

External DDR Memory External DDR Memory

Kernel

PipelineKernel

PipelineKernel

PipelineKernel

Pipeline

Kernel

PipelineKernel

PipelineKernel

PipelineKernel

Pipeline

Kernel

PipelineKernel

PipelineKernel

PipelineKernel

Pipeline

Pipeline
Depth

Vector
Width

Number of Replicated Compute Units

29

Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC

– Device kernels can communicate with each
other only through the device global
memory.

– Synchronizations between kernels are at
the granularity of a kernel execution.

• Altera OpenCL channels

– Allows passing data between kernels and
synchronizing kernels with high efficiency
and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through
global memory in OpenACC

Kernel communications with
Altera channels

30

Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;

__kernel void kernel1(__global float* a) {

int i = get_global_id(0);

write_channel_altera(pipe_b, a[i]*a[i]);

}

__kernel void kernel2(__global float* c) {

int i = get_global_id(0);

c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

31

Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)

{

#pragma acc kernels loop gang worker pipeout (b) present (a)

For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker pipein (b) present (c)

For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining
transformation

Valid under
specific conditions

33

Dynamic Memory-Transfer Alignment Optimization (2)

Host DeviceHtoD

N-byte N-byte

(a) Aligned-host & Aligned-device

(b) Unaligned-host with Offset p (0

< p < 64) & Aligned-device

Device

Host Copy

Host

64-byte

p

64-byte Aligned Address

(c) Unaligned-host & Unaligned-

device with the Same Offset p (0

< p < 64)

HtoD

HtoD

Host Device

64-byte

p p

64-byte

Unaligned Transfer Aligned Transfer (DMA)

HtoD

HtoD

Host Device

Host Copy

p q

q

64-byte 64-byte

(d) Aligned- or Unaligned-host

with Offset p (0 ≤ p < 64)

& Unaligned-device with Offset

q (0 < q < 64)

35

Application Used

Applic

ation
Description Input A B C D E

Jacobi Jacobi iterative method
8192x8192,

10 iters
X X

MatMul Dense matrix multiplication 2048x2048 X X

SpMul Sparse matrix multiplication
2063494 x

2063494
X X

HotSpo

t
Compact thermal modeling

1024x1024,

1000 iters
X

NW Needleman-Wunsch algorithm 8192x8192

SRAD Speckle reducing anisotropic diffusion 8192x8192 X

FFT-1D 1D radix-4 complex fast Fourier transform
4096,

100 iters
X X

FFT-2D 2D radix-4 complex fast Fourier transform 256x256 X X X

A: Boundary check elimination, B: Work-item ID-dependent backward
branching, C: Loop unrolling, D: Single work-item kernel, E: Kernel pipelining

OpenARC Compiler Suite Rodinia Benchmark Suite Altera SDK for OpenCL

37

Speedup over CU, SIMD (1,1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
,1

1
,2

1
,4

1
,8

1
,1

6

2
,1

2
,2

2
,4

2
,8

2
,1

6

4
,1

4
,2

4
,4

4
,8

8
,1

1
,1

1
,2

1
,4

1
,8

2
,1

2
,2

2
,4

4
,1

4
,2

8
,1

1
,1

2
,1

4
,1

1
,1

1
,2

2
,1

1
,1

1
,2

1
,4

2
,1

2
,2

4
,1

1
,1

1
,2

1
,4

2
,1

Jacobi MatMul SpMul HotSpot NW SRAD

S
p
e

e
d
u

p

Jacobi and MatMul show better
performance with increase in CU
and SIMD, thanks to regular
memory accesses.

SpMul and SRAD perform worse
with multiple CUs, mainly due to
memory contention.

Performance of HotSpot and NW
increases with multiple CUs, but
decreases with vectorization.

40

Overall Performance

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p
e
e

d
u

p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and
FFT-2D), performing much higher than other accelerators.

For traditional HPC applications with abundant parallel floating-point operations,
it seems to be difficult for FPGAs to beat the performance of other accelerators,
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators,
while remaining power-efficient.

41

Hardware Resource Utilization (%)

App
Number of the replicated CUs, SIMD width in the kernel vectorization

1,1 1,2 1,4 1,8 1,16 2,1 2,2 2,4 2,8 2,16 4.1 4,2 4,4 4,8 4,16 8,1 8,2

Jacobi 29 33 37 41 49 36 43 51 59 74 48 62 78 95 124 73 101

MatMul 28 34 45 67 109 35 46 68 110 195 48 69 112 197 367 72 115

SpMul 35 - - - - 46 - - - - 69 - - - - 114 -

HotSpot 56 79 124 214 443 89 134 224 445 863 154 245 467 866 1704 285 518

NW 35 46 68 112 200 46 68 112 200 377 69 113 201 377 730 115 202

SRAD 54 65 80 110 170 84 106 136 197 317 145 189 249 370 621 266 354

FFT-1D 80 - - - - - - - - - - - - - - - -

FFT-2D 56 - - - - - - - - - - - - - - - -

Hardware resource utilization (%) depending on the number of the replicated
compute units (CUs) and SIMD width in the kernel vectorization

of CU affects the resource utilization more than the SIMD width.

If a resource utilization is larger than 100%, the compiler cannot generate kernel
execution file.

48

Additional optimizations to exploit FPGA architectural features
within this directive-based framework

• Pipe directive to reduce accesses to global memory

• Collapse directive to put more work into deep pipelines

• Use shift registers
– Sliding window

– Reductions

49

Recap
• Recent trends in extreme-scale HPC paint an uncertain future

– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures

• Programming systems must provide performance portability (beyond
functional portability)!!

– Reconfigurable systems are the ultimate challenge ☺

• Extending OpenACC to target FPGAs

– Extend standard programming model to include FPGA targets

– Addressing shortcomings with extensions to OpenACC and compiler infrastructure

– Promising results with initial prototypes

• Push these improvements into OpenACC/OpenMP

50

• Contributors and Sponsors

– Future Technologies Group: http://ft.ornl.gov

– US Department of Energy Office of Science

• DOE Vancouver Project: https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project: https://ft.ornl.gov/trac/blackcomb

• DOE ExMatEx Codesign Center: http://codesign.lanl.gov

• DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/

• DOE Exascale Efforts:
http://science.energy.gov/ascr/research/computer-
science/

– Scalable Heterogeneous Computing Benchmark team:
http://bit.ly/shocmarx

– US National Science Foundation Keeneland Project:
http://keeneland.gatech.edu

– US DARPA

– NVIDIA CUDA Center of Excellence

Acknowledgements

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/
http://bit.ly/shocmarx
http://keeneland.gatech.edu/

