Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

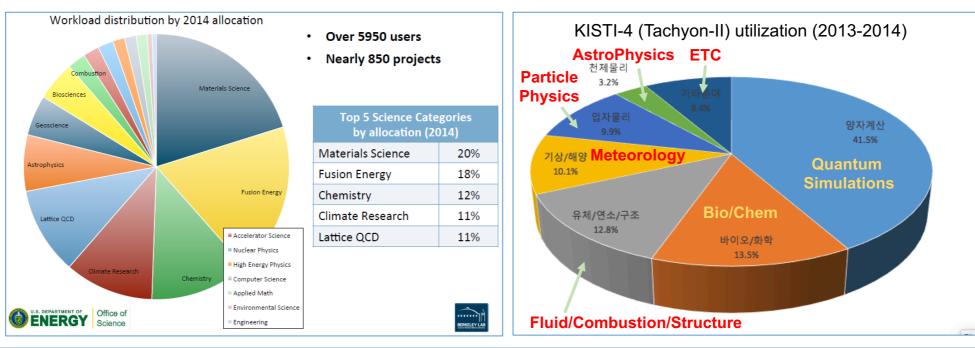
Hoon Ryu, Ph.D. (E: <u>elec1020@kisti.re.kr</u>)

Principal Researcher / Korea Institute of Science and Technology Information (KISTI) Principal Investigator / KISTI Intel® Parallel Computing Center

Electronic Structure Calculations

An application that has customers in a a HUGE range

- The state of motion of electrons in an electrostatic field created by the stationary nuclei.
- Quantum Physics; Quantum Chemistry; Nanoscale Materials and Devices
 - \rightarrow Physics, Chemistry, Materials Science, Electrical Engineering and Mechanical Engineering ETC.
- Huge customers in the society of computational science

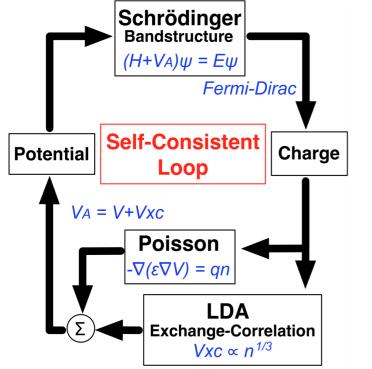


Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Electronic Structure Calculations

In a perspective of "numerical analysis"

- Two PDE-coupled Loop: <u>Schrödinger Equation</u> and <u>Poisson Equation</u>
- Both equation involve system matrices (Hamiltonian and Poisson)
 - \rightarrow DOFs of those matrices are proportional to the # of grids in the simulation domains



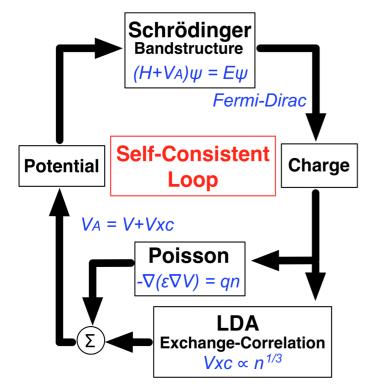
- Schrödinger Equations
 - \rightarrow Normal Eigenvalue Problem $H\Psi = E\Psi$
- Poisson Equations
 - → Linear System Problem $-\nabla(\epsilon \nabla V) = \rho \rightarrow Ax = b$

Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Electronic Structure Calculations

In a perspective of "numerical analysis"

- Two PDE-coupled Loop: <u>Schrödinger Equation</u> and <u>Poisson Equation</u>
- Both equation involve system matrices (Hamiltonian and Poisson)
 - \rightarrow DOFs of those matrices are proportional to the # of grids in the simulation domains



Schrödinger Equations

Poisson Equations

- \rightarrow <u>Normal Eigenvalue Problem</u>
- $H\Psi = E\Psi$
- \rightarrow Linear System Problem $-\nabla(\varepsilon \nabla V) = \rho \rightarrow A = b$

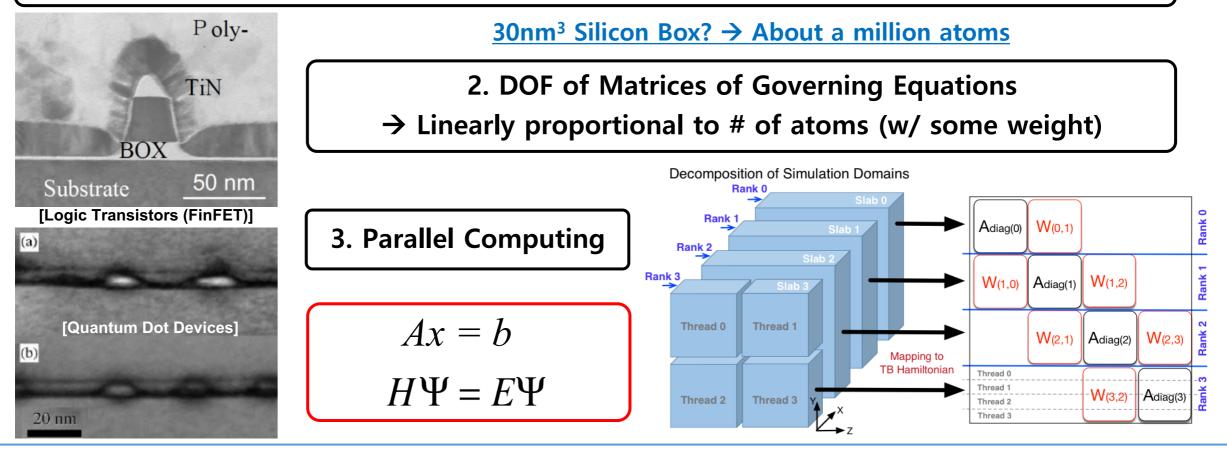
How large are these system matrices? Why do we need to handle those?

Needs for "Large" Electronic Structures

Needs for High Performance Computing

1. Quantum Simulations of "Realizable" Nanoscale Materials and Devices

 \rightarrow Needs to handle large-scale atomic systems (~ A few tens of nms)



Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Development Strategy: DD, Matrix Handling

Large-scale Schrödinger, Poisson Eqns.

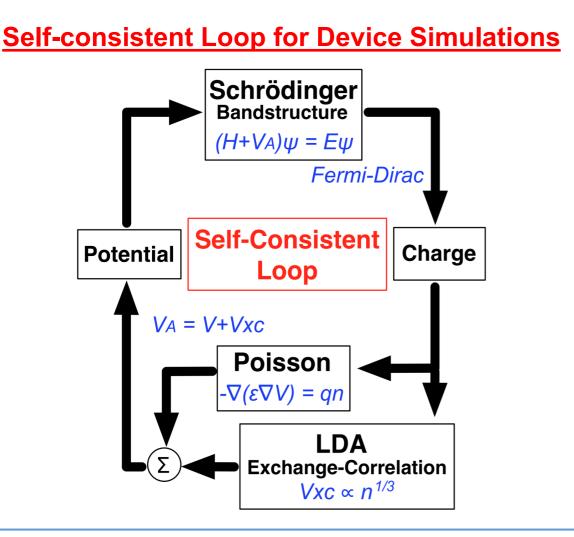
Schrödinger Equation • Normal Eigenvalue Problem (Electronic Structure) • Hamiltonian is always symmetric $H\Psi = E\Psi$				Poisson Equation• Linear System Problem (Electrostatics: Q-V)• Poisson matrix is always symmetric $-\nabla(\epsilon \nabla V) = \rho$
<text><list-item><list-item></list-item></list-item></text>	Adiag(0) W(0,1) W(1,0) Adiag(1)	W(1,2) Adiag(2)	W(2,3)	4 TB Hamiltonian Onsite Coupling (3) (3,4) (3,7)

Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Development Strategy: Numerical Algorithms

Schrödinger Equations

 $= E\Psi$



Schrödinger Eqs. w/ LANCZOS Algorithm

- → C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255
- Normal Eigenvalue Problem (Electronic Structure)
- Hamiltonian is always symmetric

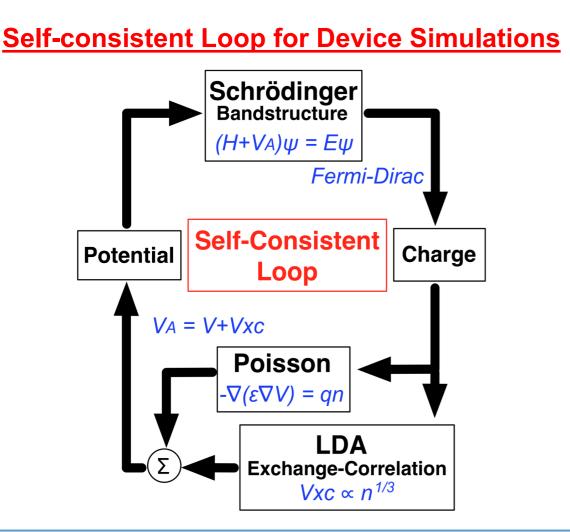
Original Matrix
$$\rightarrow$$
 T matrix-reduction $H\Psi$

• Steps for Iteration: Purely Scalable Algebraic Ops.

$$\mathbf{v}_{i}: (Nx1) \text{ vectors } (i = 0, ..., \mathbf{K}); \mathbf{a}_{i} \text{ and } \mathbf{b}_{i}: \text{ scalars } (i = 1, ..., \mathbf{K})$$
$$\mathbf{v}_{0} \leftarrow \mathbf{0}, \mathbf{v}_{1} = \text{ random vector with norm } 1;$$
$$\mathbf{b}_{1} \leftarrow \mathbf{0};$$
$$\text{loop for } (j=1; j \leq \mathbf{K}; j++)$$
$$\mathbf{w}_{j} \leftarrow \mathbf{Av}_{j};$$
$$\mathbf{a}_{j} \leftarrow \mathbf{w}_{j} \cdot \mathbf{v}_{j};$$
$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} - \mathbf{a}_{j}\mathbf{v}_{j} - \mathbf{b}_{j}\mathbf{v}_{j-1};$$
$$\mathbf{b}_{j+1} \leftarrow ||\mathbf{w}_{j}||;$$
$$\mathbf{v}_{j+1} \leftarrow ||\mathbf{w}_{j}||;$$
$$\mathbf{v}_{j+1} \leftarrow \mathbf{w}_{j} / \mathbf{b}_{j+1};$$
$$\text{construct T matrix;}$$
$$\mathbf{r} = \begin{pmatrix} a_{1} & b_{2} & 0 & \cdots & 0 \\ b_{2} & a_{2} & b_{3} & \cdots & 0 \\ b_{2} & a_{2} & b_{3} & \cdots & \cdots & 0 \\ 0 & b_{3} & \ddots & \ddots & 0 \\ \vdots & \cdots & \cdots & b_{k-1} & 0 \\ \vdots & \cdots & b_{k-1} & a_{k-1} & b_{k} \\ 0 & \cdots & \cdots & 0 & b_{k} & a_{k} \end{pmatrix}$$

Development Strategy: Numerical Algorithms

Poisson Equations



Poisson Eqs. w/ CG Algorithm

- \rightarrow A Problem of Solving Linear Systems
- Conv. Guaranteed: Symmetric & Positive Definite
- Poisson is always S & PD.

 $-\nabla(\varepsilon\nabla V) = \rho$

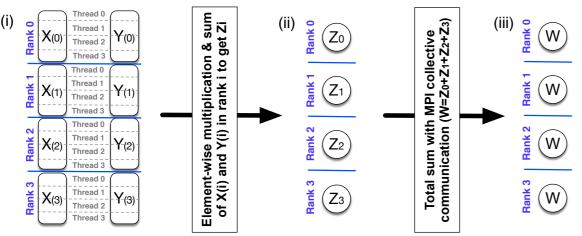
 Steps for Iteration: Purely Scalable Algebraic Ops.

We want to solve
$$Ax = b$$
. First compute $\mathbf{r}_0 = \mathbf{b} - Ax_0$, $\mathbf{p}_0 = \mathbf{r}_0$
loop for (j=1; j<=K; j++)
 $\mathbf{a}_j \leftarrow \langle \mathbf{r}_j \bullet \mathbf{r}_j \rangle / \langle A\mathbf{p}_j \bullet \mathbf{p}_j \rangle$;
 $x_{j+1} \leftarrow x_j + \mathbf{a}_j \mathbf{p}_j$;
 $\mathbf{r}_{j+1} \leftarrow \mathbf{r}_j - \mathbf{a}_j A\mathbf{p}_j$;
if ($||\mathbf{r}_{j+1}|| / ||\mathbf{r}_0|| < e$)
declare \mathbf{r}_{j+1} is the solution of $Ax = b$ and break the loop
 $\mathbf{c}_j \leftarrow \langle \mathbf{r}_{j+1} \bullet \mathbf{r}_{j+1} \rangle / \langle \mathbf{r}_j \bullet \mathbf{r}_j \rangle$;
 $\mathbf{p}_{j+1} \leftarrow \mathbf{r}_{j+1} + \mathbf{c}_j \mathbf{p}_j$;
end loop

Performance Bottleneck?

Matrix-vector Multiplier: Sparse Matrices

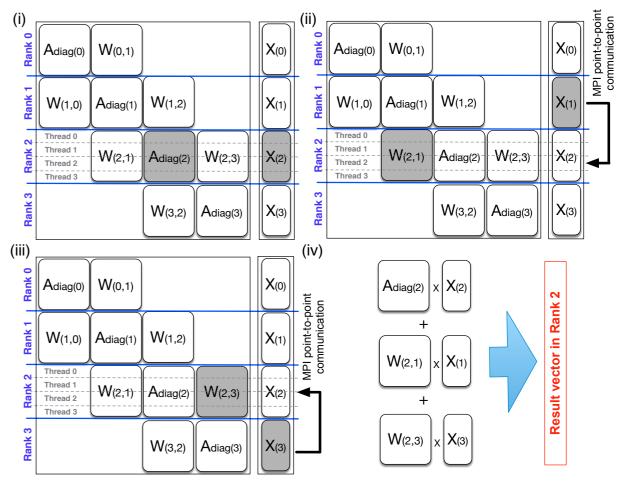
Vector Dot-Product (VVDot)



Main Concerns for Performance

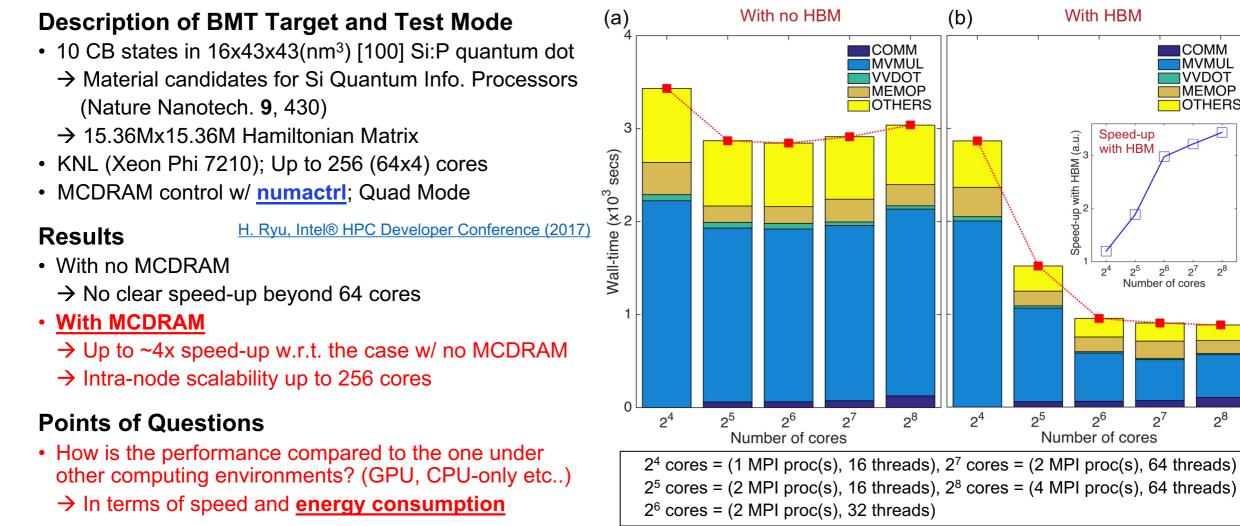
- Collective Communication
 - → May not be the main bottleneck as we only need to collect a single value from a single MPI process
- Matrix-vector Multiplier
 - → Communication happens, but would not be a critical problem as it only happens between adjacent ranks
 - \rightarrow Cache-miss affects vectorization efficiency

(Sparse) Matrix-vector Multiplier (MVMul)



Performance w/ Intel® KNL Processors

Single-node Performance: The power of MCDRAM



Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

 2^{8}

Performance w/ Intel® KNL Processors

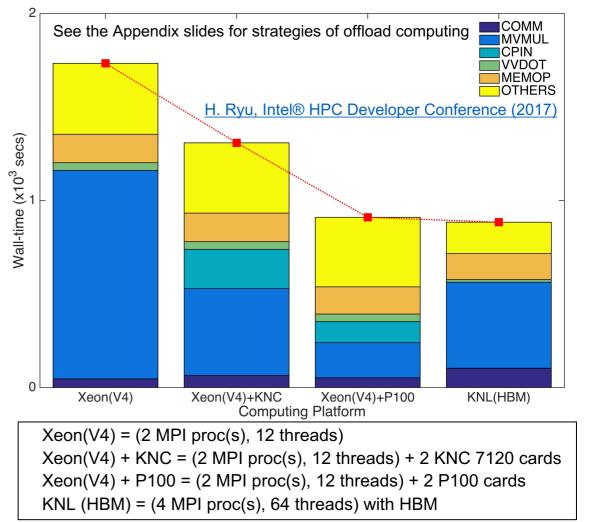
Single-node Performance: Speed

Description of BMT Target and Test Mode

- 10 CB states in 16x43x43(nm³) [100] Si:P quantum dot
 - → Material candidates for Si Quantum Info. Processors (Nature Nanotech. 9, 430)
 - \rightarrow 15.36Mx15.36M Hamiltonian Matrix
- KNL (Xeon Phi 7210); Up to 256 (64x4) cores; Quad Mode
- Specs of Other Platforms
 - \rightarrow Xeon(V4): 24 cores of Broadwell (BW) 2.50GHz
 - → Xeon(V4)+KNC: 24 cores BW + 2 KNC 7120 cards
 - → Xeon(V4)+P100: 24 cores BW + 2 P100 cards
 - \rightarrow KNL(HBM): the one described so far

Results

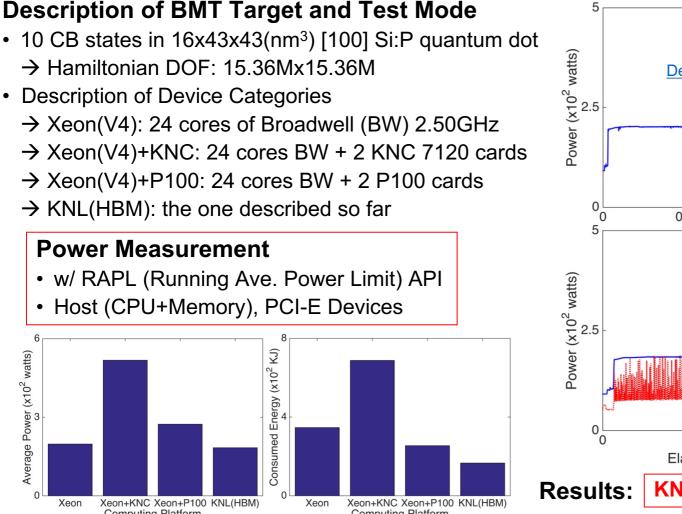
- KNL slightly beats Xeon(V4)+P100
 - \rightarrow Copy-time (CPIN): a critical bottleneck of PCI-E devices
 - → P100 shows better kernel speed, but the overall benefit reduces due to data-transfer between host and devices
 - \rightarrow CPIN would even increase if we consider periodic BCs
- Another critical figure of merit: Energy-efficiency

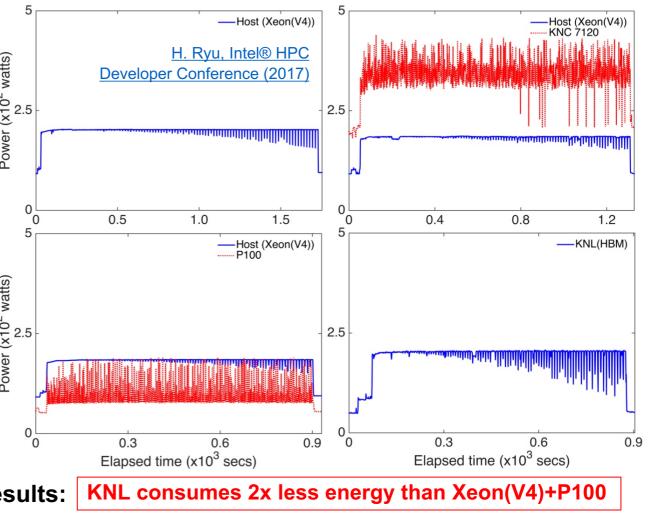


Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Performance w/ Intel® KNL Processors

Single-node Performance: Energy Consumption





Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Performance w/ Intel® KNL Processors

Multi-node Performance: Scalability

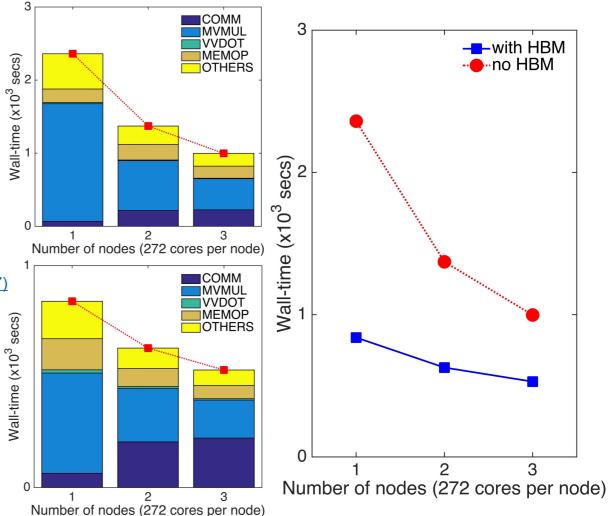
Description of BMT Target and Test Mode

- 5 CB states in 27x33x33(nm³) [100] Si:P quantum dot
 - → Material candidates for Si Quantum Info. Processors (Nature Nanotech. 9, 430)
 - \rightarrow 14.4Mx14.4M Hamiltonian Matrix
- KNL (Xeon Phi 7250) nodes; Up to 272 (68x4) cores/node
 → (4 MPI processes + 68 threads) per node
 - \rightarrow Quad / Flat mode, No omni-path (10G network)
 - \rightarrow Strong scalability measured up to 3 nodes

Results

H. Ryu, Intel® HPC Developer Conference (2017)

- Speed-enhancement with HBM becomes larger as a single node takes larger workload
- Inter-node strong scalability is quite nice with no HBM
 2.26x anod up with 2x computing expanse (no HBN)
 - \rightarrow 2.36x speed-up with 3x computing expense (no HBM)
 - → ~78% scalability (2.36/3) is what we usually get from multi-core base HPCs (Tachyon-II HPC in KISTI)
 - \rightarrow 1.58x speed-up with HBM (prob. size is not large enough)



KISTI Intel® Parallel Computing Center

- Introduction to Code Functionality
- Main Numerical Problems and Performance Bottleneck
- Performance (speed and energy consumption) in a single KNL node
- Strong scalability in multiple KNL nodes
- (Appendix) Strategies for offload computing (for PCI-E devices)

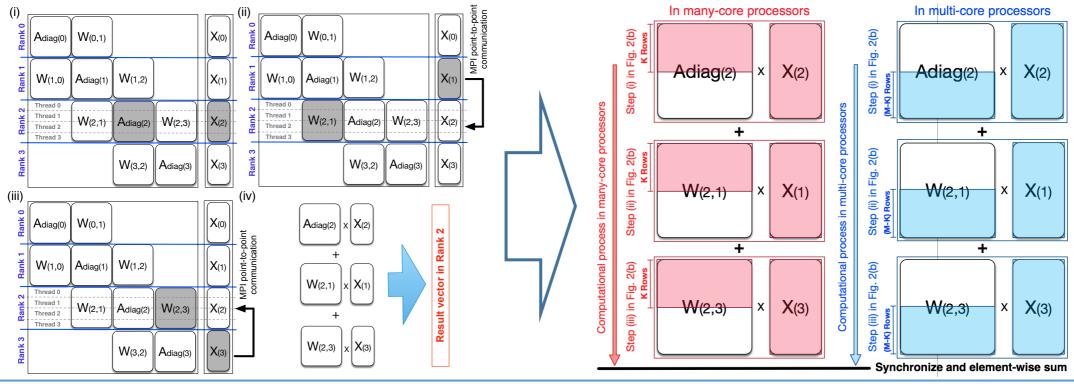
Thanks for your attention!!

Appendix: Strategy for offload-computing

Asynchronous Offload (for Xeon(V4) + KNC, Xeon(V4) + GPU)

The real bottleneck of computing: Overcome with asynchronous offload <u>H. Ryu et al., Comp. Phys. Commun. (2016)</u> (http://dx.doi.org/10.1016/j.cpc.2016.08.015)

- Vector dot-product is not expensive: All-reduce, but small communication loads
- · Vector communication is not a big deal: only communicates between adjacent layers
- Sparse-matrix-vector multiplication is a big deal: Host and PCI-E device shares computing load



Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

Appendix: Strategy for offload-computing

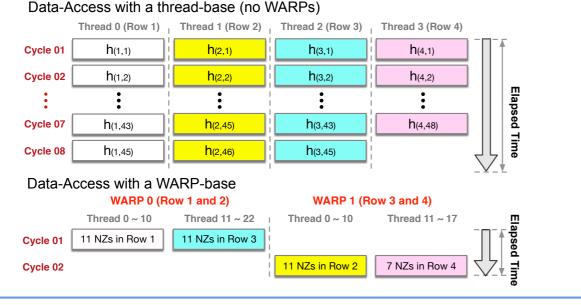
Data-transfer and Kernel Functions for GPU Computing

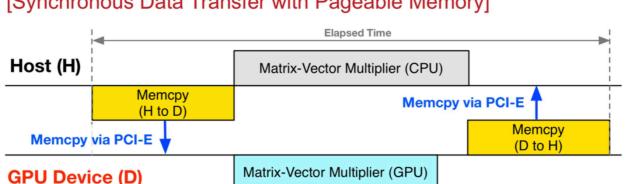
Data-transfer between host and GPU Devices

- 3x increased bandwidth with pinned memory
- Overlap of computation and data-transfer with • asynchronous streams

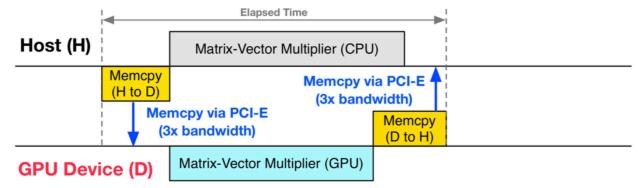
Speed-up of GPU Kernel Function (MVMul)

Treating several rows at one time with WARPs





[Asynchronous Data Transfer with Pinned Memory]



[Synchronous Data Transfer with Pageable Memory]

Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors

H. Ryu et al., J. Comp. Elec. (2018)

(http://dx.doi.org/10.1007/s10825-018-1138-4)