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Electronic Structure Calculations
An application that has customers in a a HUGE range

• The state of motion of electrons in an electrostatic field created by the stationary nuclei.
• Quantum Physics; Quantum Chemistry; Nanoscale Materials and Devices

à Physics, Chemistry, Materials Science, Electrical Engineering and Mechanical Engineering ETC. 
• Huge customers in the society of computational science 

KISTI-4 (Tachyon-II) utilization (2013-2014)

Quantum 
Simulations

Bio/Chem

Fluid/Combustion/Structure

Meteorology

Particle
Physics

AstroPhysics ETC



Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors 3

Electronic Structure Calculations
In a perspective of “numerical analysis”

• Two PDE-coupled Loop: Schrödinger Equation and Poisson Equation
• Both equation involve system matrices (Hamiltonian and Poisson)

à DOFs of those matrices are proportional to the # of grids in the simulation domains

• Schrödinger Equations
à Normal Eigenvalue Problem

• Poisson Equations
à Linear System Problem à Ax = b
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Electronic Structure Calculations
In a perspective of “numerical analysis”

• Two PDE-coupled Loop: Schrödinger Equation and Poisson Equation
• Both equation involve system matrices (Hamiltonian and Poisson)

à DOFs of those matrices are proportional to the # of grids in the simulation domains

• Schrödinger Equations
à Normal Eigenvalue Problem

• Poisson Equations
à Linear System Problem à Ax = b

How large are these system matrices?
Why do we need to handle those?
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Needs for “Large” Electronic Structures
Needs for High Performance Computing 

1. Quantum Simulations of “Realizable” Nanoscale Materials and Devices 
à Needs to handle large-scale atomic systems (~ A few tens of nms)

[Logic Transistors (FinFET)]

[Quantum Dot Devices]

30nm3 Silicon Box? à About a million atoms

2. DOF of Matrices of Governing Equations
à Linearly proportional to # of atoms (w/ some weight)

3. Parallel Computing

Ax = b



Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors 6

Development Strategy: DD, Matrix Handling
Large-scale Schrödinger, Poisson Eqns.

Schrödinger Equation
• Normal Eigenvalue Problem (Electronic Structure)
• Hamiltonian is always symmetric

Poisson Equation
• Linear System Problem (Electrostatics: Q-V)
• Poisson matrix is always symmetric

Domain Decomposition
• MPI + OpenMP
• Effectively multi-dimensional decomposition
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Development Strategy: Numerical Algorithms
Schrödinger Equations

Schrödinger Eqs. w/ LANCZOS Algorithm
à C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 

• Normal Eigenvalue Problem (Electronic Structure)
• Hamiltonian is always symmetric
• Original Matrix à T matrix-reduction
• Steps for Iteration: Purely Scalable Algebraic Ops.

Self-consistent Loop for Device Simulations
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Development Strategy: Numerical Algorithms
Poisson Equations

Poisson Eqs. w/ CG Algorithm
à A Problem of Solving Linear Systems

• Conv. Guaranteed: Symmetric & Positive Definite
• Poisson is always S & PD.
• Steps for Iteration: Purely Scalable 

Algebraic Ops.

Self-consistent Loop for Device Simulations



Hoon Ryu / Energy-efficient, scalable computing of extremely large electronic structures with KNL processors 9

Performance Bottleneck?
Matrix-vector Multiplier: Sparse Matrices
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Vector Dot-Product (VVDot) (Sparse) Matrix-vector Multiplier (MVMul)

Main Concerns for Performance
• Collective Communication
à May not be the main bottleneck as we only need to 

collect a single value from a single MPI process 
• Matrix-vector Multiplier  
à Communication happens, but would not be a critical 

problem as it only happens between adjacent ranks
à Cache-miss affects vectorization efficiency
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Single-node Performance: The power of MCDRAM
Performance w/ Intel® KNL Processors

24 cores = (1 MPI proc(s), 16 threads), 27 cores = (2 MPI proc(s), 64 threads)
25 cores = (2 MPI proc(s), 16 threads), 28 cores = (4 MPI proc(s), 64 threads)
26 cores = (2 MPI proc(s), 32 threads)

Description of BMT Target and Test Mode
• 10 CB states in 16x43x43(nm3) [100] Si:P quantum dot
à Material candidates for Si Quantum Info. Processors 

(Nature Nanotech. 9, 430)
à 15.36Mx15.36M Hamiltonian Matrix

• KNL (Xeon Phi 7210); Up to 256 (64x4) cores
• MCDRAM control w/ numactrl; Quad Mode

Results
• With no MCDRAM
à No clear speed-up beyond 64 cores

• With MCDRAM
à Up to ~4x speed-up w.r.t. the case w/ no MCDRAM
à Intra-node scalability up to 256 cores

Points of Questions
• How is the performance compared to the one under       

other computing environments? (GPU, CPU-only etc..)
à In terms of speed and energy consumption

H. Ryu, Intel® HPC Developer Conference (2017)
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Single-node Performance: Speed
Performance w/ Intel® KNL Processors

Description of BMT Target and Test Mode
• 10 CB states in 16x43x43(nm3) [100] Si:P quantum dot
à Material candidates for Si Quantum Info. Processors 

(Nature Nanotech. 9, 430)
à 15.36Mx15.36M Hamiltonian Matrix

• KNL (Xeon Phi 7210); Up to 256 (64x4) cores; Quad Mode
• Specs of Other Platforms
à Xeon(V4): 24 cores of Broadwell (BW) 2.50GHz
à Xeon(V4)+KNC: 24 cores BW + 2 KNC 7120 cards
à Xeon(V4)+P100: 24 cores BW + 2 P100 cards
à KNL(HBM): the one described so far

Results
• KNL slightly beats Xeon(V4)+P100
à Copy-time (CPIN): a critical bottleneck of PCI-E devices 
à P100 shows better kernel speed, but the overall benefit 

reduces due to data-transfer between host and devices
à CPIN would even increase if we consider periodic BCs

• Another critical figure of merit: Energy-efficiency

Xeon(V4) = (2 MPI proc(s), 12 threads)
Xeon(V4) + KNC = (2 MPI proc(s), 12 threads) + 2 KNC 7120 cards 
Xeon(V4) + P100 = (2 MPI proc(s), 12 threads) + 2 P100 cards
KNL (HBM) = (4 MPI proc(s), 64 threads) with HBM

See the Appendix slides for strategies of offload computing

H. Ryu, Intel® HPC Developer Conference (2017)
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Single-node Performance: Energy Consumption
Description of BMT Target and Test Mode
• 10 CB states in 16x43x43(nm3) [100] Si:P quantum dot 
à Hamiltonian DOF: 15.36Mx15.36M

• Description of Device Categories
à Xeon(V4): 24 cores of Broadwell (BW) 2.50GHz
à Xeon(V4)+KNC: 24 cores BW + 2 KNC 7120 cards
à Xeon(V4)+P100: 24 cores BW + 2 P100 cards
à KNL(HBM): the one described so far

Performance w/ Intel® KNL Processors

Power Measurement
• w/ RAPL (Running Ave. Power Limit) API
• Host (CPU+Memory), PCI-E Devices  

KNL consumes 2x less energy than Xeon(V4)+P100Results:

H. Ryu, Intel® HPC 
Developer Conference (2017)
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Multi-node Performance: Scalability
Performance w/ Intel® KNL Processors

Description of BMT Target and Test Mode
• 5 CB states in 27x33x33(nm3) [100] Si:P quantum dot
à Material candidates for Si Quantum Info. Processors 

(Nature Nanotech. 9, 430)
à 14.4Mx14.4M Hamiltonian Matrix

• KNL (Xeon Phi 7250) nodes; Up to 272 (68x4) cores/node
à (4 MPI processes + 68 threads) per node
à Quad / Flat mode, No omni-path (10G network)
à Strong scalability measured up to 3 nodes

Results
• Speed-enhancement with HBM becomes larger as a single        

node takes larger workload
• Inter-node strong scalability is quite nice with no HBM
à 2.36x speed-up with 3x computing expense (no HBM)
à ~78% scalability (2.36/3) is what we usually get from 

multi-core base HPCs (Tachyon-II HPC in KISTI)
à 1.58x speed-up with HBM (prob. size is not large enough)

H. Ryu, Intel® HPC Developer Conference (2017)
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Summary
KISTI Intel® Parallel Computing Center

• Introduction to Code Functionality
• Main Numerical Problems and Performance Bottleneck
• Performance (speed and energy consumption) in a single KNL node  
• Strong scalability in multiple KNL nodes
• (Appendix) Strategies for offload computing (for PCI-E devices)

Thanks for your attention!!
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Asynchronous Offload (for Xeon(V4) + KNC, Xeon(V4) + GPU)
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Appendix: Strategy for offload-computing

The real bottleneck of computing: Overcome with asynchronous offload 
• Vector dot-product is not expensive: All-reduce, but small communication loads
• Vector communication is not a big deal: only communicates between adjacent layers
• Sparse-matrix-vector multiplication is a big deal: Host and PCI-E device shares computing load 

H. Ryu et al., Comp. Phys. Commun. (2016)
(http://dx.doi.org/10.1016/j.cpc.2016.08.015)
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Data-transfer and Kernel Functions for GPU Computing
Data-transfer between host and GPU Devices
• 3x increased bandwidth with pinned memory
• Overlap of computation and data-transfer with 

asynchronous streams

Speed-up of GPU Kernel Function (MVMul)
• Treating several rows at one time with WARPs
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Appendix: Strategy for offload-computing

H. Ryu et al., J. Comp. Elec. (2018)
(http://dx.doi.org/10.1007/s10825-018-1138-4)


