
Optimization 2: Communication
Optimization

Osamu Tatebe
tatebe@cs.tsukuba.ac.jp

Center for Computational Sciences,
University of Tsukuba

1
2018/2/21

Agenda
• Basic communication performance

– Point-to-point communication
– Collective communication

• Profiling
• Communication optimization technique

– Communication reduction
– Communication latency hiding
– Communication blocking
– Load balancing

2
2018/2/21

Basic Performance

• Performance for basic communications
should be understood to optimize
communication
– Understand performance in various

communication patterns
– Decide the block size of communication

blocking
– Improve the performance communication

library compared with the peak network
performance

3
2018/2/21

PC Cluster Platform [P1]
• 4 cluster nodes

– 2.6GHz Dualcore Opteron x 2 sockets (4 cores)
– 4GB memory
– Linux 2.6.18-1.2798.fc6
– OpenMPI 1.1-7.fc6

• Connected by Gigabit Ethernet
– Theoretical peak in TCP is 949 Mbps (= 113.1 MB/sec)

Gigabit Ethernet Switch

Dualcore Opteron x 2
4GB memory

Gigabit
Ethernet

4

Supercomputer [P2]

• Oakforest-PACS 4 nodes
– 1.4GHz Xeon Phi (Knights Landing; KNL) (68

cores)
– 96GB DDR4 + 16GB MCDRAM
– Intel MPI

• Connected by Omni-Path
– Peak bandwidth is 100 Gbps

• No memory location
optimization

2018/2/21
5

Performance of point-to-point
communication

MPI_Send

MPI_Recv

Process 1 Process 2

data

6
2018/2/21

PingPong Benchmark (1)

MPI_Send
MPI_Recv

Process １ Process ２

Data size s [Byte]

MPI_Send

MPI_Recv
MPI_Wtime

MPI_Wtime

Elapsed
time
t [sec]

Network bandwidth)2//(ts [Byte/sec]

7
2018/2/21

PingPong Benchmark (2)
for (s = 1; s <=P MAX_MSGSIZE; s <<= 1) {

t = MPI_Wtime();
for (i = 0; i < ITER; ++i)

if (rank == 0) {
MPI_Send(BUF, s, MPI_BYTE, 1, TAG1, COMM);
MPI_Recv(BUF, s, MPI_BYTE, 1, TAG2, COMM, &status);

} else if (rank == 1) {
MPI_Recv(BUF, s, MPI_BYTE, 0, TAG1, COMM, &status);
MPI_Send(BUF, s, MPI_BYTE, 0, TAG2, COMM);

}
t = (MPI_Wtime() – t) / 2 / ITER;
if (rank == 0)

printf(“%d %g %g¥n”, s, t, s / t); // size, time, bandwidth
}

8
2018/2/21

PingPong

0

20

40

60

80

100

120

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data size [Byte]

[M
B

/
se

c
]

[P１] PingPong Benchmark

Protocol switch between
32 KB and 64 KB

Half of peak
performance at 16 KB

111.9 MB/sec

9
2018/2/21

Protocol of point-to-point
communication

• Eager protocol (1-way protocol)
– for relatively small size of messages
– A sender sends both the message header and the message

body (data, payload) at the same time
– It can reduce the communication latency, but incurs copy

overhead at the receiver
• Rendezvous protocol (3-way protocol)

– for larger size of message
– A sender sends the message header, and waits for the

acknowledgement
– The sender sends the message body
– It can achieve good communication bandwidth by reducing the

copy overhead, but has longer latency than the eager protocol

10
2018/2/21

• MPI selects one of several protocols according to the
message size

• It is visible if we carefully measure the performance with
various message size

• Most MPI allows for users to specify the threshold of the
message size for the protocol switch to optimize the
communication performance

11

Protocol of point-to-point
communication (continued)

2018/2/21

0

20

40

60

80

100

120

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

[M
B

/
se

c
]

Data size [Byte]

[P1] Comparison with theoretical
curve

200 µsec of latency
113.1 MB/s of BW

Theoretical curve ()BsLs +
latency bandwidthL BBLNhalf =

12

[P1] PingPong Benchmark
Summary
• Larger data size gets better performance
• Cf. theoretical peak is 113.1 MB/sec
• More than half → 16 KB or larger
• More than 90% of peak → 512 KB or larger

• Performance follows the curve of 200µsec
latency in long message
– Although latency of 1-byte PingPong is 563 µsec

13
2018/2/21

[P2] PingPong Benchmark
8.7 GB/sec

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

latency 45µsec
Bandwidth 8.7GB/s

Half of peak
performance at 512KB

Protocol switch between
128KB and 256KB

2018/2/21
14

[P2] PingPong Benchmark
Summary
• More than half→512KB or larger

• Performance follows the curve of 45µsec
latency in long message
– Although latency of 1-byte PingPong is 2 µsec

2018/2/21
15

Intel® MPI Benchmark
• Basic MPI Benchmark Kernel
• MPI1

– PingPong
– PingPing
– Sendrecv
– Exchange*
– Bcast
– Allgather
– Allgatherv
– Alltoall*
– Alltoallv*
– Reduce
– Reduce_scatter
– Allreduce*
– Barrier
– Multiple version that executes

above in parallel

• EXT
– Window
– Unidir_Put
– Unidir_Get
– Bidir_Get
– Bidir_Put
– Accumulate

• IO
– S_{Write,Read}_{indv,expl}
– P_{Write,Read}_{indv,expl,sha

red,priv}
– C_{Write,Read}_{indv,expl,sh

ared}

Single
Transfer
Parallel
Transfer

Collective

16
2018/2/21

Exchange Pattern
• Communication pattern to exchange

border elements

*From Intel MPI Benchmarks Users Guide and Methodology Description
17

2018/2/21

[P1] Exchange (4 nodes)
[3 trials]

Exchange (4nodes)

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1000000 10000000

Data size [Byte]

[M
B

/
se

c
]

Local peak at 16 KB

performance drop
at 32 KB

Unstable at 512KB
or larger

18
2018/2/21

[P1] Exchange (4 nodes)
Summary
• Basically larger data size gets better

performance except around 32 KB
• Cf. Theoretical peak is 2*113.1 = 226.2

MB/sec
• More than half → 16KB and 128 KB or

larger
– Less than half at 32 KB and 64 KB

• Unstable at 512 KB or larger due to packet
loss and RTO

19
2018/2/21

[P2] Exchange (4 nodes)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

[M
B/

se
c]

Data size [Byte]

Half of peak
performance at 256KB

2018/2/21
20

[P2] Exchange Summary

• Larger data size gets better performance
• More than half of peak performance when

256KB or larger
• Performance is stable

– Omni-Path does not drop packets

2018/2/21
21

Allreduce
• Do specified operation (sum, max, logical

and/or, …) among arrays of each process,
and store the result in all processes

• Example of MPI_SUM

Array of
process １

Array of
process ２

Array of
process 3

Array of
process 4

＋ ＋ ＋ ＝

∑=
=+++

4

14321 i ixxxxx

All processes have
the result

22
2018/2/21

[P1] Allreduce (4 nodes)
[data size / time]

Allreduce (4nodes)

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data size [Byte]

[M
B

/
se

c
]

Performance
drop at 32 KB

Good performance at 8KB
and 64KB or later

23
2018/2/21

[P1] Allreduce Summary

• Basically larger data size gets better
performance except around 32 KB

• Good performance is achieved at 8 KB
and 64 KB or larger

24
2018/2/21

[P2] Allreduce (4 nodes)
[data size / time]

0

200

400

600

800

1,000

1,200

1,400

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

[M
B/

se
c]

Data size [Byte]

2018/2/21
25

[P２] Allreduce Summary

• Larger data size gets better performance
• Performance is stable

– Omni-Path does not drop packets

2018/2/21
26

Profiling
• Understand the behavior of programs

– Frequently called functions
– Time-consumed functions
– Call tree
– Memory usage of functions, …

• Understand the most time-consumed code
• Understand synchronization and load imbalance in

parallel programs

Profiler is required not to change the behavior of
parallel program so much

27
2018/2/21

Communication profiling by
users

• Users insert an instrumenting code at the point of interest by
themself

• Put “wall clock measuring” (ex. MPI_Wtime, gettimeofday()) before
and after to measure time of a certain block
– for each MPI function
– for some important blocks

• The accuracy of measuring “ticks” depends on the system

• It is easy, but there are more sophisticated tools

double t1, t;

t1 = MPI_Wtime();
MPI_Allgather(....);
t = MPI_Wtime() – t1;

28
2018/2/21

tlog – time log
• Light-weight profiling library

– 16 B of memory space for each event
• 9 kinds of single events and 9 kinds of interval events

– It can be extended since event number field is 8 bit
• Record the elapsed time in seconds from tlog_initialize

– Time difference among processes is measured in tlog_initialize
– Recorded time is “absolute” time in parallel processes relative to

tlog_initialize
• Temporal URL for download

– http://www2.ccs.tsukuba.ac.jp/workshop/HPCseminar/2011/software/tlog-0.9.tar.gz

29
2018/2/21

tlog – major API
void tlog_initialize(void)

initializes the tlog environment. It should be called after
MPI_Init

void tlog_log(int event)
records a log of the specified event

void tlog_finalize(void)
outputs the logs to trace.log. It should be called before
MPI_Finalize()

tlog_initialize();
…
tlog_log(TLOG_EVENT_1_IN);
/* EVENT 1 */
tlog_log(TLOG_EVENT_1_OUT);
…
tlog_finalize(); 30

2018/2/21

Example - cpi.c

• Test program that computes π
MPI_Init(&argc, &argv);
tlog_initialize();
tlog_log(TLOG_EVENT_1_IN);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_1_OUT);
/* compute mypi (partial sum) */
tlog_log(TLOG_EVENT_2_IN);
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_2_OUT);
if (rank == 0) /* display the result */
tlog_log(TLOG_EVENT_1_IN);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_1_OUT);
tlog_finalize();
MPI_Finalize(); 31

2018/2/21

Example – compilation of cpi
• How to link tlog library

• How to install tlog library and tlogview

% mpicc -O -o cpi cpi.c -ltlog

% ./configure
% make
% sudo make install

Example to install in
/usr/local

32
2018/2/21

Example – output of cpi
$ mpiexec -hostfile hosts -n 4 cpi
adjust i=1,t1=0.011781,t2=0.011886,t0=0.011769,diff=6.7e-05
adjust i=2,t1=0.012911,t2=0.013015,t0=0.012877,diff=8.8e-05
adjust i=3,t1=0.014441,t2=0.014548,t0=0.014392,diff=0.000115
adjust i=1,t1=0.01623,t2=0.016335,t0=0.016285,diff=-2e-06
adjust i=2,t1=0.017314,t2=0.017418,t0=0.017367,diff=-2e-06
adjust i=3,t1=0.018401,t2=0.018504,t0=0.018454,diff=2.5e-06
tlog on ...
Process 0 on exp0.omni.hpcc.jp
pi is approximately 3.1416009869231249, Error is 0.0000083333333318
wall clock time = 0.000213
tlog finalizing ...
Process 3 on exp3.omni.hpcc.jp
Process 1 on exp1.omni.hpcc.jp
Process 2 on exp2.omni.hpcc.jp
tlog dump done ...

measurement of
time difference
among nodes
(output in debug
mode)

output in debug
mode

output in debug
mode

Output of
program

33
2018/2/21

Profiling result of cpi (1)

• tlogview – visualization tool for tlog output

• Profiling example when using 4 processes
% tlogview trace.log

Elapsed time from tlog_initialize in seconds
(adjusted using the time difference among nodes)

MPI_Bcast

MPI_Reduce

34

Profiling result of cpi (2)
• Profile example when using 16 processes

MPI_Bcast MPI_Reduce
35

2018/2/21

Communication optimization
• Communication reduction*
• Load balancing*
• Communication blocking

– Basically larger data size is better
performance

• Communication latency hiding for short
message communication
– Overlapping computation and communication
– Pipeline execution

36
2018/2/21

Communication blocking

• Data size is a major factor for
communication performance

• Communication blocking enlarges the data
size by aggregating the communication
data
– Block distribution of data
– Aggregation of multiple iterations (temporal

blocking)

37
2018/2/21

Example of communication blocking
– Jacobi method

• Solving a sparse matrix that arises when discretizing 2D
Laplace equation in 5 point stencil

jacobi() {
while (!converge) {
for(i = 1; i < N - 1; ++i)
for(j = 1; j < N - 1; ++j)
b[i][j] = .25 *

(a[i - 1][j] + a[i][j - 1]
+ a[i][j + 1] + a[i + 1][j]);

/* convergence test */
/* copy b to a */

}
}

Data dependency

*In fact, not to use Jacobi method but RB-SOR etc.
38

2018/2/21

Block distribution of data
1D block distribution 2D block distribution

• Block distribution of data enlarges the
communication data size
– In case of 1D
– In case of 2D pn /

n
39

Communication of shadow
region (boundary region)

• To update the
boundary , data of
is required

• To update the
boundary , data of
is required

1. Exchange and
2. Update all data in each

process

40
2018/2/21

Internal region

Overlapping computation and
communication
• To update internal

region, data of
is not required

1.Send data of
2.Update internal

region
3.Receive data of
4.Update boundary

region
41

2018/2/21

Overlapping computation and
communication (2)

• MPI_Isend(, …, &req[0])
• MPI_Irecv(, …, &req[1])
• Calculation in internal region (A)
• MPI_Waitall(2, req, status)
• Calculation on boundary region (B)

42
2018/2/21

(A)

com.

(B)

com (A) + (B)

Hide communication latency by
overlapping computation of internal
region and communication

Note for overlapping
computation and communication
• This may cause the performance

degradation
– Computation of boundary region makes cache

miss rate higher
– Com + all should be less than inner + bound.

43
2018/2/21

Inner region b.r.

All regioncom

com

Longer computation

Communication aggregation of multiple
iterations (temporal blocking) (1)
• Aggregation of 2 iterations of Jacobi

method
• The first iteration

requires
• Next iteration

requires
• Transferring and

enables calcula-
tion of two iterations
– In 1D
– In 2D pn /2

n2
44

Communication aggregation of
multiple iterations (2)

• Transfer and
• [First iteration]

Compute red part
including edge part

• [Second iteration]
Compute without
communication

45
2018/2/21

Summary
• Basic communication performance

– Point-to-point communication
– Collective communication

• profiling
• Communication optimization

– Communication reduction
– Communication latency hiding
– Communication blocking
– Load balancing

46
2018/2/21

	Optimization 2: Communication Optimization
	Agenda
	Basic Performance
	PC Cluster Platform [P1]
	Supercomputer [P2]
	Performance of point-to-point communication
	PingPong Benchmark (1)
	PingPong Benchmark (2)
	[P１] PingPong Benchmark
	Protocol of point-to-point communication
	Protocol of point-to-point communication (continued)
	[P1] Comparison with theoretical curve
	[P1] PingPong Benchmark Summary
	[P2] PingPong Benchmark
	[P2] PingPong Benchmark Summary
	Intel® MPI Benchmark
	Exchange Pattern
	[P1] Exchange (4 nodes)�[3 trials]
	[P1] Exchange (4 nodes) Summary
	[P2] Exchange (4 nodes)
	[P2] Exchange Summary
	Allreduce
	[P1] Allreduce (4 nodes)�[data size / time]
	[P1] Allreduce Summary
	[P2] Allreduce (4 nodes)�[data size / time]
	[P２] Allreduce Summary
	Profiling
	Communication profiling by users
	tlog – time log
	tlog – major API
	Example - cpi.c
	Example – compilation of cpi
	Example – output of cpi
	Profiling result of cpi (1)
	Profiling result of cpi (2)
	Communication optimization
	Communication blocking
	Example of communication blocking – Jacobi method
	Block distribution of data
	Communication of shadow region (boundary region)
	Overlapping computation and communication
	Overlapping computation and communication (2)
	Note for overlapping computation and communication
	Communication aggregation of multiple iterations (temporal blocking) (1)
	Communication aggregation of multiple iterations (2)
	Summary

