
Japan-Korea HPC Winter School
Optimization 1:

 Computation Optimization

Daisuke Takahashi
daisuke@cs.tsukuba.ac.jp

Center for Computational Sciences
University of Tsukuba

2018/2/21 Japan-Korea HPC Winter School 2018

mailto:daisuke@cs.tsukuba.ac.jp

2018/2/21 Japan-Korea HPC Winter School 2018 2

Contents of Lecture

• What is performance tuning?
• Program optimization methods

– Register blocking
– Cache blocking
– Use of streaming SIMD instructions

• Performance evaluation
– Examples of benchmark programs

Performance Tuning
• Everyone recognizes the importance of

performance in application programs.
• Performance tuning, however, tends to get put off

during the software development cycle, and it is
never considered in some cases.

• Factors that lead to this type of situation include
the following:
– Recognition that applications can be optimized with only

code generation tools and a compiler
– Unrealistic expectation that the mere use of the latest

processor will result in optimal performance while the
application is running

2018/2/21 Japan-Korea HPC Winter School 2018

3

Significance of Performance Tuning
• In the case of calculations whose runtime lasts for

several months or longer, optimization may result
in a reduction of runtime on the order of a month.

• As in the case of numerical libraries, if a program
is used by many people, tuning will have sufficient
value.

• If tuning results in a 30% improvement in
performance, for example, the net result is the
same as using a machine having 30% higher
performance.

2018/2/21 Japan-Korea HPC Winter School 2018

4

Optimization

• Optimization targets many things.
– Reduction of the amount of code
– Reduction of the amount of data
– Reduction of the amount of runtime

• Here, the act of overwriting a program to
reduce the runtime is called “optimization”.

2018/2/21 Japan-Korea HPC Winter School 2018

5

Benefits of Optimization
• Optimization reduces the runtime and has the following

benefits:
– More effective use of the computer
– Lower energy costs
– More calculations can be performed within the same time

• In consideration of the time required to write and run a
program, the longer the runtime of a program, the greater
the benefit from optimization.
– If optimization results in a 30% improvement in performance, for

example, the net result is the same as using a machine having
30% higher performance.

• Optimizing a program that will only be run once and that
has a short runtime would be rather meaningless.

2018/2/21 Japan-Korea HPC Winter School 2018

6

Prior to Optimizing
• Is there a need to optimize?
• Is the algorithm in use optimal?
• There is no point in optimizing an inefficient

algorithm.
– A bubble sort program, even if optimized, will not be as

fast as a quick sort program.
• The optimal algorithm depends largely on the

following:
– Properties of the problem to be solved
– Architecture, amount of memory, etc., of the computer

to be used
2018/2/21 Japan-Korea HPC Winter School 2018

7

Optimization Policy
• If available, use a vendor-supplied high-speed library as

much as possible.
– BLAS, LAPACK, etc.

• The optimization capability of recent compilers is extremely
high.

• The optimization that can be performed by the compiler
must not be performed on the user side.
– Requires extra effort
– Results in a program that is complicated and may contain bugs

• Overestimates the optimizing capability of compilers
– Humans are dedicated to improving algorithms.

– Unless otherwise unavoidable, do not use an assembler.

2018/2/21 Japan-Korea HPC Winter School 2018

8

First Step in Optimizing
• First, determine the computing performance of one’s own

program.
• FLOPS (Floating Operations Per Second) is used as a

measure of computing performance.
– Units indicating the number for floating-point operations that can be

performed per second
– MFLOPS (10^6), GFLOPS (10^9), TFLOPS (10^12), PFLOPS

(10^15)
• The FLOPS value is computed from the total (or partial)

program runtime and the number of operations and is
compared to the theoretical peak performance of the
processor.
– In the case of the latest Intel Core i7, the FLOPS value is 16 times

the clock.

2018/2/21 Japan-Korea HPC Winter School 2018

9

Time Measurement
• Targets for time measurement are as follows:

– Elapsed time
– CPU time

• If the program to be measured has a short
runtime, the timer accuracy may be insufficient.
– Execute an external loop several times and measure.

• In this case, note that the loop may not operate
properly as a result of the compiler optimization.
– Insert a dummy routine or make the measurement

target a subroutine and compile separately.

2018/2/21 Japan-Korea HPC Winter School 2018

10

Hot Spots
• The part of a program that accounts for the

majority of the computation time is called a “hot
spot”.

• First, find out where hot spots exist.
• A profiler is a convenient tool.

– With Linux, the gprof command can be used.
• As with “gcc –pg foo.c”, by attaching the “-pg”

compiler option, special code that writes the
profile information used by gprof will be generated.
– By running a.out, and then specifying gprof a.out, hot

spots can be identified.
2018/2/21 Japan-Korea HPC Winter School 2018

11

gprof Output Example
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 48.90 2.90 2.90 2 1.45 2.83 zfft1d0_
 32.38 4.82 1.92 49152 0.00 0.00 fft8b_
 14.17 5.66 0.84 16384 0.00 0.00 fft8a_
 4.55 5.93 0.27 1 0.27 5.93 MAIN__
 0.00 5.93 0.00 16384 0.00 0.00 fft235_
 0.00 5.93 0.00 4 0.00 0.00 factor_
 0.00 5.93 0.00 3 0.00 1.89 zfft1d_
 0.00 5.93 0.00 2 0.00 0.00 settbl_
 0.00 5.93 0.00 1 0.00 0.00 settbls_

2018/2/21 Japan-Korea HPC Winter School 2018

12

gprof Output Example
• As can be seen from the gprof results:

– There are three hot spots:
• zfft1d0_
• fft8b_
• fft8a_

• These 3 hot spots consume more than 95% of
the total runtime.
– Optimization should be performed focusing on these

hot spots.
– When writing the program, pay attention so that the

hot spots are concentrated.
– If there are many hotspots, much effort will be

required to improve the code.
• Sometimes it is better to rewrite the code from scratch.

2018/2/21 Japan-Korea HPC Winter School 2018

13

Compile Options
• The performance will vary significantly according

to the way in which compile options are specified.
• Use the compiler manual as a reference and try

various compile options.
– “-fast”, “-O3”, “-O2”, etc.
– With an Intel Compiler, “-xAVX2” (for latest Core i7)

• Setting a high level of optimization does not
necessarily produce faster code.
– The compiler may optimize excessively.
– Note that the calculated results may be inconsistent in

some cases.
2018/2/21 Japan-Korea HPC Winter School 2018

14

Compiler Directives
• Compiler directives communicate the intent of the

programmer to the compiler and support optimization.
– Different from compile options, compiler directives allow

optimization to be controlled for individual loops.

• Examples of directives
– When performing vectorization, inform the compiler that there is no

loop dependency.
– Suppress vectorization.

• Often coded in C language as “#pragma”, in Fortran as
“!dir$” or “cpgi$l”, etc.
(Note that the coding may differ according to the
compiler.)

2018/2/21 Japan-Korea HPC Winter School 2018

15

Considerations When Writing
Programs

• Preserve C or Fortran syntax precisely.
– With some compilers, only warnings may be output, but

these often lead to bugs.
• Compiler-dependent extensions, with the exception

of unavoidable circumstances (in the case of a
directive, for example), should not be used.
– Automatic array assignment in GFortran

• Case such as real*8 a(n), where a(n) is not a dummy argument
and n is a variable

– Program portability deteriorates.
– Cause of unexpected errors

• To the extent possible, avoid using functions and
features that are (thought to be) seldom used.
– Compiler bugs may not have been removed.

2018/2/21 Japan-Korea HPC Winter School 2018

16

Source: Wikipedia
2018/2/21 Japan-Korea HPC Winter School 2018

17

Memory Hierarchy (1/3)

2018/2/21 Japan-Korea HPC Winter School 2018

18

Memory Hierarchy (2/3)

• The memory hierarchy is designed based on the
assumed locality of patterns of access to the
memory area.

• Different types of locality:
– Temporal locality

• Property whereby the accessing of a certain address
reoccurs within a relatively short time interval

– Spatial locality
• Property whereby data accessed within a certain time interval

is distributed among relatively nearby addresses

2018/2/21 Japan-Korea HPC Winter School 2018

19

Memory Hierarchy (3/3)

• These tendencies often apply to business
computations and other non-numerical
computations but are not generally applicable to
numerical computation programs.

• Especially in large-scale scientific computations,
there is often no temporal locality for data
references.

• This is a major reason why vector-type
supercomputers are advantageous for scientific
computations.

2018/2/21 Japan-Korea HPC Winter School 2018

20

Performance of daxpy
(Intel Xeon E5-2670 v3 2.3GHz
30MB L3 cache, Intel MKL 11.3)

0

50

100

150

200

250

300

350

400

1 32 1024 32768 1048576 33554432

vector size n

G
F
lo

p
s

2018/2/21 Japan-Korea HPC Winter School 2018

21

Performances of dgemv and dgemm
(Intel Xeon E5-2670 v3 2.3GHz 30MB

L3 cache, Intel MKL 11.3)

0

50

100

150

200

250

300

350

400

200 1200 2200 3200

matrix order

G
F
lo

p
s

dgemm
dgemv

2018/2/21 Japan-Korea HPC Winter School 2018

22

Arithmetic Operations in BLAS

BLAS

 Loads
 +

 Stores

Operati
ons

Ratio

Level 1 DAXPY

Level 2 DGEMV

Level 3 DGEMM

xyy α+=

Axyy αβ +=

ABCC αβ +=

mnmn 2++

kmn ==

n3

knmkmn ++2

n2

mn2

mnk2

2:3

2:1

n:2

2018/2/21 Japan-Korea HPC Winter School 2018

23

Concept of Byte/Flop
• The amount of memory access needed when performing a

single floating-point operation is defined in byte/flop.

• With daxpy, double-precision real-number data must be

loaded/stored three times (24 bytes total) in order to
perform two double-precision floating-point operations per
single iteration.
– In this case, 24Byte/2Flop = 12Byte/Flop.

• The smaller the Byte/Flop value, the better.

void daxpy(int n, double a, double *x, double *y)
{
 int i;
 for (i = 0; i < n; i++)
 y[i] += a * x[i];
}

2018/2/21 Japan-Korea HPC Winter School 2018

24

Theoretical Performance in daxpy
• Intel Core i7 6700K (Skylake 4.0GHz, 4 cores,

DDR4-2133 x 2)
– Theoretical peak performance is

64GFlops × 4 cores = 256GFlops
– Maximum memory bandwidth is 34.1GB/s
– Byte/Flop value is 34.1/256 ≈ 0.133

• In the case where the working set exceeds the
cache capacity, the memory bandwidth (34.1GB/s)
is rate-limiting and so the limit is
(34.1GB/s)/(12Byte/Flop) ≈ 2.84GFlops

• Only approximately 1.11% of theoretical peak
performance!

2018/2/21 Japan-Korea HPC Winter School 2018

25

Loop Unrolling (1/2)
• Loop unrolling expands a loop in order to do the

following:
– Reduce loop overhead
– Perform register blocking

• If expanded too much, register shortages or
instruction cache misses may occur, and so care
is needed.

double A[N], B[N], C;
for (i = 0; i < N; i++) {
 A[i] += B[i] * C;
}

double A[N], B[N], C;
for (i = 0; i < N; i += 4) {
 A[i] += B[i] * C;
 A[i+1] += B[i+1] * C;
 A[i+2] += B[i+2] * C;
 A[i+3] += B[i+3] * C;
}

2018/2/21 Japan-Korea HPC Winter School 2018

26

Loop Unrolling (2/2)
double A[N][N], B[N][N],
 C[N][N], s;
for (j = 0; j < N; j++) {
 for (i = 0; i < N; i++) {
 s = 0.0;
 for (k = 0; k < N; k++) {
 s += A[i][k] * B[j][k];
 }
 C[j][i] = s;
 }
}

double A[N][N], B[N][N],
 C[N][N], s0, s1;

for (j = 0; j < N; j += 2)
 for (i = 0; i < N; i++) {
 s0 = 0.0; s1 = 0.0;
 for (k = 0; k < N; k++) {
 s0 += A[i][k] * B[j][k];
 s1 += A[i][k] * B[j+1][k];
 }
 C[j][i] = s0;
 C[j+1][i] = s1;
 }

Matrix multiplication Optimized matrix multiplication
2018/2/21 Japan-Korea HPC Winter School 2018

27

Loop Interchange
• Loop interchange is a technique mainly for reducing the

adverse effects of large-stride memory accesses.
• In some cases, the compiler judges the necessity and

performs loop interchanges.
double A[N][N], B[N][N], C;
for (j = 0; j < N; j++) {
 for (k = 0; k < N; k++) {
 A[k][j] += B[k][j] * C;
 }
}

Before loop interchange

double A[N][N], B[N][N], C;
for (k = 0; k < N; k++) {
 for (j = 0; j < N; j++) {
 A[k][j] += B[k][j] * C;
 }
}

After loop interchange
2018/2/21 Japan-Korea HPC Winter School 2018

28

Padding
• Effective in cases where multiple arrays have been mapped

to the same cache location and thrashing occurs
– Especially in the case of an array having a size that is a power of two

• It is recommended to change the defined sizes of two-
dimensional arrays.

• In some instances, this can be handled by specifying the
compile options.
 double A[N][N], B[N][N];

for (k = 0; k< N; k++) {
 for (j = 0; j < N; j++) {
 A[j][k] = B[k][j];
 }
}

Before padding

double A[N][N+1], B[N][N+1];
for (k = 0; k < N; k++) {
 for (j = 0; j < N; j++) {
 A[j][k] = B[k][j];
 }
}

After padding
2018/2/21 Japan-Korea HPC Winter School 2018

29

Blocking (1/2)
• Effective method for optimizing memory accesses
• Cache misses are reduced as much as possible.

double A[N][N], B[N][N], C;
for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 A[i][j] += B[j][i] * C;
 }
}

double A[N][N], B[N][N], C;
for (i = 0; i < N; i += 4) {
 for (j = 0; j < N; j += 4) {
 for (ii = i; ii < i + 4; ii++) {
 for (jj = j; jj < j + 4; jj++) {
 A[ii][jj] += B[jj][ii] * C;
 }
 }
 }
}

After blocking Before blocking
2018/2/21 Japan-Korea HPC Winter School 2018

30

Blocking (2/2)

Memory access pattern
without blocking

Memory access pattern
with blocking

2018/2/21 Japan-Korea HPC Winter School 2018

31

Use of Streaming SIMD Instructions
• To process floating-point operations at faster

speeds, recent processors are often equipped
with what is called streaming SIMD instructions.
– Intel’s SSE/SSE2/SSE3/SSE4/AVX/AVX2 instruction

sets
– AMD Athlon’s 3DNow! instruction set
– Motorola PowerPC’s AltiVec instruction set

• With Intel’s recent Skylake, the use of AVX2
instructions enables the floating-point operation
performance to be made 16 times as large.

2018/2/21 Japan-Korea HPC Winter School 2018

32

How to Use the SIMD Instruction Set
• The SIMD instruction set may be used in the

following ways.
 (1) Vectorization by compiler
 (2) Using SIMD intrinsic functions
 (3) Using an inline assembler
 (4) Directly writing a “.s” file with an assembler
• In order from (1) to (4), the coding increases in

complexity, but there are advantages from the
perspective of performance.

2018/2/21 Japan-Korea HPC Winter School 2018

33

Example of calculating product-sum of
double-precision complex numbers

(a + b * c) with an SSE3 intrinsic function
#include <pmmintrin.h> /* Header file for SSE3 instruction */

static __inline __m128d ZMULADD(__m128d a, __m128d b, __m128d c)
{
 __m128d br, bi; /* 128bit data type */

 br = _mm_movedup_pd(b); /* br = [b.r b.r] real part */
 br = _mm_mul_pd(br, c); /* br = [b.r*c.r b.r*c.i] */
 a = _mm_add_pd(a, br); /* a = [a.r+b.r*c.r a.i+b.r*c.i] */
 bi = _mm_unpackhi_pd(b, b); /* bi = [b.i b.i] imaginary part */
 c = _mm_shuffle_pd(c, c, 1); /* c = [c.i c.r] replace real part and

 imaginary part */
 bi = _mm_mul_pd(bi, c); /* bi = [-b.i*c.i b.i*c.r] */

 return _mm_addsub_pd(a, bi); /* [a.r+b.r*c.r-b.i*c.i a.i+b.r*c.i+b.i*c.r] */
}

2018/2/21 Japan-Korea HPC Winter School 2018

34

ZAXPY written in C language
typedef struct { double r, i; } doublecomplex;

void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y)
{
 int i;

 if (a.r == 0.0 && a.i == 0.0) return;

#pragma unroll(8)
#pragma vector aligned
 for (i = 0; i < n; i++) {
 y[i].r += a.r * x[i].r – a.i * x[i].i,
 y[i].i += a.r * x[i].i + a.i * x[i].r;
}

2018/2/21 Japan-Korea HPC Winter School 2018

35

ZAXPY written in SSE3 Intrinsic
Function

#include <pmmintrin.h>

typedef struct { double r, i; } doublecomplex;
__m128d ZMULADD(__m128d a, __m128d b, __m128d c);

void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y)
{
 int i;
 __m128d a0;

 if (a.r == 0.0 && a.i == 0.0) return;
 a0 = _mm_loadu_pd(&a);
#pragma unroll(8)
 for (i = 0; i < n; i++)
 _mm_store_pd(&y[i], ZMULADD(_mm_load_pd(&y[i]), a0, _mm_load_pd(&x[i])));
}

2018/2/21 Japan-Korea HPC Winter School 2018

36

2018/2/21 Japan-Korea HPC Winter School 2018

37

Objective of Performance
Evaluation (1/3)

• Upon actually using a computer system, have you ever had
the following type of experience?
– “I thought this would be a high-performance system, but when I tried

using it, the actual performance was not as high as I had expected."

• There are two main reasons for this.
– Although touted as “high performance,” the computer system was well

suited for a certain type of calculations that differed from the
calculations that the user attempted to execute.

– Actually, the computer system concealed its high performance, and
the problem lies with the user’s method of usage, which did not elicit
high performance.

2018/2/21 Japan-Korea HPC Winter School 2018

38

Objective of Performance
Evaluation (2/3)

• There is only one type of computer throughout the world,
and unless technical advances are realized in the future,
there will not be much need for “performance evaluations”.
– However, the reality is that there is a proliferation of many different

types of processors and computer systems throughout the world.
• The user must determine which computer system will be

able to calculate efficiently the types of problems that he or
she desires to solve.

• Also, when improving hardware and software to enhance
computer performance, in order to “know thyself”, the
developers of the computer system must perform a
“performance evaluation” and use the results to improve the
performance.

2018/2/21 Japan-Korea HPC Winter School 2018

39

Objective of Performance
Evaluation (3/3)

• By performing a performance evaluation:
– A computer system’s level of performance and the type of

problems for which it is best suited for solving can be
ascertained.

– Also, the time required for calculations of extra-large
problems that are extremely time-consuming can be
ascertained in advance.

• In addition, the decision to perform a calculation
with a high cost-performance can be made by the
user in consideration of both the cost of using the
computer system and its performance.

2018/2/21 Japan-Korea HPC Winter School 2018

40

Indicator of Performance Evaluation
• MIPS (Million Instructions Per Second)

– Expresses the number of millions of instructions that can be
executed per second by the CPU

– MIPS is ultimately a measure of the number of instructions executed
and is not suitable for comparisons of performance among
computers having different architectures.

• FLOPS (Floating Operations Per Second)
– Expresses the number of floating-point operations that can be

executed per second
– MFLOPS, GFLOPS, TFLOPS

• SPEC (The Standard Performance Evaluation Corporation)
– SPEC benchmark values include SPECint, which indicates the

integer processing performance, and SPECfp, which indicates the
floating-point processing performance.

2018/2/21 Japan-Korea HPC Winter School 2018

41

Examples of Benchmark Programs
• SPEC
• LINPACK
• NAS Parallel Benchmarks (NPB)
• HPC Challenge (HPCC) Benchmark

2018/2/21 Japan-Korea HPC Winter School 2018

42

Overview of Each Benchmark (1/4)
• SPEC (Standard Performance Evaluation

Corporation)
– A non-profit organization funded by major vendors
– Measurement results published at http://www.spec.org

• SPEC CPU2006: Comprehensive performance
evaluation of CPU, memory, and compiler
– CINT2006 (SPECint): Evaluates integer processing

performance
– CFP2006 (SPECfp): Evaluations floating-point

processing performance
• Additionally includes SPEC MPI2007, SPEC

OMP2001, etc.

2018/2/21 Japan-Korea HPC Winter School 2018

43

Overview of Each Benchmark (2/4)
• LINPACK

– Developed by Jack Dongarra of the University of
Tennessee.

– Benchmark test for evaluating floating-point
processing performance

– Uses Gaussian elimination method to estimate
the time required for solving simultaneous linear
equations

– Also used for the “TOP500 Supercomputer”
benchmark

2018/2/21 Japan-Korea HPC Winter School 2018

44

Overview of Each Benchmark (3/4)
• NAS Parallel Benchmarks

– The NAS Parallel Benchmarks (NPB) are a
small set of programs designed to help evaluate
the performance of parallel supercomputers

– The original eight benchmarks specified in NPB
1 mimic the computation and data movement in
CFD applications.

2018/2/21 Japan-Korea HPC Winter School 2018

45

NAS Parallel Benchmarks
• Five kernels

– IS: Integer Sort, random memory access
– EP: Embarrassingly Parallel
– CG: Conjugate Gradient, irregular memory access and

communication
– MG: Multi-Grid on a sequence of meshes, long- and short-distance

communication, memory intensive
– FT: discrete 3D fast Fourier Transform, all-to-all communication

• Three pseudo applications
– BT: Block Tri-diagonal solver
– SP: Scalar Penta-diagonal solver
– LU: Lower-Upper Gauss-Seidel solver

2018/2/21 Japan-Korea HPC Winter School 2018

46

Overview of Each Benchmark (4/4)
• HPC Challenge (HPCC) Benchmark Suite

– HPC Challenge (HPCC) is a suite of tests that
examine the performance of HPC architectures
using kernels.

– The suite provides benchmarks that bound the
performance of many real applications as a
function of memory access characteristics, e.g.,

• Spatial locality
• Temporal locality

2018/2/21 Japan-Korea HPC Winter School 2018

47

HPC Challenge (HPCC) Benchmark
• The HPC Challenge benchmark consists at

this time of 7 performance tests:
– HPL (High Performance Linpack)
– DGEMM (matrix-matrix multiplication)
– STREAM (sustainable memory bandwidth)
– PTRANS (A=A+B^T, parallel matrix transpose)
– RandomAccess (integer updates to random

 memory locations)
– FFT (complex 1-D discrete Fourier transform)
– b_eff (MPI latency/bandwidth test)

2018/2/21 Japan-Korea HPC Winter School 2018

48

Summary
• To reduce execution time, optimization is

important.
– However, a determination must be made as to

whether optimization is really necessary.
• The ability to perform optimization without

the memory bandwidth becoming rate-limited
is important for future processors.

• Performance evaluations are effective for
ascertaining the performance of a computer
prior to usage.

	Japan-Korea HPC Winter School �Optimization 1:� Computation Optimization
	Contents of Lecture
	Performance Tuning
	Significance of Performance Tuning
	Optimization
	Benefits of Optimization
	Prior to Optimizing
	Optimization Policy
	First Step in Optimizing
	Time Measurement
	Hot Spots
	gprof Output Example
	gprof Output Example
	Compile Options
	Compiler Directives
	Considerations When Writing Programs
	スライド番号 17
	Memory Hierarchy (1/3)
	Memory Hierarchy (2/3)
	Memory Hierarchy (3/3)
	Performance of daxpy�(Intel Xeon E5-2670 v3 2.3GHz 30MB L3 cache, Intel MKL 11.3)
	Performances of dgemv and dgemm (Intel Xeon E5-2670 v3 2.3GHz 30MB L3 cache, Intel MKL 11.3)
	Arithmetic Operations in BLAS
	Concept of Byte/Flop
	Theoretical Performance in daxpy
	Loop Unrolling (1/2)
	Loop Unrolling (2/2)
	Loop Interchange
	Padding
	Blocking (1/2)
	Blocking (2/2)
	Use of Streaming SIMD Instructions
	How to Use the SIMD Instruction Set
	Example of calculating product-sum of double-precision complex numbers�(a + b * c) with an SSE3 intrinsic function
	ZAXPY written in C language
	ZAXPY written in SSE3 Intrinsic Function
	Objective of Performance Evaluation (1/3)
	Objective of Performance Evaluation (2/3)
	Objective of Performance Evaluation (3/3)
	Indicator of Performance Evaluation
	Examples of Benchmark Programs
	Overview of Each Benchmark (1/4)
	Overview of Each Benchmark (2/4)
	Overview of Each Benchmark (3/4)
	NAS Parallel Benchmarks
	Overview of Each Benchmark (4/4)
	HPC Challenge (HPCC) Benchmark
	Summary

