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Performance Tuning 
• Everyone recognizes the importance of 

performance in application programs. 
• Performance tuning, however, tends to get put off 

during the software development cycle, and it is 
never considered in some cases. 

• Factors that lead to this type of situation include 
the following: 
– Recognition that applications can be optimized with only 

code generation tools and a compiler 
– Unrealistic expectation that the mere use of the latest 

processor will result in optimal performance while the 
application is running 
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Significance of Performance Tuning 
• In the case of calculations whose runtime lasts for 

several months or longer, optimization may result 
in a reduction of runtime on the order of a month. 

• As in the case of numerical libraries, if a program 
is used by many people, tuning will have sufficient 
value. 

• If tuning results in a 30% improvement in 
performance, for example, the net result is the 
same as using a machine having 30% higher 
performance. 
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Optimization 

• Optimization targets many things. 
– Reduction of the amount of code 
– Reduction of the amount of data 
– Reduction of the amount of runtime 

• Here, the act of overwriting a program to 
reduce the runtime is called “optimization”. 
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Benefits of Optimization 
• Optimization reduces the runtime and has the following 

benefits: 
– More effective use of the computer 
– Lower energy costs 
– More calculations can be performed within the same time 

• In consideration of the time required to write and run a 
program, the longer the runtime of a program, the greater 
the benefit from optimization. 
– If optimization results in a 30% improvement in performance, for 

example, the net result is the same as using a machine having 
30% higher performance. 

• Optimizing a program that will only be run once and that 
has a short runtime would be rather meaningless. 
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Prior to Optimizing 
• Is there a need to optimize? 
• Is the algorithm in use optimal? 
• There is no point in optimizing an inefficient 

algorithm. 
– A bubble sort program, even if optimized, will not be as 

fast as a quick sort program. 
• The optimal algorithm depends largely on the 

following: 
– Properties of the problem to be solved 
– Architecture, amount of memory, etc., of the computer 

to be used 
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Optimization Policy 
• If available, use a vendor-supplied high-speed library as 

much as possible. 
– BLAS, LAPACK, etc. 

• The optimization capability of recent compilers is extremely 
high. 

• The optimization that can be performed by the compiler 
must not be performed on the user side. 
– Requires extra effort 
– Results in a program that is complicated and may contain bugs  

• Overestimates the optimizing capability of compilers 
– Humans are dedicated to improving algorithms. 

– Unless otherwise unavoidable, do not use an assembler. 
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First Step in Optimizing 
• First, determine the computing performance of one’s own 

program. 
• FLOPS (Floating Operations Per Second) is used as a 

measure of computing performance. 
– Units indicating the number for floating-point operations that can be 

performed per second 
– MFLOPS (10^6), GFLOPS (10^9), TFLOPS (10^12), PFLOPS 

(10^15) 
• The FLOPS value is computed from the total (or partial) 

program runtime and the number of operations and is 
compared to the theoretical peak performance of the 
processor. 
– In the case of the latest Intel Core i7, the FLOPS value is 16 times 

the clock. 
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Time Measurement 
• Targets for time measurement are as follows: 

– Elapsed time 
– CPU time 

• If the program to be measured has a short 
runtime, the timer accuracy may be insufficient. 
– Execute an external loop several times and measure. 

• In this case, note that the loop may not operate 
properly as a result of the compiler optimization. 
– Insert a dummy routine or make the measurement 

target a subroutine and compile separately. 

2018/2/21 Japan-Korea HPC Winter School 2018 
 

10 



Hot Spots 
• The part of a program that accounts for the 

majority of the computation time is called a “hot 
spot”. 

• First, find out where hot spots exist. 
• A profiler is a convenient tool. 

– With Linux, the gprof command can be used.  
• As with “gcc –pg foo.c”, by attaching the “-pg” 

compiler option, special code that writes the 
profile information used by gprof will be generated. 
– By running a.out, and then specifying gprof a.out, hot 

spots can be identified. 
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gprof Output Example 
Flat profile: 
 
Each sample counts as 0.01 seconds. 
  %    cumulative   self                     self     total            
 time   seconds   seconds   calls   s/call   s/call   name     
 48.90      2.90      2.90            2     1.45     2.83   zfft1d0_ 
 32.38      4.82      1.92    49152     0.00     0.00   fft8b_ 
 14.17      5.66      0.84    16384     0.00     0.00   fft8a_ 
   4.55      5.93      0.27            1     0.27     5.93   MAIN__ 
   0.00      5.93      0.00    16384     0.00     0.00   fft235_ 
   0.00      5.93      0.00            4     0.00     0.00   factor_ 
   0.00      5.93      0.00            3     0.00     1.89   zfft1d_ 
   0.00      5.93      0.00            2     0.00     0.00   settbl_ 
   0.00      5.93      0.00            1     0.00     0.00   settbls_ 
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gprof Output Example 
• As can be seen from the gprof results: 

– There are three hot spots: 
• zfft1d0_ 
• fft8b_ 
• fft8a_ 

• These 3 hot spots consume more than 95% of 
the total runtime. 
– Optimization should be performed focusing on these 

hot spots. 
– When writing the program, pay attention so that the 

hot spots are concentrated. 
– If there are many hotspots, much effort will be 

required to improve the code. 
• Sometimes it is better to rewrite the code from scratch. 

 
2018/2/21 Japan-Korea HPC Winter School 2018 

 
13 



Compile Options 
• The performance will vary significantly according 

to the way in which compile options are specified. 
• Use the compiler manual as a reference and try 

various compile options. 
– “-fast”, “-O3”, “-O2”, etc. 
– With an Intel Compiler, “-xAVX2” (for latest Core i7) 

• Setting a high level of optimization does not 
necessarily produce faster code. 
– The compiler may optimize excessively. 
– Note that the calculated results may be inconsistent in 

some cases.  
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Compiler Directives 
• Compiler directives communicate the intent of the 

programmer to the compiler and support optimization. 
– Different from compile options, compiler directives allow 

optimization to be controlled for individual loops. 

• Examples of directives 
– When performing vectorization, inform the compiler that there is no 

loop dependency. 
– Suppress vectorization. 

• Often coded in C language as “#pragma”, in Fortran as 
“!dir$” or “cpgi$l”, etc. 
(Note that the coding may differ according to the 
compiler.) 
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Considerations When Writing 
Programs 

• Preserve C or Fortran syntax precisely. 
– With some compilers, only warnings may be output, but 

these often lead to bugs. 
• Compiler-dependent extensions, with the exception 

of unavoidable circumstances (in the case of a 
directive, for example), should not be used. 
– Automatic array assignment in GFortran 

• Case such as real*8 a(n), where a(n) is not a dummy argument 
and n is a variable 

– Program portability deteriorates. 
– Cause of unexpected errors 

• To the extent possible, avoid using functions and 
features that are (thought to be) seldom used. 
– Compiler bugs may not have been removed. 
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Source: Wikipedia 
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Memory Hierarchy (1/3) 
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Memory Hierarchy (2/3) 

• The memory hierarchy is designed based on the 
assumed locality of patterns of access to the 
memory area. 

• Different types of locality: 
– Temporal locality 

• Property whereby the accessing of a certain address 
reoccurs within a relatively short time interval 

– Spatial locality 
• Property whereby data accessed within a certain time interval 

is distributed among relatively nearby addresses 
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Memory Hierarchy (3/3) 

• These tendencies often apply to business 
computations and other non-numerical 
computations but are not generally applicable to 
numerical computation programs. 

• Especially in large-scale scientific computations, 
there is often no temporal locality for data 
references. 

• This is a major reason why vector-type 
supercomputers are advantageous for scientific 
computations. 
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Performance of daxpy 
(Intel Xeon E5-2670 v3 2.3GHz 
30MB L3 cache, Intel MKL 11.3) 
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Performances of dgemv and dgemm 
(Intel Xeon E5-2670 v3 2.3GHz 30MB 

L3 cache, Intel MKL 11.3) 
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Arithmetic Operations in BLAS 

 
BLAS 

   Loads 
 + 

   Stores 

Operati
ons 

Ratio 
 

Level 1 DAXPY 
 
Level 2 DGEMV 

Level 3 DGEMM 

xyy α+=

Axyy αβ +=

ABCC αβ +=

mnmn 2++

kmn ==

n3

knmkmn ++2

n2

mn2

mnk2

2:3

2:1

n:2

2018/2/21 Japan-Korea HPC Winter School 2018 
 

23 



Concept of Byte/Flop 
• The amount of memory access needed when performing a 

single floating-point operation is defined in byte/flop. 
 
 

 
 
 

 
• With daxpy, double-precision real-number data must be 

loaded/stored three times (24 bytes total) in order to 
perform two double-precision floating-point operations per 
single iteration. 
– In this case, 24Byte/2Flop = 12Byte/Flop. 

• The smaller the Byte/Flop value, the better. 

void daxpy(int n, double a, double *x, double *y) 
{ 
    int i; 
    for (i = 0; i < n; i++) 
        y[i] += a * x[i]; 
} 
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Theoretical Performance in daxpy 
• Intel Core i7 6700K (Skylake 4.0GHz, 4 cores, 

DDR4-2133 x 2) 
– Theoretical peak performance is 

64GFlops × 4 cores = 256GFlops 
– Maximum memory bandwidth is 34.1GB/s 
– Byte/Flop value is 34.1/256 ≈ 0.133 

• In the case where the working set exceeds the 
cache capacity, the memory bandwidth (34.1GB/s) 
is rate-limiting and so the limit is 
(34.1GB/s)/(12Byte/Flop) ≈  2.84GFlops 

• Only approximately 1.11% of theoretical peak 
performance! 
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Loop Unrolling (1/2) 
• Loop unrolling expands a loop in order to do the 

following: 
– Reduce loop overhead 
– Perform register blocking  

• If expanded too much, register shortages or 
instruction cache misses may occur, and so care 
is needed. 
 

double A[N], B[N], C; 
for (i = 0; i < N; i++) { 
  A[i] += B[i] * C; 
} 

double A[N], B[N], C; 
for (i = 0; i < N; i += 4) { 
  A[i] += B[i] * C; 
  A[i+1] += B[i+1] * C; 
  A[i+2] += B[i+2] * C; 
  A[i+3] += B[i+3] * C; 
} 
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Loop Unrolling (2/2) 
double A[N][N], B[N][N], 
            C[N][N], s; 
for (j = 0; j < N; j++) { 
   for (i = 0; i < N; i++) { 
      s = 0.0; 
      for (k = 0; k < N; k++) { 
         s += A[i][k] * B[j][k]; 
      } 
      C[j][i] = s; 
    } 
} 

double A[N][N], B[N][N], 
        C[N][N], s0, s1; 

for (j = 0; j < N; j += 2) 
   for (i = 0; i < N; i++) { 
      s0 = 0.0;  s1 = 0.0; 
      for (k = 0; k < N; k++) { 
         s0 += A[i][k] * B[j][k]; 
         s1 += A[i][k] * B[j+1][k]; 
      } 
      C[j][i] = s0; 
      C[j+1][i] = s1; 
   } 

Matrix multiplication Optimized matrix multiplication 
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Loop Interchange 
• Loop interchange is a technique mainly for reducing the 

adverse effects of large-stride memory accesses. 
• In some cases, the compiler judges the necessity and 

performs loop interchanges. 
double A[N][N], B[N][N], C; 
for (j = 0; j < N; j++) { 
  for (k = 0; k < N; k++) { 
    A[k][j] += B[k][j] * C; 
  } 
} 

Before loop interchange 

double A[N][N], B[N][N], C; 
for (k = 0; k < N; k++) { 
  for (j = 0; j < N; j++) { 
    A[k][j] += B[k][j] * C; 
  } 
} 

After loop interchange 
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Padding 
• Effective in cases where multiple arrays have been mapped 

to the same cache location and thrashing occurs 
– Especially in the case of an array having a size that is a power of two 

• It is recommended to change the defined sizes of two-
dimensional arrays. 

• In some instances, this can be handled by specifying the 
compile options. 
 double A[N][N], B[N][N]; 

for (k = 0; k< N; k++) { 
  for (j = 0; j < N; j++) { 
    A[j][k] = B[k][j]; 
  } 
} 

Before padding 

double A[N][N+1], B[N][N+1]; 
for (k = 0; k < N; k++) { 
  for (j = 0; j < N; j++) { 
        A[j][k] = B[k][j]; 
  } 
} 

After padding 
2018/2/21 Japan-Korea HPC Winter School 2018 

 
29 



Blocking (1/2) 
• Effective method for optimizing memory accesses 
• Cache misses are reduced as much as possible. 

double A[N][N], B[N][N], C; 
for (i = 0; i < N; i++) { 
  for (j = 0; j < N; j++) { 
    A[i][j] += B[j][i] * C; 
  } 
} 

double A[N][N], B[N][N], C; 
for (i = 0; i < N; i += 4) { 
  for (j = 0; j < N; j += 4) { 
    for (ii = i; ii < i + 4; ii++) { 
      for (jj = j; jj < j + 4; jj++) { 
        A[ii][jj] += B[jj][ii] * C; 
      } 
    } 
  } 
} 

After blocking Before blocking 
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Blocking (2/2) 

Memory access pattern 
without blocking 

Memory access pattern 
with blocking 
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Use of Streaming SIMD Instructions 
• To process floating-point operations at faster 

speeds, recent processors are often equipped 
with what is called streaming SIMD instructions. 
– Intel’s SSE/SSE2/SSE3/SSE4/AVX/AVX2 instruction 

sets 
– AMD Athlon’s 3DNow! instruction set 
– Motorola PowerPC’s AltiVec instruction set 

• With Intel’s recent Skylake, the use of AVX2 
instructions enables the floating-point operation 
performance to be made 16 times as large. 
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How to Use the SIMD Instruction Set 
• The SIMD instruction set may be used in the 

following ways. 
  (1) Vectorization by compiler 
  (2) Using SIMD intrinsic functions 
  (3) Using an inline assembler 
  (4) Directly writing a “.s” file with an assembler 
• In order from (1) to (4), the coding increases in 

complexity, but there are advantages from the 
perspective of performance. 
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Example of calculating product-sum of 
double-precision complex numbers 

(a + b * c) with an SSE3 intrinsic function 
#include <pmmintrin.h>      /* Header file for SSE3 instruction */ 
 
static __inline  __m128d ZMULADD(__m128d a, __m128d b, __m128d c) 
{ 
  __m128d br, bi;                                           /* 128bit data type */ 
 
  br = _mm_movedup_pd(b);                        /* br = [b.r b.r]  real part */ 
  br = _mm_mul_pd(br, c);                            /* br = [b.r*c.r b.r*c.i] */ 
  a = _mm_add_pd(a, br);                             /* a = [a.r+b.r*c.r a.i+b.r*c.i] */ 
  bi = _mm_unpackhi_pd(b, b);                     /* bi = [b.i b.i]  imaginary part */ 
  c = _mm_shuffle_pd(c, c, 1);                      /* c = [c.i c.r]  replace real part and  

                                                                                      imaginary part */ 
  bi = _mm_mul_pd(bi, c);                             /* bi = [-b.i*c.i b.i*c.r] */ 
 
  return _mm_addsub_pd(a, bi);                    /* [a.r+b.r*c.r-b.i*c.i a.i+b.r*c.i+b.i*c.r] */ 
} 
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ZAXPY written in C language 
typedef struct { double r, i; } doublecomplex; 
 
void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y) 
{ 
  int i; 
   
  if (a.r == 0.0 && a.i == 0.0) return; 
 
#pragma unroll(8) 
#pragma vector aligned 
  for (i = 0; i < n; i++) { 
    y[i].r += a.r * x[i].r – a.i * x[i].i, 
    y[i].i += a.r * x[i].i + a.i * x[i].r; 
} 
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ZAXPY written in SSE3 Intrinsic 
Function 

#include <pmmintrin.h> 
 
typedef struct { double r, i; } doublecomplex; 
__m128d ZMULADD(__m128d a, __m128d b, __m128d c); 
 
void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y) 
{ 
  int i; 
  __m128d a0; 
 
  if (a.r == 0.0 && a.i == 0.0) return; 
  a0 = _mm_loadu_pd(&a); 
#pragma unroll(8) 
  for (i = 0; i < n; i++) 
    _mm_store_pd(&y[i], ZMULADD(_mm_load_pd(&y[i]), a0, _mm_load_pd(&x[i]))); 
} 
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Objective of Performance 
Evaluation (1/3) 

• Upon actually using a computer system, have you ever had 
the following type of experience? 
– “I thought this would be a high-performance system, but when I tried 

using it, the actual performance was not as high as I had expected." 

• There are two main reasons for this. 
– Although touted as “high performance,” the computer system was well 

suited for a certain type of calculations that differed from the 
calculations that the user attempted to execute. 

– Actually, the computer system concealed its high performance, and 
the problem lies with the user’s method of usage, which did not elicit 
high performance. 
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Objective of Performance 
Evaluation (2/3) 

• There is only one type of computer throughout the world, 
and unless technical advances are realized in the future, 
there will not be much need for “performance evaluations”.  
– However, the reality is that there is a proliferation of many different 

types of processors and computer systems throughout the world. 
• The user must determine which computer system will be 

able to calculate efficiently the types of problems that he or 
she desires to solve. 

• Also, when improving hardware and software to enhance 
computer performance, in order to “know thyself”, the 
developers of the computer system must perform a 
“performance evaluation” and use the results to improve the 
performance. 
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Objective of Performance 
Evaluation (3/3) 

• By performing a performance evaluation: 
– A computer system’s level of performance and the type of 

problems for which it is best suited for solving can be 
ascertained. 

– Also, the time required for calculations of extra-large 
problems that are extremely time-consuming can be 
ascertained in advance. 

• In addition, the decision to perform a calculation 
with a high cost-performance can be made by the 
user in consideration of both the cost of using the 
computer system and its performance. 
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Indicator of Performance Evaluation 
• MIPS (Million Instructions Per Second) 

– Expresses the number of millions of instructions that can be 
executed per second by the CPU 

– MIPS is ultimately a measure of the number of instructions executed 
and is not suitable for comparisons of performance among 
computers having different architectures. 

• FLOPS (Floating Operations Per Second) 
– Expresses the number of floating-point operations that can be 

executed per second 
– MFLOPS, GFLOPS, TFLOPS 

• SPEC (The Standard Performance Evaluation Corporation) 
– SPEC benchmark values include SPECint, which indicates the 

integer processing performance, and SPECfp, which indicates the 
floating-point processing performance. 
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Examples of Benchmark Programs 
• SPEC 
• LINPACK 
• NAS Parallel Benchmarks (NPB) 
• HPC Challenge (HPCC) Benchmark 
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Overview of Each Benchmark (1/4) 
• SPEC (Standard Performance Evaluation 

Corporation) 
– A non-profit organization funded by major vendors 
– Measurement results published at http://www.spec.org 

• SPEC CPU2006: Comprehensive performance 
evaluation of CPU, memory, and compiler 
– CINT2006 (SPECint): Evaluates integer processing 

performance 
– CFP2006 (SPECfp): Evaluations floating-point 

processing performance 
• Additionally includes SPEC MPI2007, SPEC 

OMP2001, etc. 
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Overview of Each Benchmark (2/4) 
• LINPACK 

– Developed by Jack Dongarra of the University of 
Tennessee.  

– Benchmark test for evaluating floating-point 
processing performance 

– Uses Gaussian elimination method to estimate 
the time required for solving simultaneous linear 
equations 

– Also used for the “TOP500 Supercomputer” 
benchmark 
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Overview of Each Benchmark (3/4) 
• NAS Parallel Benchmarks 

– The NAS Parallel Benchmarks (NPB) are a 
small set of programs designed to help evaluate 
the performance of parallel supercomputers 

– The original eight benchmarks specified in NPB 
1 mimic the computation and data movement in 
CFD applications. 
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NAS Parallel Benchmarks 
• Five kernels 

– IS: Integer Sort, random memory access 
– EP: Embarrassingly Parallel 
– CG: Conjugate Gradient, irregular memory access and 

communication 
– MG: Multi-Grid on a sequence of meshes, long- and short-distance 

communication, memory intensive 
– FT: discrete 3D fast Fourier Transform, all-to-all communication 

• Three pseudo applications 
– BT: Block Tri-diagonal solver 
– SP: Scalar Penta-diagonal solver 
– LU: Lower-Upper Gauss-Seidel solver 



2018/2/21 Japan-Korea HPC Winter School 2018 
 

46 

Overview of Each Benchmark (4/4) 
• HPC Challenge (HPCC) Benchmark Suite 

– HPC Challenge (HPCC) is a suite of tests that 
examine the performance of HPC architectures 
using kernels. 

– The suite provides benchmarks that bound the 
performance of many real applications as a 
function of memory access characteristics, e.g., 

• Spatial locality 
• Temporal locality 
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HPC Challenge (HPCC) Benchmark 
• The HPC Challenge benchmark consists at 

this time of 7 performance tests: 
– HPL (High Performance Linpack) 
– DGEMM (matrix-matrix multiplication) 
– STREAM (sustainable memory bandwidth) 
– PTRANS (A=A+B^T, parallel matrix transpose) 
– RandomAccess (integer updates to random 

                           memory locations) 
– FFT (complex 1-D discrete Fourier transform) 
– b_eff (MPI latency/bandwidth test) 
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Summary 
• To reduce execution time, optimization is 

important. 
– However, a determination must be made as to 

whether optimization is really necessary. 
• The ability to perform optimization without 

the memory bandwidth becoming rate-limited 
is important for future processors. 

• Performance evaluations are effective for 
ascertaining the performance of a computer 
prior to usage. 
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