OpenMP

OpenMP tutorial

Mitsuhisa Sato
CCS, University of Tsukuba

Trends of Mulitcore processors

= Faster clock speed, and Finer silicon technology

= 'now clock freq is 3GHz, in future it will reach to
10GHz!?”
= Intel changed their strategy -> multicore!
= Clock never become faster any more

= Silicon technology 45 nm -> 7 nm in near future!

Good news & bad news!

= Progress in Computer Architecture
= Superpipeline, super scalar, VLIW ...
= Multi-level cache, L3 cache even in microprocessor

« Multi-thread architecure. Intel Hyperthreading
« Shared by multiple threads

= Multi-core: multiple CPU core on one chip dai
Programming support is required 1eti o rentiume processor

Dai of Extreme-edition

Lecture on Programming Environment

Multi-core processor:
Solution of Low power by parallel processing

CPU power dissipation

P = NxaxCxV2xf
JJ H\/\lt X

CPU Active rate of Capacitanc Clock Freq
processors e of circiuit

Apporach for Low power by parallel processing

increase N. T decrease V and f, 1 improve perf. Nxf 1
Decreasing V and F, makes heat dissipation and power lower within a chip
Progress in silicon technology 130nm = 90nm=65nm,22nm (Decrease C and V)
Use a silicon process for low power (embedded processor) (Small a)

= Performance improvement by Multi-core (N=2~16)
= Number of transistors are increasing by “Moore’s Law”
= Parallel processing by low power processor

Solution by multi-core processors for
High performance embedded system

Lecture on Programming Environment

Highly Parallel Performance
Intel® Many Integrated Core (Intel® MIC) Architecture

Delivered Performance

Launching on 22nm with >50 cores to provide
outstanding performance for HPC users

Performance Density R o h Programmability

The compute density o % S s s The many benefits of broad
associated with specialty EREERG e i Intel CPU programming
accelerators for parallel RS SR Rl T models, techniques, and

workloads familiar x86 developer tools

A Step Forward In Dealing With
Efficient Performance & Programmability

Lecture on Programming Environment

Very simple example of parallel computing for high performance

;09 S

751

for (1i=0,i<1000; i++)
Sequential computation S += Al1]
1 . 3 4 1000
NN RN
Parallel computation
251 501 1 750
CJ> d —

L

1000

|

S

Lecture on Programming Environment

Parallel programming model

= Message passing programming model

Parallel programming by exchange data (message) between processors
(nodes)

Mainly for distributed memory system (possible also for shared memory)
Program must control the data transfer explicitly.

Programming is sometimes difficult and time-consuming

Program may be scalable (when increasing number of Proc)

= Shared memory programming model

Parallel programming by accessing shared data in memory.

Mainly for shared memory system. (can be supported by software
distributed shared memory)

System moves shared data between nodes (by sharing)
Easy to program, based on sequential version
Scalability is limited. Medium scale multiprocessors.

Lecture on Programming Environment

Multithread(ed) programming

= Basic model for shared memory

= Thread of execution = abstraction of execution in processors.
= Different from process
= Procss = thread + memory space

= POSIX thread library = pthread

Many programs are
executed in parallel

Lecture on Programming Environment

POSIX thread library

s Create thread: thread create

= Join threads: pthread_join
= Synchronization, lock

main
|

pthread_create ———»

|

pthread_create ,
funcl }
J func2

pthread_join

|

pthread_join

!

Lecture on Programming Environment

#include <pthread.h>
void func1(int x); void func2(int x);

main() {
pthread tt1;
pthread tt2;
pthread create(&t1, NULL,
(void *)func1, (void *)1);
pthread_create(&t2, NULL,
(void *)func2, (void *)2);
printf("main()\n");
pthread_join(t1, NULL);
pthread_join(t2, NULL);

}
void func1(int x) {
inti;
for(i=0;i<3;i++){
printf("func1(%d): %d \n",x, i);
}
}

void func2(int x) {
printf("func2(%d): %d \n",x);
} 8

Programming using POSIX thread

= Create threads » Divide and assign iterations of loop

= Synchronization for sum
Pthread, Solaris thread

1.] int s; /* global */

for (t=1;t<n_thd;t++) { . int n thd; /* number of threads */
r=pthread create(thd main,t) int tﬂd main (int id)

} { int cjb,e,i,ss;

thd main(0); c=1000/n thd;
for(t=1; t<n_thd;t++) b=c*id:

pthread join(); e=s+c;

ss=0;
for (i=b,; i<e; i++) ss += a[i]:

Thread = pthread lock() ;

Execution of program s += ss;
pthread unlock();

return s;

Lecture on Programming Environment

What's OpenMP?

= Programming model and API for shared memory parallel programming

= Itis not a brand-new language.

= Base-languages(Fortran/C/C++) are extended for parallel programming
by directives.

= Main target area is scientific application.

= Getting popular as a programming model for shared memory processors
as multi-processor and multi-core processor appears.

= OpenMP Architecture Review Board (ARB) decides spec.
« Initial members were from ISV compiler venders in US.
= Oct. 1997 Fortran ver.1.0 API
= Oct. 1998 C/C++ ver.1.0 API
= Latest version, OpenMP 3.0

= http://www.openmp.org/ Open M P

Lecture on Programming Environment

10

Programming using POSIX thread

= Create threads » Divide and assign iterations of loop

= Synchronization for sum
Pthread, Solaris thread

1.] int s; /* global */

for (t=1;t<n_thd;t++) { . int n thd; /* number of threads */
r=pthread create(thd main,t) int tﬂd main (int id)

} { int cjb,e,i,ss;

thd main(0); c=1000/n thd;
for(t=1; t<n_thd;t++) b=c*id:

pthread join(); e=s+c;

ss=0;
for (i=b,; i<e; i++) ss += a[i]:

Thread = pthread lock() ;

Execution of program s += ss;
pthread unlock();

return s;

Lecture on Programming Environment 11

Programming in OpenMP

NI+ T. OK!

#pragma omp parallel for reduction (+:s)
for (1=0; 1<1000;i++) s+= a[1i];

Lecture on Programming Environment

12

OpenMP API

= [tis not a new language!

= Base languages are extended by compiler directives/pragma, runtime
library, environment variable.

= Base languages:Fortran 90, C, C++
= Fortran: directive line starting with '$OMP
= C: directive by #pragma omp

= Different from automatic parallelization
= OpenMP parallel execution model is defined explicitly by a programmer.

= If directives are ignored (removed), the OpenMP program can be
executed as a sequential program

= Can be parallelized in incrementally

= Practical approach with respect to program development and debugging.

= Can be maintained as a same source program for both sequential and
parallel version.

Lecture on Programming Environment

13

OpenMP Execution model

s Start from sequential execution
= Fork-join Model
= parallel region

= Duplicated execution even in function calls [
fork, A4
y Call foo()| |Call foo()| |Call foo()| |Call foo()
coe oo ! B ! !
1{#pragma omp parallel l join
foo(); /* .B.. */ ¢
} Y
. C.... D
#pragma omp parallel ! !
{ v
.D... E
}

Lecture on Programming Environment 14

Parallel Region

= A code region executed in parallel by multiple threads (team)
= Specified by Parallel constructs
= A set of threads executing the same parallel region is called “team”

= Threads in team execute the same code in region (duplicated
execution)

#pragma omp parallel
{

... Parallel region...
}

Lecture on Programming Environment 15

Work sharing Constructs

= Specify how to share the execution within a team

= Used in parallel region

= for Construct
= Assign iterations for each threads
= For data parallel program

s Sections Construct

= Execute each section by different threads
= For task-parallelism

= Single Construct
= Execute statements by only one thread

= Combined Construct with parallel directive
= parallel for Construct
= parallel sections Construct

Lecture on Programming Environment

threadl thread2

thread3

Duplicated execu

tion

directives

work-sharing, sync

|

L

|

16

For Construct

= Execute iterations specified For-loop in parallel
= For-loop specified by the directive must be in canonical shape

#pragma omp for |clause...]
for (var=Ilb; var logical-op ub; incr-expr)
body

Var must be loop variable of integer or pointer(automatically private)
incr-expr
« ++Var, var++, --var, var--, var+=incr, var-=incr
logical-op
< <=0 2>=
= Jump to ouside loop or break are not allows
= Scheduling method and data attributes are specified in clause

Lecture on Programming Environment 17

Example: matrix-vector product

#pragma omp parallel for default(none) \
private(i,j,sum) shared(m,n,a,b,c)
for (1=0; i<m; i++) >
{
S = el = I —
for (3=0; j<n; J++) — —— %
sum += b[i][j]*c[i]; -
al[i] = sum; .
i
}
TID=0 TID =1
for (i=0,1,2,3,4) for (i=5,6,7,8,9)
i=0 i=5 &:
sum = X b[i=0][j]*c[]] sum = b[i=5][j]l*c[]]
a[0] = sum a[5] = sum
i=1 l i=6 &:
= X bri=1][j]l*c[]] = b[i=6][j]*c[]]
af[l] = sum a[6] = sum

... efc ...

Performance (Mflop/s)

2500

2000

1500

1000

500

0

The performance looks like ...

9 1 Thread
¥ 2 Threads
& 4 Threads

Matrix too
small *

\

=

10

[|
\

100 1000 10000 100000
Memory Footprint (KByte)

19

Scheduling methods of parallel loop

= #processor = 4

Sequential Iteration space

|a

schedule (static,n)

Schedule (static)

Schedule (dynamic, n)

Schedule (guided, n)

Lecture on Programming Environment

20

Data scope attribute clause

Clause specified with parallelconsruct, work sharing
construct

shared(var list)

= Specified vaerIes are shared among threads.

private (var list)

= Specified variaEIes replicated as a private variable
firstprivate (var list)

= Same as private, but initialized by value before loop.
lastprivate (var list)

= Same as private, but the value after loop is updated by the value of
the last iteration.

reduction (op:var list)
= Specify the value of variables computed by reduction operation op.
= Private during execution of loop, and updated at the end of loop

Lecture on Programming Environment 21

Barrier directive

= Sync team by barrier synchronization
= Wait until all threads in the team reached to the barrier
point.
= Memory write operation to shared memory is completed
(flush) at the barrier point.

« Implicit barrier operation is performed at the end of
parallel region, work sharing construct without nowait
clause

#pragma omp barrier

Lecture on Programming Environment 29

What about performance?

= OpenMP really speedup my problem?!
= It depends on hardware and problem size/characteristics

= Esp. problem sizes is an very important factor

« Trade off between overhead of parallelization and grain size of parallel

execution.

= [0 understand performance, ...

= How to lock
= How to exploit cache
= Memory bandwidth

Lecture on Programming Environment

23

Advanced topics

MPI/OpenMP Hybrid Programming
= Programming for Multi-core cluster

OpenMP 3.0 (2007, approved)

= Task parallelism

OpenACC (2012)
= For GPU, by NVIDIA, PGI, Cray, ...

OpenMP 4.0 (2013, released)

= Accelerator extension
= SIMD extension
= Task dependency description

24

Thread-safety of MPI

MPI_THREAD_SINGLE
= A process has only one thread of execution.

MPI_THREAD_FUNNELED

= A ?rocess may be multithreaded, but only the thread that initialized
MPI can make MPI calls.

MPI_THREAD_SERIALIZED

= A process may be multithreaded, but only one thread at a time can
make MPI calls.

MPI_THREAD_MULTIPLE

= A process may be multithreaded and multiple threads can call MPI
functions simultaneously.

MPI_Init_thread specifies Thread-safety level

25

OpenACC

= A spin-off activity from OpenMP ARB for supporting
accelerators such as GPGPU and MIC

= NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

= Directive to specify the code offloaded to GPU.

OpenACC.

DIRECTIVES FOR ACCELERATORS

A simple example

IiiiiiiillllllIiii'l'iiiiiluiiiiiiil

#define N 1024 Host->device
int main () { Device->Host O O
int 1i;

int a[N], b[N],c[N];
#fpragma acc data copyin(a,b) copyout(c) host

{ device
#pragma acc parallerl | |=m=m——- >
{ copy a,b
#pragma acc loop
for(i = 0; i < N; i++){
c[i] = a[i] + b[i];
}
}
} copy cC
} €-=== ¥

A simple example

#define N 1024

int main() { block(0) block(3)

int i; thread(0) thread(0)

int a[N], b[N],c[N]; i=0 i=768

#pragma acc data copyin(a,b) copyout (c) : beses :
{#pragma acc parallel thread(255) thread(255)
{ 1=255 1=1023
#pragma acc loop

for(i = 0; i < N; i++){
c[i] = a[i] + b[i]; E:::>» execute iterations

} like CUDA kernel

Matrix Multiply in OpenACC

#define N 1024

void main (void)
{
double a[N] [N], b[N][N], c[N]|[N];
int i,3;
// ... setup data ...
#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; i < N; i++){
#pragma acc loop
for(j = 0; jJ < N; j++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i] [k] * b[k][]J];
}
c[i] [J] = sum;
}
}
}

Stencil Code (Laplace Solver) in OpenACC

##define XSIZE 1024
#define YSIZE 1024
#define ITER 100
int main (void) {
int x, y, iter;
double u[XSIZE] [YSIZE], uu[XSIZE] [YSIZE];
// setup
#pragma acc data copy(u, uu)
{
for(iter = 0; iter < ITER; iter++){
//0old <- new
#pragma acc parallel loop
for(x = 1; x < XSIZE-1;, x++){
#pragma acc loop
for(y = 1; y < YSIZE-1; y++)
uu[x] [y] = ulx][yl’
}
//update
#pragma acc parallel loop
for(x = 1; x < XSIZE-1,; x++){
#pragma acc loop
for(y = 1; y < YSIZE-1; y++)
u[x] [y]l] = (uu[x-1][y] + uul[x+1l][y]
+ uu[x] [y-1] + uu[x][y+1l]) / 4.0;

}}
} //acc data end

}

exec time

Performance of OpenACC code

matrix multiply

120

100

80

60

40

20

0

1K

2K 3K 4K 5K 6K 7K 8K

M cpulcore

M cray(128)

size

Performance of OpenACC code

exec time laplace

120

100

80

60

40

20

0

M cpulcore

M cray(128)

- L_Llll size
1K 2K 3K 4K 5K 6K 7K 8K

OpenMP 4.0

= Released July 2013

= http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
= A document of examples is expected to release soon

= Changes from 3.1 to 4.0 (Appendix E.1):
« Accelerator: 2.9
= SIMD extensions: 2.8
= Places and thread affinity: 2.5.2, 4.5
« Taskgroup and dependent tasks: 2.12.5, 2.11
= Error handling: 2.13
» User-defined reductions: 2.15
« Sequentially consistent atomics: 2.12.6
= Fortran 2003 support

slide by Yonghong@UH 33

Accelerator (2.9): offloading

s Execution Model: Offload data
and code to accelerator

= larget construct creates tasks
to be executed by devices

= Aims to work with wide variety
of accs
= GPGPUs, MIC, DSP, FPGA, etc

= A target could be even a remote
node, intentionally

slide by Yonghong@UH

target
Copy in
remete——p|
Application data Application
data data
Copy out
emote data
>
Tasks acc. cores
gffloaded to
hccelerator

#pragma omp target

{

[* it is like a new task
* executed on a remote device */

34

Accelerator: explicit data mapping

= Relatively small number of
truly shared memory
accelerators so far

= Require the user to
explicitly map data to and
from the device memory

= Use array region

slide by Yonghong@UH

long a = 0x858;
long b = 0;
int anArray[100]

#pragma omp target data map(to:a) \\
map(tofrom:b,anArray[0:64])

{

/* a, b and anArray are mapped
* to the device */

/* work here */

}

/* b and anArray are mapped
* back to the host */

35

Accelerator: hierarchical parallelism

= Organize massive number of threads
« teams of threads, e.g. map to CUDA grid/block

= Distribute loops over teams

#pragma omp target X
(O 0
4 oV P \&
pragma omp teams num_teams(2) \\‘ ((\3 <
num_threads(8) oM ye &0
{ ‘(QC‘\ C@\e
//-- creates a “league” of teams o\ 27 A
//-- only local barriers permitted x OO Q\O
\ "R~

#pragma omp distribute
for (inti=0; i<N; i++) {

}

y
slide by Yonghong@UH 36

target and map examples

void vec _mult(int N)
{
int 1i;
float p[N], V1[N], V2[N];
init(vl, v2, N);
#pragma omp target map(to: vl, v2) map(from: p)
#pragma omp parallel for
for (i=0; i<N; i++)

pl[i] = v1[i] * v2[i];
output(p, N);

}

void vec _mult(float *p, float *vl, float *v2, int N)
{
int 1i;
init(vl, v2, N);
#pragma omp target map(to: v1[0:N], v2[:N]) map(from: p[0:N])
#pragma omp parallel for
for (i=0; i<N; i++)

pli] = v1[i] * v2[1i];
output(p, N);

}

slide by Yonghong@UH 37

target date example

void vec_mult(float *p, float *vl, float
{
int 1i;
init(vl, v2, N);
#pragma omp target data map(from: p[0:
{
#pragma omp target map(to: v1[:N],
#pragma omp parallel for
for (i=0; i<N; i++)
p(i] = v1[i] * v2[i];
init again(vl, v2, N);
#pragma omp target map(to: v1[:N],
#pragma omp parallel for
for (i=0; i<N; i++)
} p(i] = p[i] + (v1[i] * v2[i]);
output(p, N);

slide by Yonghong@UH

*vy2, int N)

NJ)
v2[:N])
v2[:N]) \
«(&QQ e
@)‘6 6{(@(\
AN
38

teams and distribute loop example

float dotprod teams(float B[], float C[], int N, int num blocks,
int block threads)

{
float sum = 0;
int i, 1i0;
#pragma omp target map(to: B[O0:N], C[O0:N])
#pragma omp teams num_teams(num blocks) thread limit(block threads)
reduction(+:sum)
#pragma omp distribute
for (10=0; i0<N; 10 += num _blocks)
#pragma omp parallel for reduction(+:sum)
for (i=i0; i< min(i0+num_blocks,N); i++)
sum += B[i] * C[1];
return sum;
}

Double-nested loops are mapped to the two
levels of thread hierarchy (league and team)

slide by Yonghong@UH %

