
1

OpenMP tutorial
　	

Mitsuhisa Sato
CCS, University of Tsukuba	

2 Lecture on Programming Environment

Trends of Mulitcore processors	

n  Faster clock speed, and Finer silicon technology	
n  “now clock freq is 3GHz, in future it will reach to

10GHz!?”	
n  Intel changed their strategy -> multicore!	
n  Clock never become faster any more	

n  Silicon technology 45 nm -> 7 nm in near future!
	

n  Progress in Computer Architecture	

n  Superpipeline, super scalar, VLIW …
n  Multi-level cache, L3 cache even in microprocessor	
n  Multi-thread architecure、Intel Hyperthreading

n  Shared by multiple threads	

n  Multi-core： multiple CPU core on one chip dai	

Inetl ® Pentium® processor	
Dai of Extreme-edition	

Good news & bad news!

Programming support is required	

3 Lecture on Programming Environment

Multi-core processor：
Solution of Low power by parallel processing	

　　　　　　Apporach for Low power by parallel processing	

　　　　　　increase N、 decrease V and f, improve perf. N×f	
n  Decreasing V and F, makes heat dissipation and power lower within a chip	

n  Progress in silicon technology 130nm ⇒ 90nm⇒65nm,22nm　（Decrease C and V)	
n  Use a silicon process for low power (embedded processor) （Small α）	

n  Performance improvement by Multi-core （N=2～16)
n  Number of transistors are increasing by “Moore’s Law”	

n  Parallel processing by low power processor　	

	

システム総電力　P = N ×α×C×V×F CPU power dissipation　	
P = N×α×C×V２×f

# CPU	
	

Active rate of
processors	

Capacitanc
e of circiuit	

Voltage	 Clock Freq	
	

Solution by multi-core processors for
High performance embedded system 	

4 Lecture on Programming Environment

5 Lecture on Programming Environment

Very simple example of parallel computing for high performance	

for(i=0;i<1000; i++)
 S += A[i]

1 2 3 4 1000

+ S

1 2 1000 250 251 500 501 750 751

+ + + +

+ S

Sequential computation	

Parallel computation	

Processor１	 Processor ２	 プProcessor ３	 Processor ４	

6 Lecture on Programming Environment

Parallel programming model	

n  Message passing programming model
n  Parallel programming by exchange data (message) between processors

(nodes)	
n  Mainly for distributed memory system (possible also for shared memory)
n  Program must control the data transfer explicitly.	
n  Programming is sometimes difficult and time-consuming	

n  Program may be scalable (when increasing number of Proc)	

n  Shared memory programming model
n  Parallel programming by accessing shared data in memory.	
n  Mainly for shared memory system. (can be supported by software

distributed shared memory)
n  System moves shared data between nodes (by sharing)	
n  Easy to program, based on sequential version	

n  Scalability is limited. Medium scale multiprocessors.	

7 Lecture on Programming Environment

Multithread(ed) programming	

n  Basic model for shared memory	

n  Thread of execution = abstraction of execution in processors.	
n  Different from process	

n  Procss = thread + memory space 	

n  POSIX thread library = pthread
Many programs are
executed in parallel	

スレッド	

8 Lecture on Programming Environment

POSIX thread library	

n  Create thread: thread_create
n  Join threads: pthread_join
n  Synchronization, lock	

　　

　　	

#include <pthread.h>

void func1(int x);　 void func2(int x);

main() {
 pthread_t t1 ;
 pthread_t t2 ;
 pthread_create(&t1, NULL,
 (void *)func1, (void *)1);
 pthread_create(&t2, NULL,
 (void *)func2, (void *)2);
 printf("main()\n");
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
}
void func1(int x) {
 int i ;
 for(i = 0 ; i<3 ; i++) {
 printf("func1(%d): %d \n",x, i);
 }
}
void func2(int x) {
 printf("func2(%d): %d \n",x);
}
	

main

func1
func2

pthread_create

pthread_join

pthread_create

pthread_join

9 Lecture on Programming Environment

Programming using POSIX thread	

n  Create threads	

for(t=1;t<n_thd;t++){
 r=pthread_create(thd_main,t)
}
thd_main(0);
for(t=1; t<n_thd;t++)

 pthread_join();

Pthread, Solaris thread

n  Divide and assign iterations of loop 	
n  Synchronization for sum	

int s; /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
 c=1000/n_thd;
 b=c*id;
 e=s+c;
 ss=0;
 for(i=b; i<e; i++) ss += a[i];
 pthread_lock();
 s += ss;
 pthread_unlock();
 return s;
}

Thread ＝	
Execution of program	

10 Lecture on Programming Environment

What’s OpenMP?	

n  Programming model and API for shared memory parallel programming	

n  It is not a brand-new language.	
n  Base-languages(Fortran/C/C++) are extended for parallel programming

by directives.	
n  Main target area is scientific application.	
n  Getting popular as a programming model for shared memory processors

as multi-processor and multi-core processor appears.	

n  OpenMP Architecture Review Board　(ARB) decides spec.	
n  Initial members were from ISV compiler venders in US.	
n  Oct. 1997 Fortran ver.1.0 API
n  Oct. 1998 C/C++ ver.1.0 API
n  Latest version, OpenMP 3.0

n  http://www.openmp.org/

11 Lecture on Programming Environment

Programming using POSIX thread	

n  Create threads	

for(t=1;t<n_thd;t++){
 r=pthread_create(thd_main,t)
}
thd_main(0);
for(t=1; t<n_thd;t++)

 pthread_join();

Pthread, Solaris thread

n  Divide and assign iterations of loop 	
n  Synchronization for sum	

int s; /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
 c=1000/n_thd;
 b=c*id;
 e=s+c;
 ss=0;
 for(i=b; i<e; i++) ss += a[i];
 pthread_lock();
 s += ss;
 pthread_unlock();
 return s;
}

Thread ＝	
Execution of program	

12 Lecture on Programming Environment

Programming in OpenMP	

#pragma omp parallel for reduction(+:s)
 for(i=0; i<1000;i++) s+= a[i];

これだけで、OK!

13 Lecture on Programming Environment

OpenMP API

n  It is not a new language! 	
n  Base languages are extended by compiler directives/pragma, runtime

library, environment variable.	
n  Base languages：Fortran 90, C, C++

n  Fortran： directive line starting with !$OMP	

n  C: directive by #pragma omp 	

n  Different from automatic parallelization	

n  OpenMP parallel execution model is defined explicitly by a programmer.	

n  If directives are ignored (removed), the OpenMP program can be
executed as a sequential program	

n  Can be parallelized in incrementally	

n  Practical approach with respect to program development and debugging.	
n  Can be maintained as a same source program for both sequential and

parallel version.	

14 Lecture on Programming Environment

OpenMP Execution model 	
n  Start from sequential execution	

n  Fork-join Model	
n  parallel region

n  Duplicated execution even in function calls	

	… A ...
#pragma omp parallel
{
 foo(); /* ..B... */
}
… C ….
#pragma omp parallel
{
… D …
}
… E ...

Call foo() Call foo() Call foo() Call foo()

A

B

C

D

E

fork

join

15 Lecture on Programming Environment

Parallel Region

n  A code region executed in parallel by multiple threads (team)	
n  Specified by Parallel constructs	
n  A set of threads executing the same parallel region is called “team”	
n  Threads in team execute the same code in region (duplicated

execution)	

#pragma omp parallel
{
 ...
 ... Parallel region...
 ...
}

16 Lecture on Programming Environment

Work sharing Constructs	

n  Specify how to share the execution within a team	
n  Used in parallel region	

n  for Construct	
n  Assign iterations for each threads	
n  For data parallel program	

n  Sections Construct	
n  Execute each section by different threads	
n  For task-parallelism	

n  Single Construct	
n  Execute statements by only one thread	

n  Combined Construct with parallel directive	

n  parallel for Construct	
n  parallel sections Construct	

directives
work-sharing, sync

Duplicated execution

thread1 thread2 thread3

17 Lecture on Programming Environment

For Construct	

n  Execute iterations specified For-loop in parallel	
n  For-loop specified by the directive must be in canonical shape

n  Var must be loop variable of integer or pointer(automatically private)	
n  incr-expr

n  ++var,var++,--var,var--,var+=incr,var-=incr
n  logical-op

n  ＜、＜＝、＞、＞＝	

n  Jump to ouside loop or break are not allows	
n  Scheduling method and data attributes are specified in clause	

#pragma omp for [clause…]
 for(var=lb; var logical-op ub; incr-expr)
 body

18

Example: matrix-vector product	

19

The performance looks like …	

20 Lecture on Programming Environment

Scheduling methods of parallel loop	

n  #processor = 4	

Sequential	

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

n Iteration space

21 Lecture on Programming Environment

Data scope attribute clause	

n  Clause specified with parallelconsruct、work sharing
construct	

n  shared(var_list)
n  Specified variables are shared among threads.	

n  private(var_list)
n  Specified variables replicated as a private variable

n  firstprivate(var_list)
n  Same as private, but initialized by value before loop.	

n  lastprivate(var_list)
n  Same as private, but the value after loop is updated by the value of

the last iteration.	

n  reduction(op:var_list)
n  Specify the value of variables computed by reduction operation op.	
n  Private during execution of loop, and updated at the end of loop	

22 Lecture on Programming Environment

Barrier directive	

n  Sync team by barrier synchronization	

n  Wait until all threads in the team reached to the barrier
point.	

n  Memory write operation to shared memory is completed
(flush) at the barrier point.	

n  Implicit barrier operation is performed at the end of
parallel region, work sharing construct without nowait
clause	

#pragma omp barrier

23 Lecture on Programming Environment

What about performance?	

n  OpenMP really speedup my problem?!

n  It depends on hardware and problem size/characteristics

n  Esp. problem sizes is an very important factor	
n  Trade off between overhead of parallelization and grain size of parallel

execution.	

n  To understand performance, …
n  How to lock	

n  How to exploit cache	

n  Memory bandwidth	

24

Advanced topics

n  MPI/OpenMP Hybrid Programming
n  Programming for Multi-core cluster

n  OpenMP 3.0 (2007, approved)
n  Task parallelism

n  OpenACC (2012)
n  For GPU, by NVIDIA, PGI, Cray, …

n  OpenMP 4.0 (2013, released)
n  Accelerator extension
n  SIMD extension
n  Task dependency description	

25

Thread-safety of MPI

n  MPI_THREAD_SINGLE
n  A process has only one thread of execution.

n  MPI_THREAD_FUNNELED
n  A process may be multithreaded, but only the thread that initialized

MPI can make MPI calls.

n  MPI_THREAD_SERIALIZED
n  A process may be multithreaded, but only one thread at a time can

make MPI calls.

n  MPI_THREAD_MULTIPLE
n  A process may be multithreaded and multiple threads can call MPI

functions simultaneously.

n  MPI_Init_thread specifies Thread-safety level	

OpenACC	
n  A spin-off activity from OpenMP ARB for supporting

accelerators such as GPGPU and MIC

n  NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

n  Directive to specify the code offloaded to GPU.

A simple example	

#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
 #pragma acc parallel
 {
 #pragma acc loop
 for(i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }
 }
}
}	

direction	 copy	 copyin	 copyout	

Host->device	 ○	 ○	

Device->Host	 ○	 ○	

device	
host	

copy a,b	

copy c	

A simple example	

#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
 #pragma acc parallel
 {
 #pragma acc loop
 for(i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }
 }
}
}	

execute iterations
like CUDA kernel	

Matrix Multiply in OpenACC	

#define N 1024

void main(void)
{
 double a[N][N], b[N][N], c[N][N];
 int i,j;
 // ... setup data ...	
#pragma acc parallel loop copyin(a, b) copyout(c)	
 for(i = 0; i < N; i++){	
#pragma acc loop	
 for(j = 0; j < N; j++){	
 int k;	
 double sum = 0.0;	
 for(k = 0; k < N; k++){	

	sum += a[i][k] * b[k][j];	
 }	
 c[i][j] = sum;	
 }	
 }	
}	
	

Stencil Code (Laplace Solver) in OpenACC	
#define XSIZE 1024
#define YSIZE 1024
#define ITER 100
int main(void){
 int x, y, iter;
 double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
 // setup ...	
#pragma acc data copy(u, uu)	
 {	
 for(iter = 0; iter < ITER; iter++){	
 //old <- new	
#pragma acc parallel loop	
 for(x = 1; x < XSIZE-1; x++){	
#pragma acc loop	

	for(y = 1; y < YSIZE-1; y++)	
	 uu[x][y] = u[x][y];	

 }	
 //update	
#pragma acc parallel loop	
 for(x = 1; x < XSIZE-1; x++){	
#pragma acc loop	

	for(y = 1; y < YSIZE-1; y++)	
	 u[x][y] = (uu[x-1][y] + uu[x+1][y] 	
	 	 + uu[x][y-1] + uu[x][y+1]) / 4.0;	

 }}	
 } //acc data end	
}	
	

Performance of OpenACC code	

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

matrix multiply	exec time	

size	

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

Performance of OpenACC code	

laplace	exec time	

size	

OpenMP 4.0
n  Released July 2013

n  http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
n  A document of examples is expected to release soon

n  Changes from 3.1 to 4.0 (Appendix E.1):
n  Accelerator: 2.9
n  SIMD extensions: 2.8
n  Places and thread affinity: 2.5.2, 4.5
n  Taskgroup and dependent tasks: 2.12.5, 2.11
n  Error handling: 2.13
n  User-defined reductions: 2.15
n  Sequentially consistent atomics: 2.12.6
n  Fortran 2003 support

33 slide by Yonghong@UH	

Accelerator (2.9): offloading

n  Execution Model: Offload data
and code to accelerator

n  target construct creates tasks
to be executed by devices

n  Aims to work with wide variety
of accs
n  GPGPUs, MIC, DSP, FPGA, etc
n  A target could be even a remote

node, intentionally

34

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks
offloaded to
accelerator

#pragma omp target
{
 /* it is like a new task
 * executed on a remote device */
{

slide by Yonghong@UH	

Accelerator: explicit data mapping

n  Relatively small number of
truly shared memory
accelerators so far

n  Require the user to
explicitly map data to and
from the device memory

n  Use array region

35

long a = 0x858;
long b = 0;
int anArray[100]

#pragma omp target data map(to:a) \\
 map(tofrom:b,anArray[0:64])
{
 /* a, b and anArray are mapped
 * to the device */

 /* work here */
}
/* b and anArray are mapped
 * back to the host */

slide by Yonghong@UH	

Accelerator: hierarchical parallelism

n  Organize massive number of threads
n  teams of threads, e.g. map to CUDA grid/block

n  Distribute loops over teams

36

#pragma omp target

#pragma omp teams num_teams(2)

 num_threads(8)
{
 //-- creates a “league” of teams
 //-- only local barriers permitted
#pragma omp distribute
for (int i=0; i<N; i++) {

}

}

slide by Yonghong@UH	

target and map examples

37 slide by Yonghong@UH	

target date example

38
slide by Yonghong@UH	

teams and distribute loop example

Double-nested loops are mapped to the two
levels of thread hierarchy (league and team)

39
slide by Yonghong@UH	

