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Contents of Lecture 

• Fast Fourier Transform (FFT) 
• Cooley-Tukey FFT and parallelization 
• Six-Step FFT and parallelization 
• Nine-Step FFT and blocking, parallelization 
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Fast Fourier Transform (FFT) 
• The fast Fourier transform (FFT) is an algorithm for 

computing the discrete Fourier transform (DFT). 
• Example applications in the scientific field 

– Solution of partial differential equations 
– Convolution, correlation calculations 
– Density function theory in first-principles calculations 

• Example applications in the engineering field 
– Spectrum analyzers 
– CT scanners, MRI, and other image processing 
– With the OFDM (orthogonal frequency multiplex 

modulation) used in digital terrestrial television 
broadcasting and wireless LAN, FFTs are used in 
modulation/demodulation processing. 
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Discrete Fourier Transform (DFT) 

• Discrete Fourier transform (DFT) is 
given by 

𝑦 𝑘 = �𝑥(𝑗)𝜔𝑛
𝑗𝑗

𝑛−1

𝑗=0

 

0 ≤ 𝑘 ≤ 𝑛 − 1, 𝜔𝑛 = 𝑒−2𝜋𝑖/𝑛 
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Matrix-based DFT Formulation (1/4) 

• When 𝑛 = 4, a DFT can be computed as 
follows: 

𝑦 0 = 𝑥 0 𝜔0 + 𝑥 1 𝜔0 + 𝑥 2 𝜔0 + 𝑥 3 𝜔0

𝑦 1 = 𝑥 0 𝜔0 + 𝑥 1 𝜔1 + 𝑥 2 𝜔2 + 𝑥 3 𝜔3

𝑦 2 = 𝑥 0 𝜔0 + 𝑥 1 𝜔2 + 𝑥 2 𝜔4 + 𝑥 3 𝜔6

𝑦 3 = 𝑥 0 𝜔0 + 𝑥 1 𝜔3 + 𝑥 2 𝜔6 + 𝑥 3 𝜔9
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Matrix-based DFT Formulation (2/4) 
• Can be expressed more simply when a 

matrix is used. 
 
 
 
 
 
 
 

• Requires 𝑛2 complex multiplications and 
𝑛(𝑛 − 1) complex additions. 

𝑦 0
𝑦(1)
𝑦(2)
𝑦 3

=
𝜔0 𝜔0 𝜔0 𝜔0

𝜔0 𝜔1 𝜔2 𝜔3

𝜔0 𝜔2 𝜔4 𝜔6

𝜔0 𝜔3 𝜔6 𝜔9
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Matrix-based DFT Formulation (3/4) 

• Using the relation 𝜔𝑛
𝑗𝑗 = 𝜔𝑛

𝑗𝑗 mod 𝑛, can be 
written as follows: 
 
 
 
 
 
 
 
 

𝑦 0
𝑦(1)
𝑦(2)
𝑦 3

=

1 1 1 1
1 𝜔1 𝜔2 𝜔3

1 𝜔2 𝜔0 𝜔2

1 𝜔3 𝜔2 𝜔1
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Matrix-based DFT Formulation (4/4) 
• Decomposition of the matrix allows the number of 

multiplications to be reduced. 
 
 
 
 
 
Performing this recursively, the amount of 
calculations can be reduced to 𝑂(𝑛 log𝑛). 
 (The number of data must be a composite number.) 

𝑦 0
𝑦(2)
𝑦(1)
𝑦 3

=
1 𝜔0 0 0
1 𝜔2 0 0
0 0 1 𝜔1

0 0 1 𝜔3

1 0 𝜔0 0
0 1 0 𝜔0

1 0 𝜔2 0
0 1 0 𝜔2

𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)
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Comparison of the Amount of Operations 
Needed for Calculating DFTs and FFTs 

• Number of real operations for DFTs 
𝑇𝐷𝐷𝐷 = 8𝑛2 − 2𝑛 

• Number of real operations for FFTs 
(When 𝑛 is a power of two) 

𝑇𝐷𝐷𝐷 = 5𝑛 log2 𝑛 
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Comparison of the Amount of Operations 
Needed for Calculating DFTs and FFTs 
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Butterfly Operation 
𝑥(0) 

𝑥(1) 

𝑦(0) 

𝑦(1) 

𝑦 0 = 𝑥 0 + 𝑥(1) 
𝑦 1 = 𝜔 𝑥 0 + 𝑥 1  
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Cooley-Tukey FFT Signal Flow 
Diagram 

𝑥(0) 
𝑥(1) 
𝑥(2) 
𝑥(3) 
𝑥(4) 
𝑥(5) 
𝑥(6) 
𝑥(7) 

𝑦(0) 
𝑦(4) 
𝑦(2) 
𝑦(6) 
𝑦(1) 
𝑦(5) 
𝑦(3) 
𝑦(7) 

𝜔0 
𝜔1 
𝜔2 
𝜔3 

𝜔0 
𝜔2 

𝜔0 
𝜔2 

𝜔0 

𝜔0 

𝜔0 

𝜔0 
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Example of FFT Kernel 
       SUBROUTINE FFT2(A,B,W,M,L) 
       IMPLICIT REAL*8 (A-H,O-Z) 
       DIMENSION A(2,M,L,*),B(2,M,2,*),W(2,*) 
C 
       DO J=1,L 
            WR=W(1,J) 
            WI=W(2,J) 
            DO I=1,M 
                 B(1,I,1,J)=A(1,I,J,1)+A(1,I,J,2) 
                 B(2,I,1,J)=A(2,I,J,1)+A(2,I,J,2) 
                 B(1,I,2,J)=WR*(A(1,I,J,1)-A(1,I,J,2))-WI*(A(2,I,J,1)-A(2,I,J,2)) 
                 B(2,I,2,J)=WR*(A(2,I,J,1)-A(2,I,J,2))+WI*(A(1,I,J,1)-A(1,I,J,2)) 
            END DO 
       END DO 
       RETURN 
       END 
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Parallelization of Cooley-Tukey FFT 
𝑥(0) 
𝑥(1) 
𝑥(2) 
𝑥(3) 
𝑥(4) 
𝑥(5) 
𝑥(6) 
𝑥(7) 

𝑦(0) 
𝑦(4) 
𝑦(2) 
𝑦(6) 
𝑦(1) 
𝑦(5) 
𝑦(3) 
𝑦(7) 

𝑃0 

𝑃1 

𝑃2 

𝑃3 
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Amount of Communication with 
Parallel Cooley-Tukey FFT 

• If 𝑛 is the number of nodes in a parallel 
Cooley-Tukey FFT, log2 𝑃 stage 
communication is required. 

• Because (𝑛 𝑃⁄ ) double-precision complex 
number data is communicated (MPI_Send, 
MPI_Recv) at each stage, the total amount 
of communication is as follows: 

(bytes) 𝑇𝐶𝐶𝐶𝐶𝐶𝐶−𝐷𝑇𝑗𝐶𝐶 =
16𝑛
𝑃

log2 𝑃 
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FFT Algorithm for 𝑛 = 𝑛1𝑛2 
• Given by 𝑛 = 𝑛1𝑛2 

 
𝑗 = 𝑗1 + 𝑗2𝑛1, 𝑗1 = 0, 1, … ,𝑛1 − 1, 𝑗2 = 0, 1, … ,𝑛2 − 1 
𝑘 = 𝑘2 + 𝑘1𝑛2,  𝑘1= 0, 1, … ,𝑛1 − 1,𝑘2 = 0, 1, … ,𝑛2 − 1 
 

• Using the above expression, the DFT formulation can 
be rewritten as follows: 

𝑦 𝑘2,𝑘1 = � � 𝑥(𝑗1, 𝑗2)𝜔𝑛2
𝑗2𝑗2

𝑛2−1

𝑗2=0

𝜔𝑛1𝑛2
𝑗1𝑗2

𝑛1−1

𝑗1=0

𝜔𝑛1
𝑗1𝑗1 

• An 𝑛-point FFT decomposes into an 𝑛1-point FFT 
and an 𝑛2-point FFT. 
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Six-Step FFT Algorithm 

1. Matrix transposition 
2.   𝑛1 individual 𝑛2-point multicolumn FFT 

3. Twiddle factor (𝜔𝑛1𝑛2
𝑗1𝑗2 ) multiplication 

4. Matrix transposition 
5.  𝑛2 individual 𝑛1-point multicolumn FFT 
6. Matrix transposition 
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Six-Step FFT Algorithm 

𝑛 individual  

𝑛-point FFTs 

Transpose 

Transpose 
Transpose 

𝑛1 

𝑛1 

𝑛1 

𝑛1 𝑛2 

𝑛2 

𝑛2 

𝑛2 
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Six-Step FFT Program Example 
      SUBROUTINE FFT(A,B,W,N1,N2) 
       COMPLEX*16 A(*),B(*),W(*) 
C 
       CALL TRANS(A,B,N1,N2)                        Matrix transposition 
       DO J=1,N1 
            CALL FFT2(B((J-1)*N2+1),N2)            N1 individual N2-point multicolumn FFT 
       END DO 
       DO I=1,N1*N2 
            B(I)=B(I)*W(I)                                       Twiddle factor (W) multiplication 
       END DO 
       CALL TRANS(B,A,N2,N1)                        Matrix transposition 
       DO J=1,N2 
           CALL FFT2(A((J-1)*N1+1),N1)             N2 individual N1-point multicolumn FFT 
       END DO 
       CALL TRANS(A,B,N1,N2)                        Matrix transposition 
       RETURN 
       END 
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Method for Distribution an Array 
• When using MPI for parallelization, memory can be 

conserved if the array is divided at each node. 
• Block distribution 

– Contiguous areas are divided by the number of nodes. 

Block distribution divided at 
each column 

Block distribution divided at 
each row 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑃0 
𝑃1 
𝑃2 
𝑃3 
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Matrix Transposition Using All-to-
All Communication (MPI_Alltoall) 
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Parallel Six-Step FFT Algorithm 
Transpose 
with All-to-
All comm. 

Transpose 
with All-to-
All comm. 

Transpose 
with All-to-
All comm. 

𝑛1 

𝑛1 

𝑛1 

𝑛2 

𝑛2 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑃0 𝑃1 𝑃2 𝑃3 
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Parallel Six-Step FFT Program Example 
      SUBROUTINE PARAFFT(A,B,W,N1,N2,NPU) 
       COMPLEX*16 A(*),B(*),W(*) 
C 
       CALL PTRANS(A,B,N1,N2,NPU)            Global matrix transposition using MPI_ALLTOALL 
       DO J=1,N1/NPU 
            CALL FFT2(B((J-1)*N2+1),N2)          (N1/NPU) individual N2-point multicolumn FFT 
       END DO 
       DO I=1,(N1*N2)/NPU 
            B(I)=B(I)*W(I)                                     Twiddle factor (W) multiplication 
       END DO 
       CALL PTRANS(B,A,N2,N1,NPU)            Global matrix transposition using MPI_ALLTOALL 
       DO J=1,N2/NPU 
           CALL FFT2(A((J-1)*N1+1),N1)           (N2/NPU) individual N1-point multicolumn FFT 
       END DO 
       CALL PTRANS(A,B,N1,N2,NPU)            Global matrix transposition using MPI_ALLTOALL 
       RETURN 
       END 
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Amount of Communication of 
Parallel Six-Step FFT 

• If 𝑃 is the number of nodes in a parallel six-
step FFT, all-to-all communication is 
required three times. 

• With all-to-all communication, because each 
node sends an (𝑛 𝑃2⁄ ) double-precision 
complex data to 𝑃 − 1 nodes, the total 
amount of communication is as follows: 
 
 (Bytes) 𝑇𝑆𝑖𝑆−𝑆𝑆𝐶𝑆 = 3 ∙ (𝑃 − 1) ∙

16𝑛
𝑃2
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Comparison of Amount of 
Communication with Parallel Cooley-
Tukey FFT and Parallel Six-Step FFT 

• Amount of communication with parallel Cooley-
Tukey FFT 

 
 

• Amount of communication with parallel six-step FFT 
 
 

• Of these two methods, when 𝑃 > 8, the parallel six-
step FFT will have the lower amount of 
communication. 

𝑇𝐶𝐶𝐶𝐶𝐶𝐶−𝐷𝑇𝑗𝐶𝐶 =
16𝑛
𝑃

log2 𝑃 

𝑇𝑆𝑖𝑆−𝑆𝑆𝐶𝑆 = 3 ∙ (𝑃 − 1) ∙
16𝑛
𝑃2
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Problems with the Six-Step FFT 
• In a multicolumn FFT, when 𝑛-point each 

column FFT exceeds the cache size, the 
performance will decrease significantly. 

• A distributed-memory parallel computer, 
when processing a large-size FFT (224 points 
or more, for example), will be unable to 
achieve high performance. 
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3-D Formulation 

• For very large FFTs, we should switch a 
  3-D formulation. 
• If 𝑛 has factors 𝑛1, 𝑛2 and 𝑛3 then 

𝑦 𝑘3, 𝑘2, 𝑘1 = � � � 𝑥(𝑗1, 𝑗2, 𝑗3) 
𝑛3−1

𝑗3=0

𝑛2−1

𝑗2=0

𝑛1−1

𝑗1=0

 

                     𝜔𝑛3
𝑗3𝑗3𝜔𝑛2𝑛3

𝑗2𝑗3 𝜔𝑛2
𝑗2𝑗2𝜔𝑛

𝑗1𝑗3𝜔𝑛1𝑛2
𝑗1𝑗2 𝜔𝑛1

𝑗1𝑗1 
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Nine-Step FFT Algorithm 
1. Matrix transposition 
2.  𝑛1𝑛2 individual 𝑛3-point multicolumn FFT 

3. Twiddle factor (𝜔𝑛2𝑛3
𝑗2𝑗3 ) multiplication 

4. Matrix transposition 
5.  𝑛1𝑛3 individual 𝑛2-point multicolumn FFT 

6. Twiddle factor (𝜔𝑛
𝑗1𝑗3𝜔𝑛1𝑛2

𝑗1𝑗2 ) multiplication 
7. Matrix transposition 
8.  𝑛2𝑛3 individual 𝑛1-point multicolumn FFT 
9. Matrix transposition 
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Nine-Step FFT Algorithm 
Transpose 

Transpose 

Transpose 
Transpose 

𝑛2/3 individual 

𝑛1/3 -point FFTs 

𝑛1 𝑛3 

𝑛2 

𝑛1 𝑛3 

𝑛2𝑛3 

𝑛2𝑛1 

𝑛1𝑛2 

𝑛1𝑛3 

𝑛2𝑛3 
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Block Nine-Step FFT Algorithm 
Partial 
Transpose 

Partial 
Transpose 

Partial 
Transpose 

Partial 
Transpose 

Transpose 

𝑛1 

𝑛2𝑛3 𝑛𝐵 

𝑛3 

𝑛2 

𝑛2𝑛1 

𝑛3 𝑛1 

𝑛2𝑛3 

𝑛1𝑛3 

𝑛2 

𝑛𝐵 
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In-Cache FFT Algorithm 
• In a multicolumn FFT, the following can be 

conceived of as in-cache FFTs, whereby each 
column FFT is placed in the cache. 
– Cooley-Tukey algorithm (bit-reversal permutation is 

needed) 
– Stockham algorithm (bit-reversal permutation is 

unnecessary) 
• The higher radices are more efficient in terms of 

both memory and floating-point operations. 
• In view of the high ratio of floating-point instructions 

to memory operations, the radix-8 FFT is more 
advantageous than the radix-4 FFT. 
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Real Inner-Loop Operations for 
Radix-2, 4 and 8 FFT Kernels 

Radix-2 Radix-4 Radix-8 
Loads and Stores 8 16 32 

Multiplications 4 12 32 
Additions 6 22 66 

Total floating-point 
operations (𝑛 log2 𝑛) 

5 4.25 4.083 

Floating-point instructions 10 34 98 
Floating-point / memory 

ratio 
1.25 2.125 3.063 



2018/2/20 Japan-Korea HPC Winter School 2018 
 

33 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

n
 l
o
g 

n

FP Instructions Loads and stores

Number of Instructions

Number of Instructions for
FFTs

radix-2

radix-4

radix-8



2018/2/20 Japan-Korea HPC Winter School 2018 
 

34 

Blocking of a Nine-Step FFT 
• Data in the cache, having been used for matrix 

transposition, can also be used with the 
multicolumn FFTs, thereby increasing the 
reusability of data in the cache. 

• Once data from the main memory has been loaded 
into the cache, have it remain in cache as much as 
possible. 

• Reuse data in the cache as much as possible, and 
when that data is truly no longer needed, write it 
back to the main memory. 
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Parallel Nine-Step FFT Algorithm 
Transpose 

Transpose 

Transpose 

All-to-All comm. 

𝑛1 

𝑛2 

𝑛3 

𝑛3 

𝑛2 

𝑛1 

𝑛2𝑛3 

𝑛2𝑛1 𝑛2𝑛3 

𝑛2𝑛3 

𝑛𝐵 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑃0 𝑃1 𝑃2 𝑃3 

𝑛𝐵 
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Advantages of a Block Nine-Step FFT 
• With an ordinary FFT algorithm such as the 

Stockham FFT 
– Number of operations: 5𝑛 log2 𝑛 
– Number of main memory accesses: 4𝑛 log2 𝑛 

• With a block nine-step FFT 
– Number of operations: 5𝑛 log2 𝑛 
– Number of main memory accesses: Ideally 12𝑛 

• Because a portion of the nine-step FFT performs 
 𝑛1/3-point FFT blocking, the proposed block nine-
step FFT can be called a “double blocking” algorithm. 
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Performance of parallel 1-D FFT
（dual-core Xeon 2.4GHz PC cluster, N = 2^23xP)
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Breakdown of parallel 1-D FFT
(dual-core Xeon 2.4GHz PC cluster, N=2^23xP)
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Examples of Parallel FFT Libraries 
• Commercial parallel numeric computation libraries 

– Intel Cluster MKL (Math Kernel Library) 
• OpenMP version and MPI version can be used. 

– AMD ACML (AMD Core Math Library) 
• OpenMP version can be used. 

• Open source parallel FFT libraries 
– FFTW (http://www.fftw.org/) 

• OpenMP version and MPI version can be used. 
– FFTE (http://www.ffte.jp/) 

• OpenMP version, MPI version, and OpenMP+MPI 
version can be used. 

http://www.fftw.org/
http://www.ffte.jp/
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Summary 
• The FFT (fast Fourier transform) has been 

introduced as a parallel numeric computing 
algorithm. 

• The key is how to distribute the problem area. 
– Block distribution, cyclic distribution, block-cyclic 

distribution 
• With a parallel FFT, because the communication 

part is mainly all-to-all communication, 
parallelization is relatively easy. 

• Not only it is important to reduce the amount of 
communication, but the use of blocking, etc., is 
also important to localize the memory accesses. 
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