
Japan-Korea HPC Winter School
Parallel Numerical Algorithm 2

Daisuke Takahashi
daisuke@cs.tsukuba.ac.jp

Center for Computational Sciences
University of Tsukuba

2018/2/20 Japan-Korea HPC Winter School 2018

mailto:daisuke@cs.tsukuba.ac.jp

2018/2/20 Japan-Korea HPC Winter School 2018

2

Contents of Lecture

• Fast Fourier Transform (FFT)
• Cooley-Tukey FFT and parallelization
• Six-Step FFT and parallelization
• Nine-Step FFT and blocking, parallelization

2018/2/20 Japan-Korea HPC Winter School 2018

3

Fast Fourier Transform (FFT)
• The fast Fourier transform (FFT) is an algorithm for

computing the discrete Fourier transform (DFT).
• Example applications in the scientific field

– Solution of partial differential equations
– Convolution, correlation calculations
– Density function theory in first-principles calculations

• Example applications in the engineering field
– Spectrum analyzers
– CT scanners, MRI, and other image processing
– With the OFDM (orthogonal frequency multiplex

modulation) used in digital terrestrial television
broadcasting and wireless LAN, FFTs are used in
modulation/demodulation processing.

2018/2/20 Japan-Korea HPC Winter School 2018

4

Discrete Fourier Transform (DFT)

• Discrete Fourier transform (DFT) is
given by

𝑦 𝑘 = �𝑥(𝑗)𝜔𝑛
𝑗𝑗

𝑛−1

𝑗=0

0 ≤ 𝑘 ≤ 𝑛 − 1, 𝜔𝑛 = 𝑒−2𝜋𝑖/𝑛

2018/2/20 Japan-Korea HPC Winter School 2018

5

Matrix-based DFT Formulation (1/4)

• When 𝑛 = 4, a DFT can be computed as
follows:

𝑦 0 = 𝑥 0 𝜔0 + 𝑥 1 𝜔0 + 𝑥 2 𝜔0 + 𝑥 3 𝜔0

𝑦 1 = 𝑥 0 𝜔0 + 𝑥 1 𝜔1 + 𝑥 2 𝜔2 + 𝑥 3 𝜔3

𝑦 2 = 𝑥 0 𝜔0 + 𝑥 1 𝜔2 + 𝑥 2 𝜔4 + 𝑥 3 𝜔6

𝑦 3 = 𝑥 0 𝜔0 + 𝑥 1 𝜔3 + 𝑥 2 𝜔6 + 𝑥 3 𝜔9

2018/2/20 Japan-Korea HPC Winter School 2018

6

Matrix-based DFT Formulation (2/4)
• Can be expressed more simply when a

matrix is used.

• Requires 𝑛2 complex multiplications and
𝑛(𝑛 − 1) complex additions.

𝑦 0
𝑦(1)
𝑦(2)
𝑦 3

=
𝜔0 𝜔0 𝜔0 𝜔0

𝜔0 𝜔1 𝜔2 𝜔3

𝜔0 𝜔2 𝜔4 𝜔6

𝜔0 𝜔3 𝜔6 𝜔9

2018/2/20 Japan-Korea HPC Winter School 2018

7

Matrix-based DFT Formulation (3/4)

• Using the relation 𝜔𝑛
𝑗𝑗 = 𝜔𝑛

𝑗𝑗 mod 𝑛, can be
written as follows:

𝑦 0
𝑦(1)
𝑦(2)
𝑦 3

=

1 1 1 1
1 𝜔1 𝜔2 𝜔3

1 𝜔2 𝜔0 𝜔2

1 𝜔3 𝜔2 𝜔1

2018/2/20 Japan-Korea HPC Winter School 2018

8

Matrix-based DFT Formulation (4/4)
• Decomposition of the matrix allows the number of

multiplications to be reduced.

Performing this recursively, the amount of
calculations can be reduced to 𝑂(𝑛 log𝑛).
 (The number of data must be a composite number.)

𝑦 0
𝑦(2)
𝑦(1)
𝑦 3

=
1 𝜔0 0 0
1 𝜔2 0 0
0 0 1 𝜔1

0 0 1 𝜔3

1 0 𝜔0 0
0 1 0 𝜔0

1 0 𝜔2 0
0 1 0 𝜔2

𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)

2018/2/20 Japan-Korea HPC Winter School 2018

9

Comparison of the Amount of Operations
Needed for Calculating DFTs and FFTs

• Number of real operations for DFTs
𝑇𝐷𝐷𝐷 = 8𝑛2 − 2𝑛

• Number of real operations for FFTs
(When 𝑛 is a power of two)

𝑇𝐷𝐷𝐷 = 5𝑛 log2 𝑛

2018/2/20 Japan-Korea HPC Winter School 2018

10

Comparison of the Amount of Operations
Needed for Calculating DFTs and FFTs

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

1.E+07

0 1 2 3 4 5 6 7 8 9 10

log_2 n

N
u
m

b
e
r

o
f

R
e
a
l
A

ri
th

m
e
ti

c
O

p
e
ra

ti
o
n
s

DFT

FFT

8386560

51200

2018/2/20 Japan-Korea HPC Winter School 2018

11

Butterfly Operation
𝑥(0)

𝑥(1)

𝑦(0)

𝑦(1)

𝑦 0 = 𝑥 0 + 𝑥(1)
𝑦 1 = 𝜔 𝑥 0 + 𝑥 1

2018/2/20 Japan-Korea HPC Winter School 2018

12

Cooley-Tukey FFT Signal Flow
Diagram

𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)
𝑥(4)
𝑥(5)
𝑥(6)
𝑥(7)

𝑦(0)
𝑦(4)
𝑦(2)
𝑦(6)
𝑦(1)
𝑦(5)
𝑦(3)
𝑦(7)

𝜔0
𝜔1
𝜔2
𝜔3

𝜔0
𝜔2

𝜔0
𝜔2

𝜔0

𝜔0

𝜔0

𝜔0

2018/2/20 Japan-Korea HPC Winter School 2018

13

Example of FFT Kernel
 SUBROUTINE FFT2(A,B,W,M,L)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(2,M,L,*),B(2,M,2,*),W(2,*)
C
 DO J=1,L
 WR=W(1,J)
 WI=W(2,J)
 DO I=1,M
 B(1,I,1,J)=A(1,I,J,1)+A(1,I,J,2)
 B(2,I,1,J)=A(2,I,J,1)+A(2,I,J,2)
 B(1,I,2,J)=WR*(A(1,I,J,1)-A(1,I,J,2))-WI*(A(2,I,J,1)-A(2,I,J,2))
 B(2,I,2,J)=WR*(A(2,I,J,1)-A(2,I,J,2))+WI*(A(1,I,J,1)-A(1,I,J,2))
 END DO
 END DO
 RETURN
 END

2018/2/20 Japan-Korea HPC Winter School 2018

14

Parallelization of Cooley-Tukey FFT
𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)
𝑥(4)
𝑥(5)
𝑥(6)
𝑥(7)

𝑦(0)
𝑦(4)
𝑦(2)
𝑦(6)
𝑦(1)
𝑦(5)
𝑦(3)
𝑦(7)

𝑃0

𝑃1

𝑃2

𝑃3

2018/2/20 Japan-Korea HPC Winter School 2018

15

Amount of Communication with
Parallel Cooley-Tukey FFT

• If 𝑛 is the number of nodes in a parallel
Cooley-Tukey FFT, log2 𝑃 stage
communication is required.

• Because (𝑛 𝑃⁄) double-precision complex
number data is communicated (MPI_Send,
MPI_Recv) at each stage, the total amount
of communication is as follows:

(bytes) 𝑇𝐶𝐶𝐶𝐶𝐶𝐶−𝐷𝑇𝑗𝐶𝐶 =
16𝑛
𝑃

log2 𝑃

2018/2/20 Japan-Korea HPC Winter School 2018

16

FFT Algorithm for 𝑛 = 𝑛1𝑛2
• Given by 𝑛 = 𝑛1𝑛2

𝑗 = 𝑗1 + 𝑗2𝑛1, 𝑗1 = 0, 1, … ,𝑛1 − 1, 𝑗2 = 0, 1, … ,𝑛2 − 1
𝑘 = 𝑘2 + 𝑘1𝑛2, 𝑘1= 0, 1, … ,𝑛1 − 1,𝑘2 = 0, 1, … ,𝑛2 − 1

• Using the above expression, the DFT formulation can
be rewritten as follows:

𝑦 𝑘2,𝑘1 = � � 𝑥(𝑗1, 𝑗2)𝜔𝑛2
𝑗2𝑗2

𝑛2−1

𝑗2=0

𝜔𝑛1𝑛2
𝑗1𝑗2

𝑛1−1

𝑗1=0

𝜔𝑛1
𝑗1𝑗1

• An 𝑛-point FFT decomposes into an 𝑛1-point FFT
and an 𝑛2-point FFT.

2018/2/20 Japan-Korea HPC Winter School 2018

17

Six-Step FFT Algorithm

1. Matrix transposition
2. 𝑛1 individual 𝑛2-point multicolumn FFT

3. Twiddle factor (𝜔𝑛1𝑛2
𝑗1𝑗2) multiplication

4. Matrix transposition
5. 𝑛2 individual 𝑛1-point multicolumn FFT
6. Matrix transposition

2018/2/20 Japan-Korea HPC Winter School 2018

18

Six-Step FFT Algorithm

𝑛 individual

𝑛-point FFTs

Transpose

Transpose
Transpose

𝑛1

𝑛1

𝑛1

𝑛1 𝑛2

𝑛2

𝑛2

𝑛2

2018/2/20 Japan-Korea HPC Winter School 2018

19

Six-Step FFT Program Example
 SUBROUTINE FFT(A,B,W,N1,N2)
 COMPLEX*16 A(*),B(*),W(*)
C
 CALL TRANS(A,B,N1,N2) Matrix transposition
 DO J=1,N1
 CALL FFT2(B((J-1)*N2+1),N2) N1 individual N2-point multicolumn FFT
 END DO
 DO I=1,N1*N2
 B(I)=B(I)*W(I) Twiddle factor (W) multiplication
 END DO
 CALL TRANS(B,A,N2,N1) Matrix transposition
 DO J=1,N2
 CALL FFT2(A((J-1)*N1+1),N1) N2 individual N1-point multicolumn FFT
 END DO
 CALL TRANS(A,B,N1,N2) Matrix transposition
 RETURN
 END

2018/2/20 Japan-Korea HPC Winter School 2018 20

Method for Distribution an Array
• When using MPI for parallelization, memory can be

conserved if the array is divided at each node.
• Block distribution

– Contiguous areas are divided by the number of nodes.

Block distribution divided at
each column

Block distribution divided at
each row

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0
𝑃1
𝑃2
𝑃3

2018/2/20 Japan-Korea HPC Winter School 2018 21

Matrix Transposition Using All-to-
All Communication (MPI_Alltoall)

0
1

 8
 9

16
17

24
25

2
3

10
11

18
19

26
27

4
5

12
13

20
21

28
29

6
7

14
15

22
23

30
31

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

All-to-
All
Comm.

Local
Transposition

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

2018/2/20 Japan-Korea HPC Winter School 2018

22

Parallel Six-Step FFT Algorithm
Transpose
with All-to-
All comm.

Transpose
with All-to-
All comm.

Transpose
with All-to-
All comm.

𝑛1

𝑛1

𝑛1

𝑛2

𝑛2

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0 𝑃1 𝑃2 𝑃3

2018/2/20 Japan-Korea HPC Winter School 2018

23

Parallel Six-Step FFT Program Example
 SUBROUTINE PARAFFT(A,B,W,N1,N2,NPU)
 COMPLEX*16 A(*),B(*),W(*)
C
 CALL PTRANS(A,B,N1,N2,NPU) Global matrix transposition using MPI_ALLTOALL
 DO J=1,N1/NPU
 CALL FFT2(B((J-1)*N2+1),N2) (N1/NPU) individual N2-point multicolumn FFT
 END DO
 DO I=1,(N1*N2)/NPU
 B(I)=B(I)*W(I) Twiddle factor (W) multiplication
 END DO
 CALL PTRANS(B,A,N2,N1,NPU) Global matrix transposition using MPI_ALLTOALL
 DO J=1,N2/NPU
 CALL FFT2(A((J-1)*N1+1),N1) (N2/NPU) individual N1-point multicolumn FFT
 END DO
 CALL PTRANS(A,B,N1,N2,NPU) Global matrix transposition using MPI_ALLTOALL
 RETURN
 END

2018/2/20 Japan-Korea HPC Winter School 2018

24

Amount of Communication of
Parallel Six-Step FFT

• If 𝑃 is the number of nodes in a parallel six-
step FFT, all-to-all communication is
required three times.

• With all-to-all communication, because each
node sends an (𝑛 𝑃2⁄) double-precision
complex data to 𝑃 − 1 nodes, the total
amount of communication is as follows:

 (Bytes) 𝑇𝑆𝑖𝑆−𝑆𝑆𝐶𝑆 = 3 ∙ (𝑃 − 1) ∙

16𝑛
𝑃2

2018/2/20 Japan-Korea HPC Winter School 2018

25

Comparison of Amount of
Communication with Parallel Cooley-
Tukey FFT and Parallel Six-Step FFT

• Amount of communication with parallel Cooley-
Tukey FFT

• Amount of communication with parallel six-step FFT

• Of these two methods, when 𝑃 > 8, the parallel six-
step FFT will have the lower amount of
communication.

𝑇𝐶𝐶𝐶𝐶𝐶𝐶−𝐷𝑇𝑗𝐶𝐶 =
16𝑛
𝑃

log2 𝑃

𝑇𝑆𝑖𝑆−𝑆𝑆𝐶𝑆 = 3 ∙ (𝑃 − 1) ∙
16𝑛
𝑃2

2018/2/20 Japan-Korea HPC Winter School 2018

26

Problems with the Six-Step FFT
• In a multicolumn FFT, when 𝑛-point each

column FFT exceeds the cache size, the
performance will decrease significantly.

• A distributed-memory parallel computer,
when processing a large-size FFT (224 points
or more, for example), will be unable to
achieve high performance.

2018/2/20 Japan-Korea HPC Winter School 2018 27

3-D Formulation

• For very large FFTs, we should switch a
 3-D formulation.
• If 𝑛 has factors 𝑛1, 𝑛2 and 𝑛3 then

𝑦 𝑘3, 𝑘2, 𝑘1 = � � � 𝑥(𝑗1, 𝑗2, 𝑗3)
𝑛3−1

𝑗3=0

𝑛2−1

𝑗2=0

𝑛1−1

𝑗1=0

 𝜔𝑛3
𝑗3𝑗3𝜔𝑛2𝑛3

𝑗2𝑗3 𝜔𝑛2
𝑗2𝑗2𝜔𝑛

𝑗1𝑗3𝜔𝑛1𝑛2
𝑗1𝑗2 𝜔𝑛1

𝑗1𝑗1

2018/2/20 Japan-Korea HPC Winter School 2018

28

Nine-Step FFT Algorithm
1. Matrix transposition
2. 𝑛1𝑛2 individual 𝑛3-point multicolumn FFT

3. Twiddle factor (𝜔𝑛2𝑛3
𝑗2𝑗3) multiplication

4. Matrix transposition
5. 𝑛1𝑛3 individual 𝑛2-point multicolumn FFT

6. Twiddle factor (𝜔𝑛
𝑗1𝑗3𝜔𝑛1𝑛2

𝑗1𝑗2) multiplication
7. Matrix transposition
8. 𝑛2𝑛3 individual 𝑛1-point multicolumn FFT
9. Matrix transposition

2018/2/20 Japan-Korea HPC Winter School 2018

29

Nine-Step FFT Algorithm
Transpose

Transpose

Transpose
Transpose

𝑛2/3 individual

𝑛1/3 -point FFTs

𝑛1 𝑛3

𝑛2

𝑛1 𝑛3

𝑛2𝑛3

𝑛2𝑛1

𝑛1𝑛2

𝑛1𝑛3

𝑛2𝑛3

2018/2/20 Japan-Korea HPC Winter School 2018

30

Block Nine-Step FFT Algorithm
Partial
Transpose

Partial
Transpose

Partial
Transpose

Partial
Transpose

Transpose

𝑛1

𝑛2𝑛3 𝑛𝐵

𝑛3

𝑛2

𝑛2𝑛1

𝑛3 𝑛1

𝑛2𝑛3

𝑛1𝑛3

𝑛2

𝑛𝐵

2018/2/20 Japan-Korea HPC Winter School 2018

31

In-Cache FFT Algorithm
• In a multicolumn FFT, the following can be

conceived of as in-cache FFTs, whereby each
column FFT is placed in the cache.
– Cooley-Tukey algorithm (bit-reversal permutation is

needed)
– Stockham algorithm (bit-reversal permutation is

unnecessary)
• The higher radices are more efficient in terms of

both memory and floating-point operations.
• In view of the high ratio of floating-point instructions

to memory operations, the radix-8 FFT is more
advantageous than the radix-4 FFT.

2018/2/20 Japan-Korea HPC Winter School 2018

32

Real Inner-Loop Operations for
Radix-2, 4 and 8 FFT Kernels

Radix-2 Radix-4 Radix-8
Loads and Stores 8 16 32

Multiplications 4 12 32
Additions 6 22 66

Total floating-point
operations (𝑛 log2 𝑛)

5 4.25 4.083

Floating-point instructions 10 34 98
Floating-point / memory

ratio
1.25 2.125 3.063

2018/2/20 Japan-Korea HPC Winter School 2018

33

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

n
 l
o
g

n

FP Instructions Loads and stores

Number of Instructions

Number of Instructions for
FFTs

radix-2

radix-4

radix-8

2018/2/20 Japan-Korea HPC Winter School 2018

34

Blocking of a Nine-Step FFT
• Data in the cache, having been used for matrix

transposition, can also be used with the
multicolumn FFTs, thereby increasing the
reusability of data in the cache.

• Once data from the main memory has been loaded
into the cache, have it remain in cache as much as
possible.

• Reuse data in the cache as much as possible, and
when that data is truly no longer needed, write it
back to the main memory.

2018/2/20 Japan-Korea HPC Winter School 2018

35

Parallel Nine-Step FFT Algorithm
Transpose

Transpose

Transpose

All-to-All comm.

𝑛1

𝑛2

𝑛3

𝑛3

𝑛2

𝑛1

𝑛2𝑛3

𝑛2𝑛1 𝑛2𝑛3

𝑛2𝑛3

𝑛𝐵

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0 𝑃1 𝑃2 𝑃3

𝑛𝐵

2018/2/20 Japan-Korea HPC Winter School 2018

36

Advantages of a Block Nine-Step FFT
• With an ordinary FFT algorithm such as the

Stockham FFT
– Number of operations: 5𝑛 log2 𝑛
– Number of main memory accesses: 4𝑛 log2 𝑛

• With a block nine-step FFT
– Number of operations: 5𝑛 log2 𝑛
– Number of main memory accesses: Ideally 12𝑛

• Because a portion of the nine-step FFT performs
 𝑛1/3-point FFT blocking, the proposed block nine-
step FFT can be called a “double blocking” algorithm.

2018/2/20 Japan-Korea HPC Winter School 2018

37

Performance of parallel 1-D FFT
（dual-core Xeon 2.4GHz PC cluster, N = 2^23xP)

0

1

2

3

4

1 2 4 8 16 32

Number of cores

G
F
L
O

P
S

FFTE 4.0

FFTE 4.0
with AT

FFTW
3.2alpha3

2018/2/20 Japan-Korea HPC Winter School 2018

38

Breakdown of parallel 1-D FFT
(dual-core Xeon 2.4GHz PC cluster, N=2^23xP)

0

2

4

6

8

10

12

14

1 2 4 8 16 32

Number of cores

T
im

e
 (

s
e
c
)

Computation

Communication

2018/2/20 Japan-Korea HPC Winter School 2018

39

Examples of Parallel FFT Libraries
• Commercial parallel numeric computation libraries

– Intel Cluster MKL (Math Kernel Library)
• OpenMP version and MPI version can be used.

– AMD ACML (AMD Core Math Library)
• OpenMP version can be used.

• Open source parallel FFT libraries
– FFTW (http://www.fftw.org/)

• OpenMP version and MPI version can be used.
– FFTE (http://www.ffte.jp/)

• OpenMP version, MPI version, and OpenMP+MPI
version can be used.

http://www.fftw.org/
http://www.ffte.jp/

2018/2/20 Japan-Korea HPC Winter School 2018

40

Summary
• The FFT (fast Fourier transform) has been

introduced as a parallel numeric computing
algorithm.

• The key is how to distribute the problem area.
– Block distribution, cyclic distribution, block-cyclic

distribution
• With a parallel FFT, because the communication

part is mainly all-to-all communication,
parallelization is relatively easy.

• Not only it is important to reduce the amount of
communication, but the use of blocking, etc., is
also important to localize the memory accesses.

	Japan-Korea HPC Winter School�Parallel Numerical Algorithm 2
	Contents of Lecture
	Fast Fourier Transform (FFT)
	Discrete Fourier Transform (DFT)
	Matrix-based DFT Formulation (1/4)
	Matrix-based DFT Formulation (2/4)
	Matrix-based DFT Formulation (3/4)
	Matrix-based DFT Formulation (4/4)
	Comparison of the Amount of Operations Needed for Calculating DFTs and FFTs
	Comparison of the Amount of Operations Needed for Calculating DFTs and FFTs
	Butterfly Operation
	Cooley-Tukey FFT Signal Flow Diagram
	Example of FFT Kernel
	Parallelization of Cooley-Tukey FFT
	Amount of Communication with Parallel Cooley-Tukey FFT
	FFT Algorithm for 𝑛= 𝑛 1 𝑛 2
	Six-Step FFT Algorithm
	Six-Step FFT Algorithm
	Six-Step FFT Program Example
	Method for Distribution an Array
	Matrix Transposition Using All-to-All Communication (MPI_Alltoall)
	Parallel Six-Step FFT Algorithm
	Parallel Six-Step FFT Program Example
	Amount of Communication of Parallel Six-Step FFT
	Comparison of Amount of Communication with Parallel Cooley-Tukey FFT and Parallel Six-Step FFT
	Problems with the Six-Step FFT
	3-D Formulation
	Nine-Step FFT Algorithm
	Nine-Step FFT Algorithm
	Block Nine-Step FFT Algorithm
	In-Cache FFT Algorithm
	Real Inner-Loop Operations for Radix-2, 4 and 8 FFT Kernels
	スライド番号 33
	Blocking of a Nine-Step FFT
	Parallel Nine-Step FFT Algorithm
	Advantages of a Block Nine-Step FFT
	スライド番号 37
	スライド番号 38
	Examples of Parallel FFT Libraries
	Summary

