

Japan-Korea HPC Winter School - Parallel numerical algorithms 1 -

Hiroto Tadano

tadano@cs.tsukuba.ac.jp

Center for Computational Sciences University of Tsukuba

Contents

- Methods for solving linear systems Ax = b
 - Krylov subspace iterative methods
 - Storage formats for sparse matrices
 - Parallelization of basic linear algebra calculations
- Methods for solving linear systems with multiple right-hand sides AX = B
 - Block Krylov subspace iterative methods
 - Parallelization with OpenMP

Methods for solving linear systems Ax = b

Analysis of natural and engineering phenomena

Linear systems appear in many scientific applications.

However, the solution of linear systems is the most time-consuming part.

Linear systems

Linear systems : Ax = b

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Linear systems appear in many scientific applications.

However, the solution of linear systems is the most time-consuming part.

Direct methods

Gaussian elimination, LU factorization, etc.

- 1) We can always obtain solution in a finite number of operations.
- Number of nonzero elements increases in transformation of coefficient matrix *A*.

We cannot utilize coefficient matrix sparsity.

Direct methods

• Gaussian elimination method

• LU decomposition method LUx = b

Direct methods: Gaussian Elimination

Step 1.

Transform the matrix A of the linear system Ax = b to an upper triangular matrix U.

- Computational complexity : $n^3 / 3$.

$$\begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ b'_n \end{bmatrix}$$

Step 2.

Solve the linear system Ux = b' by backward substitution with the following recursion formula.

$$x_i = (b'_i - u_{i,i+1}x_{i+1} - \dots - u_{i,n}x_n)/u_{i,i}, \quad i = n, n - 1, \dots, 1$$

- Computational complexity : $n^2 / 2$.

Direct methods: LU decomposition

Step 1.

Perform the LU decomposition of the coefficient matrix A.

A = LU

L: Lower triangular matrix, U: Upper triangular matrix.

- Computational complexity : $n^3 / 3$.

Direct methods: LU decomposition

Step 2. Find x using forward / backward substitution.

1) Solve Ly = b for y by forward substitution. Here, y = Ux.

$$\begin{bmatrix} 1 & \mathbf{0} \\ l_{2,1} & 1 \\ \vdots & \vdots & \ddots \\ l_{n,1} & l_{n,2} & \dots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

2) Solve Ux = y for x by backward substitution.

[<i>u</i> _{1,1}	$u_{1,2}$	• • •	$u_{1,n}$	$\begin{bmatrix} x_1 \end{bmatrix}$		y ₁	
	$u_{2,2}$	• • •	$u_{2,n}$	x_2		<i>Y</i> 2	
		•.	•	•	=	•	
0		•	$\begin{array}{c} u_{1,n} \\ u_{2,n} \\ \vdots \\ u_{n,n} \end{array}$	· r		•	
			$u_{n,n}$	$ \Lambda_n $		L Yn _	I

- Computational complexity : n^2 .

Direct methods and iterative methods (SS)

Iterative methods

Krylov subspace methods

- 1) Required operations are
 - Multiplication of a coefficient matrix and a vector : Au
 - Inner product of vectors : $(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}$
 - Constant times a vector plus a vector (AXPY) : $a\mathbf{u} + \mathbf{v}$
 - > We can utilize coefficient matrix sparsity.
- 2) Some problems may require many number of iterations

Krylov subspace methods

- x_0 is an initial guess. The vector x_k is *k*-th approximate solution of the linear system Ax = b. x_k is updated by the iteration process.
- \$\mathcal{K}_{j}(A; \mathbf{r}_{0})\$ is called a Krylov subspace. This subspace is spanned by the vectors \$\mathbf{r}_{0}, A\mathbf{r}_{0}, ..., A^{j-1}\mathbf{r}_{0}\$.
- The vector $\mathbf{r}_0 = \mathbf{b} A\mathbf{x}_0$ is called an initial residual vector.

Sketch of Krylov subspace methods.

Methods for symmetric matrix

1. Coefficient matrix is a symmetric matrix ($A = A^{T}$)

- Conjugate Gradient (CG) method
- Conjugate Residual (CR) method
- Minimal Residual (MINRES) method

Using the symmetric property of the coefficient matrix *A*, algorithms with short recurrence formula (low computational complexity) can be obtained.

Algorithm of the CG method

 x_0 is an initial guess,

Compute
$$r_0 = b - Ax_0$$
,

Set $p_0 = r_0$,

For $k = 0, 1, \ldots$, until $||\boldsymbol{r}_k||_2 \leq \varepsilon_{\text{TOL}} ||\boldsymbol{b}||_2$ do :

The relative residual norm $||\mathbf{r}_k||_2/||\mathbf{b}||_2$ is monitored during the iterations. If the condition $||\mathbf{r}_k||_2/||\mathbf{b}||_2 \le \varepsilon_{\text{TOL}}$ is satisfied, the iteration is stopped. Then, the approximate solution \mathbf{x}_k is employed as the solution.

Methods for non-symmetric matrix

2. Coefficient matrix is a non-symmetric matrix ($A \neq A^{T}$

Methods using short-term recursions

- **Bi-Conjugate Gradient (BiCG) method**
- Conjugate Gradient Squared (CGS) method
- **BiCG Stabilization (BiCGSTAB)** method

Methods using long-term recursions

- Generalized Conjugate Residual (GCR) method
- Generalized Minimal Residual (GMRES) method

Residual norm monotonically decreases, but a large computational complexity is required.

Algorithm of the BiCG method

- 17 -

Algorithm of the GCR method

 x_0 is an initial guess, Compute $r_0 = b - Ax_0$, Set $p_0 = r_0$ and $q_0 = s_0 = Ar_0$, For k = 0, 1, ...,until $||r_k||_2 \le \varepsilon_{\text{TOL}} ||b||_2$ do : $\alpha_k = \frac{(\boldsymbol{q}_k, \boldsymbol{r}_k)}{(\boldsymbol{q}_k, \boldsymbol{q}_k)},$ $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k,$ $\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k \boldsymbol{q}_k,$ $\boldsymbol{s}_{k+1} = A\boldsymbol{r}_{k+1},$ $\beta_{k+1} = r_{k+1}, \quad (i = 0, 1, ..., k)$ $p_{k+1} = r_{k+1} + \sum_{i=0}^{k} \beta_{k,i} p_i, \quad \text{The number of matrix-vector multiplications per iteration is 1.}$ $q_{k+1} = s_{k+1} + \sum_{i=0}^{k} \beta_{k,i} q_i, \quad \text{This method requires large computational complexity and memory requirement}}$ **End For**

- complexity and memory requirement.
- Computational complexity and memory requirement can be reduced by restart technique.

Convergence properties of iterative methods

Relative residual norm histories of iterative methods. ■ : BiCG, ■ : CGS, ■ : BiCGSTAB, ■ : GCR.

Example of sparse matrix

A linear system with matrix of order M^2 can be obtained.

- Total number of elements in matrix : M^4

- Number of nonzero elements : $5M^2 - 4M$

Sparse matrix storage format

Compressed Row Storage (CRS) format Search row-wise for nonzero elements

$$A = \begin{bmatrix} a_{11} & 0 & a_{13} & 0 & a_{15} \\ 0 & a_{22} & 0 & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & 0 \\ 0 & a_{52} & 0 & a_{54} & a_{55} \end{bmatrix}$$

4

val stores nonzero elements of A.

col_ind stores column number of nonzero

elements of A.

³² 0 *a*₅₄ *a*₅₅] row_ptr stores location of first nonzero element in each row.

val: $a_{11} a_{13} a_{15} a_{22} a_{24} a_{25} a_{31} a_{32} a_{33} a_{43} a_{44} a_{52} a_{54} a_{55}$

15

12

10

row_ptr:

The last entry is the number of nonzero elements + 1

Sparse matrix storage format

Compressed Column Storage (CCS) format Search column-wise for nonzero elements

$$A = \begin{bmatrix} a_{11} & 0 & a_{13} & 0 & a_{15} \\ 0 & a_{22} & 0 & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & 0 \\ 0 & a_{52} & 0 & a_{54} & a_{55} \end{bmatrix}$$

val stores nonzero elements of *A*. row_ind stores row number of nonzero elements of *A*.

val: $a_{11} a_{31} a_{22} a_{32} a_{52} a_{13} a_{33} a_{43} a_{24} a_{44} a_{54} a_{15} a_{25} a_{55}$

col_ptr:

The last entry is the number of nonzero elements + 1.

Matrix-vector multiplication CRS format

Multiplication of matrix A and vector x for y = Ax

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Fortran code

Matrix-vector multiplication CCS format

Multiplication of matrix A and vector x for y = Ax

$$\mathbf{y} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n \mathbf{a}_i x_i$$

Fortran code

```
do i=1,n
    y(i) = 0.0D0
end do
do j=1,n
    do i=col_ptr(j),col_ptr(j+1)-1
        y(row_ind(i)) = y(row_ind(i))+val(i)*x(j)
        end do
end do
```

Parallelization of matrix-vector multiplication

• y = Ax in CRS format

Parallelization of matrix-vector multiplication

• y = Ax in CCS format

and send to Proc. 0

Parallelization of inner products

Gather to Proc. 0 by MPI_Reduce

Example of MPI code


```
program main
                                              (\boldsymbol{x}, \boldsymbol{y}) = \sum x_j y_j
include 'mpif.h'
call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world, nprocs, ierr)
call mpi_comm_rank(mpi_comm_world, myrank, ierr)
tmp sum = 0.0D0
do i=istart(myrank+1), iend(myrank+1)
   tmp_sum = tmp_sum + x(i) * y(i)
end do
call mpi_reduce(tmp_sum, sum, 1, mpi_double_precision,
                  mpi_sum, 0, mpi_comm_world, ierr)
• • •
call mpi_finalize(ierr)
```

Parallelization of constant times a vector plus a vector

y = y + ax, a : scalar, x, y : vector.

Send a scalar *a* to all processes by MPI_Bcast

Methods for linear systems with multiple right-hand sides AX = B

Japan-Korea HPC Winter School 2018 Linear systems with multiple right-hand sides

Linear systems with L right-hand sides AX = Bwhere, A is a matrix of order n and $X = [x^{(1)}, x^{(2)}, \dots, x^{(L)}], B = [b^{(1)}, b^{(2)}, \dots, b^{(L)}]$

Solution by Direct methods

- Complete factorization (e.g., A = LU) of the matrix A is required.
- If complete factorization is possible, then we can solve the system by L forward and backward substitutions.
- Large computational complexity and memory usage are required for complete factorization.

Block Krylov subspace methods

Types of Block Krylov subspace methods

 Block BiCG 	O'Leary (1980)
 Block GMRES 	Vital (1990)
 Block QMR 	Freund (1997)
 Block BiCGSTAB 	Guennouni (2003)
 Block BiCGGR 	Tadano (2009)

We can efficiently obtain solution vectors by using Block Krylov subspace methods.

Block Krylov subspace methods

What is the meaning of "good efficiency"?

Residual may converge in fewer iterations than Krylov subspace methods for single right-hand side.

Relative residual histories of the Block BiCGSTAB methods. L = 1, L = 2, L = 4.

Block CG method

$X_0 \in \mathbb{R}^{n \times L}$ is an initial guess,					
Compute $R_0 = B - AX_0$,					
Set $P_0 = R_0$,					
For $k = 0, 1, \ldots$, until $ R_k _{\mathrm{F}} \leq \varepsilon_{\mathrm{TOL}} B _{\mathrm{F}}$ do:					
$Q_k = AP_k,$					
Solve $(P_k^{\mathrm{T}}Q_k)\alpha_k = R_k^{\mathrm{T}}R_k$ for α_k ,					
$X_{k+1} = X_k + P_k \alpha_k,$					
$R_{k+1}=R_k-Q_k\alpha_k,$					
Solve $(R_k^{\mathrm{T}}R_k)\beta_k = R_{k+1}^{\mathrm{T}}R_{k+1}$ for β_k ,					
$P_{k+1} = R_{k+1} + P_k \beta_k,$					

End For

Differences from CG method

- The number of matrix-vector multiplications is increased from 1 to *L*.
- 2. α_k and β_k become matrices of order *L*.
- 3. AXPY calculation becomes matrixmatrix multiplications.

Efficient matrix-vector multiplication (

- Let the matrix A be stored in CRS format.
- Compute Y = AX. Y and X are *n*-row *L*-column arrays.

```
do k=1,L
    do i=1,n
        do j=row_ptr(i), row_ptr(i+1)-1
            Y(i,k)=Y(i,k)+val(j)*X(col_ind(j),k)
        end do
    end do
end do
```

[Problems]

- Continuous memory access for *X* is not available.
 - (In Fortran, arrays are stored in column major order.)
- Coefficient matrix data must be read *L* times from memory.

Efficient matrix-vector multiplication (5)

[Modification]

• We store X and Y in transposed form. (L-row n-column array).

```
do i=1,n
    do j=row_ptr(i), row_ptr(i+1)-1
        do k=1,L
            Y(k,i)=Y(k,i)+val(j)*X(k,col_ind(j))
            end do
        end do
end do
end do
```

- Continuous access (at least L times) can be provided for X.
- Matrix data are read in just once from memory.
- Continuous access can also be provided for *Y*.

Japan-Korea HPC Winter School 2018 Computation of *n*×*L* matrix by *L*×*L* matrix multiplication

• The vectors are transposed, for efficient matrix-vector multiplication.

Continuous access is enabled by transposing. The matrix Alpha is transposed in advance.

Japan-Korea HPC Winter School 2018 Computation of *L*×*n* matrix by *n*×*L* matrix multiplication

- This computation is required to compute α_k and β_k .
- Let us consider the computation of $C_k = P_k^T Q_k$.

do j=1,n
do i=1,L
do k=1,L
C(k,i) = C(k,i) + P(k,j) * Q(i,j)
end do
end do
end do

• We can also maintain continuous memory access in computation of C_k .

Parallelization with OpenMP

- Parallelization interface for shared memory.
- Parallelization can be obtained simply by adding a few lines to the exist program.

Writing as above enables thread start and separate processing in each thread.

(We assume that the following codes are enclosed by

!\$OMP PARALLEL and **!\$OMP END PARALLEL** directives.)

Parallelization with OpenMP

1. Parallelization of matrix-vector multiplication

```
!$OMP DO PRIVATE(j,k)
do i=1,n
    do j=row_ptr(i), row_ptr(i+1)-1
        do k=1,L
            Y(k,i)=Y(k,i)+val(j)*X(k,col_ind(j))
        end do
    end do
end do
end do
```

Simply add **!**\$OMP DO before the first do loop.

Parallelization with OpenMP

2. Parallelization of *n*×*L* matrix by *L*×*L* matrix multiplication

```
!$OMP DO PRIVATE(i,k)
do j=1,n
    do i=1,L
        do k=1,L
            X(k,j)=X(k,j)+Alpha(k,i)*P(i,j)
        end do
    end do
end do
```

Simply add **!**\$OMP DO before the first do loop.

Parallelization with OpenMP

3. Parallelization of *L*×*n* matrix by *n*×*L* matrix multiplication

```
!$OMP SINGLE
do j=1,L
   do i=1,L
      C(i,j) = 0.0D0
   end do
end do
!$OMP END SINGLE
!$OMP DO PRIVATE(i,k) REDUCTION(+:C)
do j=1,n
   do i=1,L
     do k=1,L
        C(k,i) = C(k,i) + dconjg(P(k,j)) * Q(i,j)
     end do
   end do
end do
```

Performance of Matrix-vector multiplication

Number of vectors, L

Execution time of the Matrix-vector multiplication.

- Matrix size : 1,572,864, #nonzero elements : 80,216,064.
- Experimental environment: CPU : Intel Xeon E5-2620v3 2.4GHz \times 2,
- Compiler: gfortran ver. 5.4, Options: -O3 -fopenmp
- Parallelization : 12 OpenMP threads.

Summary

In this lecture, we have considered in particular

- Krylov subspace methods for solving linear systems.
- Methods of implementing and parallelizing matrixvector multiplication for sparse matrices.
- Block Krylov subspace methods, code optimization, and parallelization with OpenMP.