Japan-Korea HPC Winter School 2018

0

Japan-Korea HPC Winter School
- Parallel numerical algorithms 1 -

Hiroto Tadano

tadano@cs.tsukuba.ac.jp

Center for Computational Sciences

University of Tsukuba

Japan-Korea HPC Winter School 2018

0

Contents

e Methods for solving linear systems Ax = b
— Krylov subspace iterative methods
— Storage formats for sparse matrices

— Parallelization of basic linear algebra calculations

e Methods for solving linear systems with
multiple right-hand sides AX =B
— Block Krylov subspace iterative methods
— Parallelization with OpenMP

Japan-Korea HPC Winter School 2018

0

Methods for solving linear systems
Ax=D>b

Japan-Korea HPC Winter School 2018

Analysis of natural and engineering =
-
phenomena O

Approximate solution of

Natural and engineering <r1: partial differential
phenomena equations
Analysis

@ Modeling ﬁ Solve Ax=b

Initial / Boundary value Linear svstems
problems of partial differential jl> A 4 b
. X =
equations Discretization

Linear systems appear in many scientific applications.

However, the solution of linear systems 1s the most time-consuming part.

Japan-Korea HPC Winter School 2018

Linear systems

Linear systems : Ax = b

a ap Ain X1 b1

ay, ay o X2 b
A — . . x — R b —

anl 4% UAnn Xn bn

Linear systems appear in many scientific applications.
However, the solution of linear systems 1s the most time-consuming part.

0

Japan-Korea HPC Winter School 2018

Direct methods and iterative methods @

Direct methods

Gaussian elimination, LU factorization, etc.

1) We can always obtain solution in a finite number of operations.

2) Number of nonzero elements increases in transformation of

coefficient matrix A.

—~ We cannot utilize coefficient matrix sparsity.

Japan-Korea HPC Winter School 2018

Direct methods S

@ Gaussian elimination method

Ax — b Ux = b,
ailp dip ... dig X1 b1 uilp U1 ... Uy X1 bl
/
a1 dr» ... Ay X2 bz Uy ... Uy X2 b2
/
a, ap ... Ay 1l x, 1 | b, | : O U 1L xy I LD,

@ LU decomposition method
Ux =b

_ () upp U . U X1] [br
) Uy ... Uy, X2 b2

The coefficient matrix A
is only transformed. O

Japan-Korea HPC Winter School 2018

Direct methods: Gaussian Elimination S5
Step 1. Uy Uy ... U || X1 [bll]
Transtform the matrix A of the linear [0 y,, ... uy, || xo v,
system Ax = b to an upper triangular| - . . - S el I
matrix U. O 0 Mnn Xn b
- Computational complexity : n3 /3. - M ’\xf-“ T
Step 2.

Solve the linear system Ux = b’ by backward substitution with
the following recursion formula.
Xi = (0! — Uij1Xip1 — - — UinXy) Uiy, T=n,n—1,...,1

- Computational complexity : n?/ 2.

Japan-Korea HPC Winter School 2018

Direct methods: LU decomposition @

Step 1.
Perform the LU decomposition of the coefficient matrix A.

A=LU
L : Lower triangular matrix, U : Upper triangular matrix.

- Computational complexity : n?/ 3.

] O_ [Ui, U122 ... Uy 11 X1 | [bl]
12,1 1 Uy ... Uy X2 bz
B ln’l ln’z o o o 1 1L O un,n 1L .Xn B | bn B

- — - -

h
< <

Japan-Korea HPC Winter School 2018

Direct methods: LU decomposition @

Step 2. Find x using forward / backward substitution.

1) Solve Ly = b for y by forward substitution. Here, y = Ux.

1
12’1 1
| ln,l ln,2 e

2) Solve Ux =y for x by backward substitution.

0

[ui,r UUip ...
Uro ...

- Computational complexity : n?.

O (yvi] [D1]
y2)
Lily,]l Lby]
U, || x1 [V1|
U n X2 Y2
Unpn 1L Xn L Vn |

10

Japan-Korea HPC Winter School 2018

Direct methods and iterative methods @

Iterative methods

Krylov subspace methods
1) Required operations are
* Multiplication of a coefficient matrix and a vector : Au

« Inner product of vectors : (u,v) = u'v

* Constant times a vector plus a vector (AXPY) : au +v

__~ We can utilize coefficient matrix sparsity.

2) Some problems may require many number of iterations

11

Japan-Korea HPC Winter School 2018

Krylov subspace methods S

* X, 1s an initial guess. The vector x, 1s k-th approximate solution of
the linear system Ax = b. x, is updated by the iteration process.

o K(A;rop) is called a Krylov subspace. This subspace is spanned by
the vectors r,, Ar,, ..., A'r,.

e The vector r, = b — Ax, is called an initial residual vector.
X0 + Ki(A; ro)

xo + Ki—1(A4; rp)

o=

Sketch of Krylov subspace methods. -12-

Japan-Korea HPC Winter School 2018

Methods for symmetric matrix (&

1. Coefficient matrix is a symmetric matrix (A =AT)

* Conjugate Gradient (CG) method
* Conjugate Residual (CR) method
* Minimal Residual (MINRES) method

Using the symmetric property of the coetficient matrix A,
algorithms with short recurrence formula (low computational

complexity) can be obtained.

13

Japan-Korea HPC Winter School 2018

Algorithm of the CG method S

Xo 1S an 1nitial guess,

Compute ry = b — Axy,
Set py = ro,
Fork=0,1,...,until ||r:|, < etoL||b]|, do :

i = Apr, <—s== Matrix-vector multiplicationl
(g, 1) . et
= (pr.qy ——_Inner product |
Xial = Xi + Q.
k+1 k kPk AXPY
Fi+1 = Tk — O 4k, {—I
B, (P+15Tkt1) : F
o) <% nner produc I
DPik+1 = Tir1 + BkPr <#AXPY I

End For

14

Japan-Korea HPC Winter School 2018

Relative residual history of the CG method (@‘}

E 100 | I | | I |
= i 7 | In this figure, the iteration is
= 103} 1 | stopped when the condition
- - 12
§ i] Irill2/1lbll2 < 10
6 .
S U 1 | is satisfied.
ER 17
S 107} ;
> I
2 [
% 10'12 1 1 1 1 1 1
=~ 0 100 200 300

Iteration number, k

The relative residual norm ||r¢||>/||b||>is monitored during the iterations.
If the condition ||r¢|l2/11bll>» < eroL is satisfied, the iteration is stopped.

Then, the approximate solution x, 1s employed as the solution.
- 15 -

Japan-Korea HPC Winter School 2018

Methods for non-symmetric matrix (&

2. Coefficient matrix is a non-symmetric matrix (4 # A")

Methods using short-term recursions
* Bi-Conjugate Gradient (BiCG) method
* Conjugate Gradient Squared (CGS) method
- BiCG Stabilization (BiICGSTAB) method

Computational complexity is low, but the residual norm does
—~" not monotonically decrease.

Methods using long-term recursions
* Generalized Conjugate Residual (GCR) method

* Generalized Minimal Residual (GMRES) method

Residual norm monotonically decreases, but a large computational

— complexity 1s required. - 16 -

Japan-Korea HPC Winter School 2018

Algorithm of the BiCG method S

Xp 1s an initial guess,

Compute ry = b — Axy,
Choose r; such that (rj, ry) # 0,
Set py = ro and p; = ry,

For k = O, 1, ce e until ||l’k||2 < 8TQL| b||2 do:
4 = Apx, q; = A'p;,
(r,, r) Matri P
a = — : atrix-vector multiplication
(P;> qx)

Inner product

Xi+1 = Xg + Qp Prs

Pl = Fe— Qg | | 1y = 1 — arq,,| [|AXPY
£3

Br = :

(r, ro)

Pkl = Tiel + BiDis\\Pryy = Ty + By
End For

17

Japan-Korea HPC Winter School 2018

Algorithm of the GCR method <X

X 1s an initial guess,
Compute ro = b — Axy,
Set pp = rp and gy = 5o = Ary,

For k=0,1,...,until ||r |, < etoL||bl|> do :
_ (qr, 1)
a/k - ’
(qr> q1)

Xk+1 = Xk + QPr,
Fi+1 = Ik — Qi 4k,
Sk+1 = AFiqd,

_ (qis Sk+1)
Bii = —————

(Cli,qki) ,
Pt = Tie1 + Y BriDis
i=0

@i=0,1,...,k)

* The number of matrix-vector multiplications per
- iteration 1s 1.
Gi+1 = Sk+1 t Z Briqi» * This method requires large computational
End For =0 complexity and memory requirement.
e Computational complexity and memory requirement

can be reduced by restart technique.

18

Japan-Korea HPC Winter School 2018
Convergence properties of iterative @
=/

methods

~ 100 I T | | | |

§ _

= 107 "\, -

:ﬁ — gy ‘ —

S 100 \' H']

!

5 A

z 10°} .

& N i

)

m 10'12 I l l \ I L]
0 100 200 300

Iteration number, &

Relative residual norm histories of iterative methods.
B BiCG, B : CGS, B : BiCGSTAB, H : GCR.

Japan-Korea HPC Winter School 2018

Example of sparse matrix S
2D Poisson problem ly “ 052
*u 0%u ,
{ 6x2+6y2:f’ in Q Q
u =1, on 0Q)
f, u are given functions

0 i
The region Q 1s divided into (M+1) equal parts in x, y directions
and discretized by central difference with S-points.

I
N

A linear system with matrix of order M? can be obtained.

- Total number of elements in matrix : M*
- Number of nonzero elements: SM? —4M

20

Japan-Korea HPC Winter School 2018
Sparse matrix storage format

Compressed Row Storage (CRS) format
Search row-wise for nonzero elements

0

a0 apy 0 aps] val stores nonzero elements of A.

0 axn 0 ay as col_ind stores column number of nonzero
A=laz ax ayxz 0 0

0 0 aq3 dqq 0
| U asp U as4 as5 1 row_ptr stores location of first nonzero

elements of A.

element in each row.

val: |aii|az|ais|ax|ara|azs|asr|asz|ass|aas|asa|asy|asal|ass

col_ind: [1 |3 |5 |24 |S5|1]123|3]4|2]4]35

row ptr: |1]4]17]110] 12| 15 The last entry 1s the number
of nonzero elements + 1 a1

Sparse matrix storage format

[a1

0

val:
row_ind:

col_ptr:

U ax 0 axy ax
A= asz1 dzp dsjs 0 0

Japan-Korea HPC Winter School 2018

Compressed Column Storage (CCS) format
Search column-wise for nonzero elements

0

O a3 0 ajs] val

O a4z ass O

row_ind

| U as; 0 asq as51 col ptr

stores nonzero elements of A.
stores row number of nonzero
elements of A.

stores location of first nonzero

element in each column.

ai]|asp |az2|asz2|asz2|ais

a3z |d431a24 |A44 |ds54|A15 | A25 |A55

1131213]5]|1

4121415111215

1131619112

15

The last entry 1s the number

of nonzero elements + 1. _ -

Japan-Korea HPC Winter School 2018

Matrix-vector multiplication CRS format @

Multiplication of matrix A and vector x for y =Ax

Cyvi] [an a2 ... ap || x|
Y2 d; dyp ... dp X2
. Vn | | dpl an Apn 1L Xn |

Fortran code

do i=1,n
y(i) = 0.0DO
do j=row ptr(i), row ptr(i+l)-1

y(i) = y(i)+val(j)*x(col_ind(]))
end do
end do

23

Japan-Korea HPC Winter School 2018

Matrix-vector multiplication CCS format @

Multiplication of matrix A and vector x for y = Ax

X1
X2 n
y:[a19a2a---aan] : :Zaixi
i=1
| Xn

Fortran code
do i=1,n
vy(i) = 0.0DO
end do
do j=1,n

do i=col ptr(j),col ptr(j+l)-1
y(row ind(i)) = y(row ind(i))+val(i)*x(])
end do
end do

Japan-Korea HPC Winter School 2018

Parallelization of matrix-vector

multiplication
* y=Ax in CRS format

0

Proc. 0
Proc. 1
sk —
Proc. 2
Proc.3
A X Yy
x is stored in all Gather to Proc. 0

processes by MPI_Gather

25

Japan-Korea HPC Winter School 2018

Parallelization of matrix-vector

multiplication
* y=Ax in CCS format

0

S | e | N | en
g | S| g & = I
o A A T I *“ R R =
Be | B | R | R
A X y

Sum results by MPI_Reduce

and send to Proc. 0 e

Japan-Korea HPC Winter School 2018
Parallelization of inner products &3
(X,y) = Z XjY;

j=1
Proc. 0 Proc. 1 Proc. 2 Proc. 3

tmp sum tmp sum tmp sum tmp sum

N\

sum
Gather to Proc. 0 by MPI_Reduce

27

Japan-Korea HPC Winter School 2018

Example of MPI code

program main
include 'mpif.h’
call mpi init(ierr)
call mpi comm size(mpi comm world, nprocs, ierr)
call mpi comm rank(mpi comm world, myrank, ierr)
tmp sum = 0.0DO
do i=istart (myrank+l), iend(myrank+1l)
tmp sum = tmp sum + x(i) * y(1)
end do

call mpi reduce(tmp sum, sum, 1, mpi double precision,
mpi sum, O, mpi comm world, ierr)

call mpi finalize(ierr)

. . . Japan-Korea HPC Winter School 2018
Parallelization of constant times

a vector plus a vector

0

y=y+ax, a:scalar, x,y: vector.

Send a scalar «a to all processes by MPI_Bcast

Proc. 0 Proc. 1 Proc. 2 Proc. 3

a MPI Bcast

a a a a

X X X X
X

+ + + +

29

Japan-Korea HPC Winter School 2018

0

Methods for linear systems
with multiple right-hand sides
AX =B

Japan-Korea HPC Winter School 2018
Linear systems with multiple right-hand

. S.,‘
sides
- Linear systems with L right-hand sides ~N
AX=B
where, A 1s a matrix of order n and
X = [x0,x®, x|, B= (D52, pD]
\ 9 9 9 9 9 9 9 j

Solution by Direct methods
* Complete factorization (e.g., A = LU) of the matrix A is required.
- If complete factorization is possible, then we can solve the system
by L forward and backward substitutions.
* Large computational complexity and memory usage are required

for complete factorization.

31

Japan-Korea HPC Winter School 2018

Block Krylov subspace methods (&

Types of Block Krylov subspace methods

4 I
* Block BiCG O’Leary (1980)
- Block GMRES Vital (1990)
* Block QMR Freund (1997)
* Block BiCGSTAB Guennouni (2003)
% Block BiCGGR Tadano (2009) Y

We can efficiently obtain solution vectors by using
Block Krylov subspace methods.

32

Japan-Korea HPC Winter School 2018

Block Krylov subspace methods (&

What is the meaning of “good efficiency” ?
> EResidual may converge in fewer iterations than Krylov }

subspace methods for single right-hand side.

Relative residual norm

10'14 i l I l l
0 500 1000 1500 2000

Iteration number

Relative residual histories of the Block BICGSTAB methods.
Mm:L.=1, B:L=2 B L=4

33

Japan-Korea HPC Winter School 2018

Block CG method

0

Xo € R™I is an initial guess, Differences from CG method
Compute R, = B — AX,, 1. The number of matrix-vector
Set Py = Ry, multiplications is increased from
, l1tolL.
For k=0,1,...,until |Ri|[r £ eroL||Bl|r do:)
2. o, and 5, become matrices of
= AP
2 o order L.
T — pT
Solve (P, Q)ax = Ry Ry for a, 3. AXPY calculation becomes matrix-
Xi+1 = Xy + Pray, matrix multiplications.

Ri+1 = R — Oray,
Solve (R, Ri)Bx = R, Ri+1 for Sy,
Pii1 = Riv1 + PrpBr,

End For

34

Japan-Korea HPC Winter School 2018

Efficient matrix-vector multiplication <§\)
* Let the matrix A be stored in CRS format.
* Compute Y = AX. Y and X are n-row L-column arrays.
do k=1,L
do i=1,n

do j=row ptr(i), row ptr(i+l)-1

Y(i,k)=Y(1i,k)+val(j)*X(col _ind(j) , k)
end do

end do

end do
| Problems |
* Continuous memory access for X 1s not available.
(In Fortran, arrays are stored in column major order.)

* Coetficient matrix data must be read L times from memory. _,._

Japan-Korea HPC Winter School 2018

Efficient matrix-vector multiplication @

| Modification |
* We store X and Y in transposed form. (L-row n-column array).

do i=1,n
do j=row ptr(i), row ptr(i+l)-1
do k=1,L

Y(k,1)=¥Y(k,i)+val(j)*X(k,col ind(j))

end do

end do

end do

* Continuous access (at least L times) can be provided for X.
* Matrix data are read in just once from memory.

* Continuous access can also be provided for Y. -

Japan-Korea HPC Winter School 2018

Computat.lon of nxL m.atl'lX by @
LxL matrix multiplication ==

* The vectors are transposed, for efficient matrix-vector multiplication.

Transposition
T T T pT
Xiy1 = Xi + Prag |:> Xk+1 :Xk +a/kPk

do j=1,n

do i=1,L
do k=1,L
X(k,j) = X(k,j) + Alpha(k,i) * P(i,j)
end do
end do

end do

Continuous access 1s enabled by transposing.

The matrix Alpha is transposed in advance. e

Japan-Korea HPC Winter School 2018

Computation of Lxn matrix by
=)
nxL matrix multiplication @

* This computation is required to compute ¢, and S,.

+ Let us consider the computation of Cy = P; Oy.

do j=1,n
do i=1,L
do k=1,L

C(k,1) = C(k,1) + P(k,3) * Q(i,])

end do

end do

end do

* We can also maintain continuous memory access in computation of C,.

38

Japan-Korea HPC Winter School 2018

Parallelization with OpenMP S

* Parallelization interface for shared memory.

* Parallelization can be obtained simply by adding a few lines to the
exist program.

1SOMP PARALLEL
[Codes]

1SOMP END PARALLEL

Writing as above enables thread start and separate processing
in each thread.
(We assume that the following codes are enclosed by
1SOMP PARALLEL and ! SOMP END PARALLEL directives.)

39

Japan-Korea HPC Winter School 2018

Parallelization with OpenMP =N

1. Parallelization of matrix-vector multiplication

1SOMP DO PRIVATE (Jj,k)
do i=1,n
do j=row ptr(i), row ptr(i+l)-1
do k=1,L

Y(k,1)=Y(k,i)+val(j)*X(k,col ind(j))

end do

end do

end do

Simply add ! SOMP DO before the first do loop.

40

Japan-Korea HPC Winter School 2018

Parallelization with OpenMP =N

2. Parallelization of nxL matrix by LxL matrix multiplication

I1SOMP DO PRIVATE(1i,k)
do j=1,n

do i=1,L
do k=1,L
X(k,j)=X(k,j)+Alpha(k,i)*P(1i,])
end do
end do
end do

Simply add ! SOMP DO before the first do loop.

41

Japan-Korea HPC Winter School 2018

Parallelization with OpenMP =N

3. Parallelization of Lxn matrix by nxL matrix multiplication

!SOMP SINGLE
do j=1,L
do i=1,L
C(i,j) = 0.0DO
end do
end do
!SOMP END SINGLE

1$SOMP DO PRIVATE(i,k) REDUCTION(+:C)
do j=1,n
do i=1,L
do k=1,L
c(k,i) = c(k,i) + dconjg(P(k,3j)) * Q(i,J)
end do
end do
end do

42

Japan-Korea HPC Winter School 2018
Performance of Matrix-vector

multiplication

0.07 . | | |

0

0.06 + —e&— Modified implementation
—e— Naive implementation

0.05
0.04
0.03
0.02
0.01 + -

0.00 0 10 20 30 40 50

Execution time / L [sec]

Number of vectors, L

Execution time of the Matrix-vector multiplication.
e Matrix size : 1,572,864, #nonzero elements : 80,216,064,
* Experimental environment: CPU : Intel Xeon E5-2620v3 2.4GHz x 2,
* Compiler: gfortran ver. 5.4, Options: -03 -fopenmp

* Parallelization : 12 OpenMP threads. —43 -

Japan-Korea HPC Winter School 2018

Summary

0

In this lecture, we have considered in particular
* Krylov subspace methods for solving linear systems.
* Methods of implementing and parallelizing matrix-
vector multiplication for sparse matrices.
* Block Krylov subspace methods, code optimization,

and parallelization with OpenMP.

44

