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Methods for solving linear systems
Ax=D>b
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Analysis of natural and engineering =
-
phenomena O

Approximate solution of

Natural and engineering <r1: partial differential
phenomena equations
Analysis

@ Modeling ﬁ Solve Ax=b

Initial / Boundary value Linear svstems
problems of partial differential jl> A 4 b
. X =
equations Discretization

Linear systems appear in many scientific applications.

However, the solution of linear systems 1s the most time-consuming part.
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Linear systems

Linear systems : Ax = b

a ap Ain X1 b1

ay, ay o X2 b
A — . . x — R b —

anl 4% UAnn Xn bn

Linear systems appear in many scientific applications.
However, the solution of linear systems 1s the most time-consuming part.

0
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Direct methods and iterative methods @

Direct methods

Gaussian elimination, LU factorization, etc.

1) We can always obtain solution in a finite number of operations.

2) Number of nonzero elements increases in transformation of

coefficient matrix A.

—~ We cannot utilize coefficient matrix sparsity.
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Direct methods S

@ Gaussian elimination method

Ax — b Ux = b,
ailp dip ... dig X1 b1 uilp U1 ... Uy X1 bl
/
a1 dr» ... Ay X2 bz Uy ... Uy X2 b2
/
a, ap ... Ay 1l x, 1 | b, | : O U 1L xy I LD,

@ LU decomposition method
Ux =b

_ () upp U . U X1 ] [br
) Uy ... Uy, X2 b2

The coefficient matrix A
is only transformed. O
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Direct methods: Gaussian Elimination S5
Step 1. Uy Uy ... U || X1 [ bll ]
Transtform the matrix A of the linear [ 0 y,, ... uy, || xo v,
system Ax = b to an upper triangular| - . . - S el I
matrix U. O 0 Mnn Xn b
- Computational complexity : n3 /3. - M ’\xf-“ T
Step 2.

Solve the linear system Ux = b’ by backward substitution with
the following recursion formula.
Xi = (0! — Uij1Xip1 — - — UinXy) Uiy, T=n,n—1,...,1

- Computational complexity : n?/ 2.
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Direct methods: LU decomposition @

Step 1.
Perform the LU decomposition of the coefficient matrix A.

A=LU
L : Lower triangular matrix, U : Upper triangular matrix.

- Computational complexity : n?/ 3.

] O_ [ Ui, U122 ... Uy 11 X1 | [ bl ]
12,1 1 Uy ... Uy X2 bz
B ln’l ln’z o o o 1 1L O un,n 1L .Xn B | bn B

- — - -

h
< <
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Direct methods: LU decomposition @

Step 2. Find x using forward / backward substitution.

1) Solve Ly = b for y by forward substitution. Here, y = Ux.

1
12’1 1
| ln,l ln,2 e

2) Solve Ux =y for x by backward substitution.

0

[ ui,r UUip ...
Uro ...

- Computational complexity : n?.

O (yvi ] [ D1 ]
y2 )
Lily, ]l Lby]
U, || x1 [ V1|
U n X2 Y2
Unpn 1L Xn L Vn |

_10_
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Direct methods and iterative methods @

Iterative methods

Krylov subspace methods
1) Required operations are
* Multiplication of a coefficient matrix and a vector : Au

« Inner product of vectors : (u,v) = u'v

* Constant times a vector plus a vector (AXPY) : au +v

__~ We can utilize coefficient matrix sparsity.

2) Some problems may require many number of iterations

_11_
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Krylov subspace methods S

* X, 1s an initial guess. The vector x, 1s k-th approximate solution of
the linear system Ax = b. x, is updated by the iteration process.

o K(A;rop) is called a Krylov subspace. This subspace is spanned by
the vectors r,, Ar,, ..., A'r,.

e The vector r, = b — Ax, is called an initial residual vector.
X0 + Ki(A; ro)

xo + Ki—1(A4; rp)

o=

Sketch of Krylov subspace methods. -12-
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Methods for symmetric matrix (&

1. Coefficient matrix is a symmetric matrix (A =AT)

* Conjugate Gradient (CG) method
* Conjugate Residual (CR) method
* Minimal Residual (MINRES) method

Using the symmetric property of the coetficient matrix A,
algorithms with short recurrence formula (low computational

complexity) can be obtained.

_13_
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Algorithm of the CG method S

Xo 1S an 1nitial guess,

Compute ry = b — Axy,
Set py = ro,
Fork=0,1,...,until ||r:|, < etoL||b]|, do :

i = Apr, <—s== Matrix-vector multiplicationl
(g, 1) . et
= (pr.qy ——_Inner product |
Xial = Xi + Q.
k+1 k kPk AXPY
Fi+1 = Tk — O 4k, {—I
B, (P+15Tkt1) : F
o) <% nner produc I
DPik+1 = Tir1 + BkPr <#AXPY I

End For

_14_
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Relative residual history of the CG method (@‘}

E 100 | I | | I |
= i 7 | In this figure, the iteration is
= 103} 1 | stopped when the condition
- - 12
§ i ] Irill2/1lbll2 < 10
6 .
S U 1 | is satisfied.
ER 17
S 107} ;
> I
2 [
% 10'12 1 1 1 1 1 1
=~ 0 100 200 300

Iteration number, k

The relative residual norm ||r¢||>/||b||>is monitored during the iterations.
If the condition ||r¢|l2/11bll>» < eroL is satisfied, the iteration is stopped.

Then, the approximate solution x, 1s employed as the solution.
- 15 -
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Methods for non-symmetric matrix (&

2. Coefficient matrix is a non-symmetric matrix (4 # A")

Methods using short-term recursions
* Bi-Conjugate Gradient (BiCG) method
* Conjugate Gradient Squared (CGS) method
- BiCG Stabilization (BiICGSTAB) method

Computational complexity is low, but the residual norm does
—~" not monotonically decrease.

Methods using long-term recursions
* Generalized Conjugate Residual (GCR) method

* Generalized Minimal Residual (GMRES) method

Residual norm monotonically decreases, but a large computational

— complexity 1s required. - 16 -
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Algorithm of the BiCG method S

Xp 1s an initial guess,

Compute ry = b — Axy,
Choose r; such that (rj, ry) # 0,
Set py = ro and p; = ry,

For k = O, 1, ce e until ||l’k||2 < 8TQL| b||2 do:
4 = Apx, q; = A'p;,
(r,, r) Matri P
a = — : atrix-vector multiplication
(P;> qx)

Inner product

Xi+1 = Xg + Qp Prs

Pl = Fe— Qg | | 1y = 1 — arq,,| [|AXPY
£3

Br = :

(r, ro)

Pkl = Tiel + BiDis\\Pryy = Ty + By
End For

_17_
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Algorithm of the GCR method <X

X 1s an initial guess,
Compute ro = b — Axy,
Set pp = rp and gy = 5o = Ary,

For k=0,1,...,until ||r |, < etoL||bl|> do :
_ (qr, 1)
a/k - ’
(qr> q1)

Xk+1 = Xk + QPr,
Fi+1 = Ik — Qi 4k,
Sk+1 = AFiqd,

_ (qis Sk+1)
Bii = —————

(Cli,qki) ,
Pt = Tie1 + Y BriDis
i=0

@i=0,1,...,k)

* The number of matrix-vector multiplications per
- iteration 1s 1.
Gi+1 = Sk+1 t Z Briqi» * This method requires large computational
End For =0 complexity and memory requirement.
e Computational complexity and memory requirement

can be reduced by restart technique.

_18_
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Convergence properties of iterative @
=/

methods

~ 100 I T | | | |

§ _
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Iteration number, &

Relative residual norm histories of iterative methods.
B BiCG, B : CGS, B : BiCGSTAB, H : GCR.



Japan-Korea HPC Winter School 2018

Example of sparse matrix S
2D Poisson problem ly “ 052
*u  0%u ,
{ 6x2+6y2:f’ in Q Q
u =1, on 0Q)
f, u are given functions

0 i
The region Q 1s divided into (M+1) equal parts in x, y directions
and discretized by central difference with S-points.

I
N

A linear system with matrix of order M? can be obtained.

- Total number of elements in matrix : M*
- Number of nonzero elements: SM? —4M

_20_
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Sparse matrix storage format

Compressed Row Storage (CRS) format
Search row-wise for nonzero elements

0

a0 apy 0 aps] val stores nonzero elements of A.

0 axn 0 ay as col_ind stores column number of nonzero
A=laz ax ayxz 0 0

0 0 aq3 dqq 0
| U asp U as4 as5 1 row_ptr stores location of first nonzero

elements of A.

element in each row.

val: |aii|az|ais|ax|ara|azs|asr|asz|ass|aas|asa|asy|asal|ass

col_ind: [ 1 |3 |5 |24 |S5|1]123|3]4|2]4]35

row ptr: |1 ]4]17]110] 12| 15 The last entry 1s the number
of nonzero elements + 1 a1




Sparse matrix storage format

[ a1

0

val:
row_ind:

col_ptr:

U ax 0 axy ax
A= asz1 dzp dsjs 0 0
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Compressed Column Storage (CCS) format
Search column-wise for nonzero elements

0

O a3 0 ajs] val

O a4z ass O

row_ind

| U as; 0 asq as51 col ptr

stores nonzero elements of A.
stores row number of nonzero
elements of A.

stores location of first nonzero

element in each column.

ai]|asp |az2|asz2|asz2|ais

a3z |d431a24 |A44 |ds54|A15 | A25 |A55

1131213 ]5]|1

4121415111215

1131619112

15

The last entry 1s the number

of nonzero elements + 1. _ -
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Matrix-vector multiplication CRS format @

Multiplication of matrix A and vector x for y =Ax

Cyvi ] [ an a2 ... ap || x|
Y2 d; dyp ... dp X2
. Vn | | dpl an Apn 1L Xn |

Fortran code

do i=1,n
y(i) = 0.0DO
do j=row ptr(i), row ptr(i+l)-1

y(i) = y(i)+val(j)*x(col_ind(]))
end do
end do

_23_
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Matrix-vector multiplication CCS format @

Multiplication of matrix A and vector x for y = Ax

X1
X2 n
y:[a19a2a---aan] : :Zaixi
i=1
| Xn

Fortran code
do i=1,n
vy(i) = 0.0DO
end do
do j=1,n

do i=col ptr(j),col ptr(j+l)-1
y(row ind(i)) = y(row ind(i))+val(i)*x(])
end do
end do
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Parallelization of matrix-vector

multiplication
* y=Ax in CRS format

0

Proc. 0
Proc. 1
sk —
Proc. 2
Proc.3
A X Yy
x is stored in all Gather to Proc. 0

processes by MPI_Gather

_25_
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Parallelization of matrix-vector

multiplication
* y=Ax in CCS format

0

S | e | N | en
g | S| g & = I
o A A T I *“ R R =
Be | B | R | R
A X y

Sum results by MPI_Reduce

and send to Proc. 0 e
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Parallelization of inner products &3
(X,y) = Z XjY;

j=1
Proc. 0 Proc. 1 Proc. 2 Proc. 3

tmp sum tmp sum tmp sum tmp sum

N\

sum
Gather to Proc. 0 by MPI_Reduce

_27_
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Example of MPI code

program main
include 'mpif.h’
call mpi init(ierr)
call mpi comm size(mpi comm world, nprocs, ierr)
call mpi comm rank(mpi comm world, myrank, ierr)
tmp sum = 0.0DO
do i=istart (myrank+l), iend(myrank+1l)
tmp sum = tmp sum + x(i) * y(1)
end do

call mpi reduce(tmp sum, sum, 1, mpi double precision,
mpi sum, O, mpi comm world, ierr)

call mpi finalize(ierr)
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Parallelization of constant times

a vector plus a vector

0

y=y+ax, a:scalar, x,y: vector.

Send a scalar «a to all processes by MPI_Bcast

Proc. 0 Proc. 1 Proc. 2 Proc. 3

a MPI Bcast

a a a a

X X X X
X

+ + + +

_29_
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0

Methods for linear systems
with multiple right-hand sides
AX =B



Japan-Korea HPC Winter School 2018
Linear systems with multiple right-hand

. S.,‘
sides
- Linear systems with L right-hand sides ~N
AX=B
where, A 1s a matrix of order n and
X = [x0,x®, x|, B= (D52, pD]
\ 9 9 9 9 9 9 9 j

Solution by Direct methods
* Complete factorization (e.g., A = LU) of the matrix A is required.
- If complete factorization is possible, then we can solve the system
by L forward and backward substitutions.
* Large computational complexity and memory usage are required

for complete factorization.

_31_
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Block Krylov subspace methods (&

Types of Block Krylov subspace methods

4 I
* Block BiCG O’Leary (1980)
- Block GMRES Vital (1990)
* Block QMR Freund (1997)
* Block BiCGSTAB Guennouni (2003)
% Block BiCGGR Tadano (2009) Y

We can efficiently obtain solution vectors by using
Block Krylov subspace methods.

_32_
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Block Krylov subspace methods (&

What is the meaning of “good efficiency” ?
> EResidual may converge in fewer iterations than Krylov }

subspace methods for single right-hand side.

Relative residual norm

10'14 i l I l l
0 500 1000 1500 2000

Iteration number

Relative residual histories of the Block BICGSTAB methods.
Mm:L.=1, B:L=2 B L=4

_33_
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Block CG method

0

Xo € R™I is an initial guess, Differences from CG method
Compute R, = B — AX,, 1. The number of matrix-vector
Set Py = Ry, multiplications is increased from
, l1tolL.
For k=0,1,...,until |Ri|[r £ eroL||Bl|r do: )
2. o, and 5, become matrices of
= AP
2 o order L.
T — pT
Solve (P, Q)ax = Ry Ry for a, 3. AXPY calculation becomes matrix-
Xi+1 = Xy + Pray, matrix multiplications.

Ri+1 = R — Oray,
Solve (R, Ri)Bx = R, Ri+1 for Sy,
Pii1 = Riv1 + PrpBr,

End For

_34_
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Efficient matrix-vector multiplication <§\)
* Let the matrix A be stored in CRS format.
* Compute Y = AX. Y and X are n-row L-column arrays.
do k=1,L
do i=1,n

do j=row ptr(i), row ptr(i+l)-1

Y(i,k)=Y(1i,k)+val(j)*X(col _ind(j) , k)
end do

end do

end do
| Problems |
* Continuous memory access for X 1s not available.
( In Fortran, arrays are stored in column major order. )

* Coetficient matrix data must be read L times from memory.  _,._
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Efficient matrix-vector multiplication @

| Modification |
* We store X and Y in transposed form. ( L-row n-column array ).

do i=1,n
do j=row ptr(i), row ptr(i+l)-1
do k=1,L

Y(k,1)=¥Y(k,i)+val(j)*X(k,col ind(j))

end do

end do

end do

* Continuous access ( at least L times ) can be provided for X.
* Matrix data are read in just once from memory.

* Continuous access can also be provided for Y. -
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Computat.lon of nxL m.atl'lX by @
LxL matrix multiplication ==

* The vectors are transposed, for efficient matrix-vector multiplication.

Transposition
T T T pT
Xiy1 = Xi + Prag |:> Xk+1 :Xk +a/kPk

do j=1,n

do i=1,L
do k=1,L
X(k,j) = X(k,j) + Alpha(k,i) * P(i,j)
end do
end do

end do

Continuous access 1s enabled by transposing.

The matrix Alpha is transposed in advance. e
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Computation of Lxn matrix by
=)
nxL matrix multiplication @

* This computation is required to compute ¢, and S,.

+ Let us consider the computation of Cy = P; Oy.

do j=1,n
do i=1,L
do k=1,L

C(k,1) = C(k,1) + P(k,3) * Q(i,])

end do

end do

end do

* We can also maintain continuous memory access in computation of C,.

_38_
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Parallelization with OpenMP S

* Parallelization interface for shared memory.

* Parallelization can be obtained simply by adding a few lines to the
exist program.

1SOMP PARALLEL
[ Codes ]

1SOMP END PARALLEL

Writing as above enables thread start and separate processing
in each thread.
( We assume that the following codes are enclosed by
1SOMP PARALLEL and ! SOMP END PARALLEL directives.)

_39_
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Parallelization with OpenMP =N

1. Parallelization of matrix-vector multiplication

1SOMP DO PRIVATE (Jj,k)
do i=1,n
do j=row ptr(i), row ptr(i+l)-1
do k=1,L

Y(k,1)=Y(k,i)+val(j)*X(k,col ind(j))

end do

end do

end do

Simply add ! SOMP DO before the first do loop.

_40_



Japan-Korea HPC Winter School 2018

Parallelization with OpenMP =N

2. Parallelization of nxL matrix by LxL matrix multiplication

I1SOMP DO PRIVATE(1i,k)
do j=1,n

do i=1,L
do k=1,L
X(k,j)=X(k,j)+Alpha(k,i)*P(1i,])
end do
end do
end do

Simply add ! SOMP DO before the first do loop.

_41_
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Parallelization with OpenMP =N

3. Parallelization of Lxn matrix by nxL matrix multiplication

!SOMP SINGLE
do j=1,L
do i=1,L
C(i,j) = 0.0DO
end do
end do
!SOMP END SINGLE

1$SOMP DO PRIVATE(i,k) REDUCTION(+:C)
do j=1,n
do i=1,L
do k=1,L
c(k,i) = c(k,i) + dconjg(P(k,3j)) * Q(i,J)
end do
end do
end do

_42_



Japan-Korea HPC Winter School 2018
Performance of Matrix-vector

multiplication

0.07 . | | |

0

0.06 + —e&— Modified implementation
—e— Naive implementation

0.05
0.04
0.03
0.02
0.01 + -

0.00 0 10 20 30 40 50

Execution time / L [sec]

Number of vectors, L

Execution time of the Matrix-vector multiplication.
e Matrix size : 1,572,864, #nonzero elements : 80,216,064,
* Experimental environment: CPU : Intel Xeon E5-2620v3 2.4GHz x 2,
* Compiler: gfortran ver. 5.4, Options: -03 -fopenmp

* Parallelization : 12 OpenMP threads. —43 -
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Summary

0

In this lecture, we have considered in particular
* Krylov subspace methods for solving linear systems.
* Methods of implementing and parallelizing matrix-
vector multiplication for sparse matrices.
* Block Krylov subspace methods, code optimization,

and parallelization with OpenMP.

_44_



