

Data-Flow Hardware Optimization by Design Space Exploration

Kentaro Sano

Processor Research Team, AICS, Riken

GSIS, Tohoku University

12 Mar, 2018

FPT'18

Naha

International Conference on Field-Programmable Technology Naha, Okinawa, JAPAN, Dec 10-14, 2018

12 Mar, 2018

This Talk

- FPGA-based data-flow
- Data-flow compiler for FPGA
- Optimization for hardware mapping
- Case study
- Summary & future work

Data-flow computing

Int'l Workshop on FPGA for HPC

12 Mar, 2018

No More Cores. Multi-Core will End.

This is because …

Dark silicon and

more expensive transistors

✓ 75% must be off for 7nm chip.

Latency-sensitive architecture

von Neumann with
+ memory-update cycle

+ control cycle

Inefficient data

movement between cores

 Read and write of memory hierarchy (scratch pad / cache)

🔓 🧰 🌆 🍯

Int'l Workshop on FPGA for HPC

12 Mar, 2018

What we need ?

Dark silicon and

more expensive transistors

✓ 75% must be off for 7nm chip.

Latency-sensitive architecture

von Neumann with
+ memory-update cycle

+ control cycle

Inefficient data-

movement between cores

 Read and write of memory hierarchy (scratch pad / cache) More efficient use of transistor-switching for necessary computation

Latency-tolerant architecture w/o cycles

Data-movement w/o memory access

Von-Neumann v.s. Data-Flow

FPGA : Platform for Custom Hardware

Goals of Research Project

Data-flow HPC with FPGAs promising in the upcoming Post-Moore Era

Post-Moore Era

 Many-core is not scaling, while a huge # of chips available

Promising solution

- Data-flow : latency tolerance (dependence is localized.)
- FPGA : customization & generalization

Int'l Workshop on FPGA for HPC

12 Mar, 2018

How to program and optimize data-flow for FPGA?

FPGA Shell

Data-Flow Module

Data-Flow Compiler : SPGen

Hardware Generated by SPGen

Problems of SPGen

Productivity issue for

- Floating-point DSP mapping
- Optimal node clustering

New Tool Chain with Optimization

Floating-point DSP mapping

Saving DSPs with FMA & Chained Modes

Optimal node clustering

Clustering Granularity v.s. Overhead

Tradeoff between Overhead & Fmax

Tsunami Simulator with Arria10 GX1150 FPGA

Int'l Workshop on FPGA for HPC

12 Mar, 2018

Tsunami Simulation by using FPGA

Stream Processing Element (SPE)

DFGs with different Num of Clusters

Summary

FPGA-based data-flow computing

- ✓ Efficient use of transistors
- ✓ Latency tolerance

Optimization in mapping DFG to HW resources

- Fused operations of DSP blocks
- Less overhead of flow-control logics
- Tsunami case study

Future work

- More sophisticated algorithm
- ✓ C to DFG frontend
- ✓ Stratix10 FPGA
- Automatic mapping to FPGAs connected in 2D torus

27

7

Int'l Workshop on FPGA for HPC

12 Mar, 2018