

CCS-EPCC Workshop Dc. 7-8, 2017

Ab-initio density functional simulation for nano-optics

K. YABANA

Division of Quantum Condensed Matter Physics Center for Computational Sciences University of Tsukuba

http://salmon-tddft.jp

We are developing a computational code, SALMON

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

It is capable of describing light-matter interactions starting with ab-initio electron dynamics calculations.

Two aspects of light-matter simulation

Light propagation usually described using Maxwell's equations Macroscopic electromagnetism

Electron dynamics is induced by light electric field, described by Schrödinger equation Quantum mechanics

Atoms, molecules, solids

http://salmon-tddft.jp

We are developing a computational code, SALMON

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

It is capable of describing light-matter interactions starting with ab-initio electron dynamics calculations.

Popular tool in computational materials science: Density functional theory (DFT)

$$\varepsilon_i \phi_i(r) = \left[\frac{1}{2m}p^2 + V_{ion}(r) + V_H(r) + V_{xc}(r)\right] \phi_i(r)$$

Theory for ground state. Not applicable to photoexcitation

W. Kohn, 1998 Nobel prize in chemistry

Extension to electron dynamics: Time-dependent DFT (TDDFT)

$$i\hbar\frac{\partial}{\partial t}\psi_i(r,t) = \left[\frac{1}{2m}p^2 + V_{ion}(r) + V_H(r,t) + V_{xc}(r,t) + V_{ext}(r,t)\right]\psi_i(r,t)$$

Electronic excited states, electron dynamics under external field, ...

Real-time response: Optical response of Ethylene (C₂H₄) molecule

Real-time and real-space method

Real-space grid representationin 3D Cartesian coordinate- High-order finite difference

$$-\frac{\hbar^{2}}{2m}\left[\sum_{n_{1}=-N}^{N}C_{n_{1}}\psi(x_{i}+n_{1}h,y_{j},z_{k})+\sum_{n_{2}=-N}^{N}C_{n_{2}}\psi(x_{i},y_{j}+n_{2}h,z_{k})+\sum_{n_{3}=-N}^{N}C_{n_{3}}\psi(x_{i},y_{j},z_{k}+n_{3}h)\right]$$
$$+\left[V_{ion}(x_{i},y_{j},z_{k})+V_{H}(x_{i},y_{j},z_{k})+V_{xc}(x_{i},y_{j},z_{k})\right]\psi(x_{i},y_{j},z_{k})=E\psi(x_{i},y_{j},z_{k}).$$

Time evolution calculation by explicit method (Taylor expansion of 4th order)

$$\psi_i(t + \Delta t) = \exp\left[\frac{h_{KS}(t)\Delta t}{i\hbar}\right]\psi_i(t) \approx \sum_{k=0}^N \frac{1}{k!} \left(\frac{h_{KS}(t)\Delta t}{i\hbar}\right)\psi_i(t), \qquad N = 4$$

Calculation of large systems using massively parallel supercomputers Surface plasmon resonance of Au clusters

Crystalline silicon under intense laser pulse

$$i\hbar\frac{\partial}{\partial t}u_{n\vec{k}}\left(\vec{r},t\right) = \left[\frac{1}{2m}\left(\vec{p}+\vec{k}+\frac{e}{c}\vec{A}(t)\right)^{2} + \int d\vec{r} \, \left|\frac{e^{2}}{\left|\vec{r}-\vec{r}\right|^{2}}n\left(\vec{r},t\right) + \mu_{xc}\left[n\left(\vec{r},t\right)\right]\right]u_{n\vec{k}}\left(\vec{r},t\right)$$

http://salmon-tddft.jp

We are developing a computational code, SALMON

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

It is capable of describing light-matter interactions starting with ab-initio electron dynamics calculations.

Usually, two simulations are separately used in optical sciences

Macroscopic Electromagnetism (EM)

Light propagation description by Maxwell equations. Materials' properties comes into through constitutive relations (dielectric constant).

Quantum Mechanics (QM)

First-principles calculations for dielectricfunction.Perturbation theory in quantum mechanics.

$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{D} = \rho$$
$$\nabla \times \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{j}$$

$$D = \varepsilon E$$

Constitutive relation connects two theories

$$\varepsilon_{r} = 1 + \frac{2Ne^{2}}{\varepsilon_{0}\hbar} \sum_{j} \frac{\omega_{j0} \left| \left\langle 0 \left| x \right| j \right\rangle \right|^{2}}{\omega_{j0}^{2} - (\omega + i\gamma)^{2}}$$

However, at the frontiers of optical science, unified simulation is required.

Ordinary electromagnetism

$$D(\vec{r},t) = \int^t dt' \epsilon(t-t') E(\vec{r},t')$$

Linearity and locality

In forefront optical science, a theoretical and computational approach unifying Electromagnetism and Quantum Mechanics is required.

Photon energy [eV

Nonthermal laser processing using femtosecond laser pulses

Nano-optics Image: strong nonlinear interactions

第一原理電子ダイナミクス計算プログラム

ARTED

Ab-intio Real-Time Electron Dynamics symulator

Light propagation description: Coupling with Maxwell equations

'Multi-scale' coupling

K. Yabana et.al, Phys. Rev. B85, 045134 (2012).

Ab-initio simulation for light-wave propagation in Si

Towards Laser processing of transparent materials

At which intensity of light, glass changes from transparent to opaque material?

Laser pulse propagation through SiO₂ 10 μ m thin film

Exp: Attosecond streaking measurements by Max-Planck Inst. Quantum Optics

Maxwell + TDDFT multiscale simulation : 10 mm SiO₂

Laser electric field, red (strong), blue (weak)

Energy deposition from laser pulse to SiO_2 at mid point (5µm)

A. Sommer et.al, Nature 534, 86 (2016). (EXP: Max Planck Institute for Quantum Optics)

3D Maxwell + 3D RT-TDDFT simulation: a computational challenge

Our university started to operate supercomputer 'Oakforest-PACS' from 2016.11. 1st in Japan 9th in the world (Nov, 2017) 8208 nodes x 68 cores (Intel Xeon Phi 7250) 25 PFLOPS

2017.3 We had 3-day machine time to use full nodes.

Strong laser pulses on Silicon nano-structures: Two test cases

We anticipated: dielectric response for weak, and metallic response for strong laser pulses.

Laser pulse (10¹²W/cm², 1.55eV, 5fs) on silicon-nanosphere

Multiscale Maxwell-TDDFT calculation

FDTD calculation is inexpensive and carried out redundantly in nodes.

1 node calculates 4 electron dynamics. (32,752 electron dynamics by 8,188 nodes)

Each electron dynamics calculation uses

- 16x16x16 spatial grids
- 8x8x8 k-points
- 16 orbitals

Total number of variables : 1.1 x 10¹² Number of time step : 20,000

Performance in various processors

In-House collaboration with Computer Science group (Prof. Boku, Ph.D student Hirokawa)

Weak scaling

Strong scaling

Summary

We are developing SALMON

- ab-initio calculation for light-matter interaction
- large-scale computing for Maxwell + TDDFT multiscale simulation
- in-house collaboration between application and computer researchers
- good scaling and performance using many-core processors
- provide numerical experiment platform for forefront optical science
- to be usable by experimental and company researchers

SALMON-TDDFT Code-Project

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience Open-source, Real-time TDDFT (+Maxwell)

http://salmon-tddft.jp/

Acknowledgement

Collaborators

Univ. Tsukuba Mitsuharu Uemoto Yuta Hirokawa Taisuke Boku

Univ. Tokyo Yasushi Shinohara

Max-Planck Institute for Structure and Dynamics of Matter Shunsuke Sato Univ. Washington George F. Bertsch

Max Planck Institute for Quantum Optics Annkatrin Sommer Martin Schultze Ferenc Krausz

Financial supports

