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We are developing a computational code, SALMON SALMON
Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

It is capable of describing light-matter interactions
starting with ab-initio electron dynamics calculations.

Two aspects of light-matter simulation

Light propagation usually described Electron dynamics is induced
using Maxwell’s equations by light electric field, described
Macroscopic electromagnetism by Schrédinger equation

Quantum mechanics

Light wave of pulsed laser Atoms, molecules, solids
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Popular tool in computational materials science:
Density functional theory (DFT)

epi(r) = | == p? + Vin(r) + Vig (r) + Vi ()| 7

Theory for ground state. Not applicable to photoexcitation

‘ W. Kohn, 1998 Nobel prize in chemistry

Extension to electron dynamics: Time-dependent DFT (TDDFT)

i(T, t) = [ﬁ pZ + Vion(r) + VH(TJ t) + ch(r, t) +] l/)l'(T', t)

Electronic excited states, electron dynamics under external field, ...




Real-time response: Optical response of Ethylene (C,H,) molecule
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Real-time and real-space method
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Time evolution calculation by explicit method
(Taylor expansion of 4t order)
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Calculation of large systems using massively parallel supercomputers

Surface plasmon resonance of Au clusters
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K. lida, M. Noda, K. Ishimura, K. Nobusada, JPCA, 118, 11317 (2014)
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(Group of Institute for Molecular Sciences, Okazaki)



Crystalline silicon under intense laser pulse
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We are developing a computational code, SALMON SALMON

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

It is capable of describing light-matter interactions
starting with ab-initio electron dynamics calculations.

Two aspects of light-matter simulation

Electron dynamits-is_induced
by light electric field, desSeribed
by Schrodinger equation
Quantum mechanics

oscopic electromagnetism

Light wave of pulsed laser Atoms, molecules, solids
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Usually, two simulations are separately used in optical sciences

Macroscopic Electromagnetism (EM)

Light propagation description by Maxwell
equations. Materials’ properties comes into
through constitutive relations (dielectric

constant).
V-B=0(
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D=¢kE

Constitutive relation
connects two theories

Quantum Mechanics (QM)

=1+

r

First-principles calculations for dielectric
function.
Perturbation theory in quantum mechanics.
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However, at the frontiers of optical science, unified simulation is required.




Ordinary electromagnetism
t
D(F.1) = / dt'e(t — t')E(7 1)
Linearity and locality

-

In forefront optical science, a theoretical and computational approach
unifying Electromagnetism and Quantum Mechanics is required.

Extreme nonlinear optics
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High harmonic generation Nonthermal laser processing
from atoms and solids using femtosecond laser pulses

Nano-optics
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Ab-intio Real-Time Electron Dynamics symulator
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Light propagation description: Coupling with Maxwell equations

‘Multi-scale’ coupling

Macroscopic grid Microscopic grid
for Maxwell equation for RT-TDDFT electron dynamics
um scale XA
s>

1 0° 0’ 4r
??Az(t)_ 07> Az(t)ZTJZ(t)

At each macroscopic grid point,
we solve real-time electron dynamics in parallel

K. Yabana et.al, Phys. Rev. B85, 045134 (2012).




Ab-initio simulation for light-wave propagation in Si
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Towards Laser processing of transparent materials

At which intensity of light, glass changes from transparent to opaque material ?
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Laser pulse propagation through SiO, 10um thin film

Compare pulses of different intensities

E(t) n

=)

Thin film of SiO,
10pum

Attosecond streak camera

Electric Field

Delay

Exp: Attosecond streaking measurements
by Max-Planck Inst. Quantum©ptics



Maxwell + TDDFT multiscale simulation : 10 mm SiO,

7w =155¢V 3
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80,000 cores, 20 hours
at K-Computer, Kobe
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Laser electric field, red (strong), blue (weak)
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Energy deposited to electrons in SiO, [=5x10"W/cm?
increases rapidly at a certain laser intensity.

>> Damage threshold S IO  imicrd meter] 10rlnm -

MGGA /e+ 13 (W/cmnZ)

0.12

«23—0.1 eV/atom

I,

Multiphoton/Tunneling excitation

=7 x10°W/cm?

Electron excitation energy [eV/at:
° o o ° °

R L LLEREREEE U T U U U U U U U U U U U U U U U | EEELAE I e e s R e m

-3 o X 5
Z [micro meter]

MGGA le+14 (W/cmA2)

°
-
-
|

bandgap

*
10 eV 1.55eV*7

°
-
N
|

— {—=0.1 eV/ato

ol
°
®
|

v I=1x 10" W/cm®

Valence band

Electron excitation energy [eV/atom]

N |

e e S s s s s s s
5
Z [micro meter]



Energy deposition from laser pulse to SiO, at mid point (5um)

W(t) [102 eV/um?]

E(t)®

Experiment
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A. Sommer et.al, Nature 534, 86 (2016).
(EXP: Max Planck Institute for Quantum Optics)
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3D Maxwell + 3D RT-TDDFT simulation: a computational challenge

Our university started to operate
supercomputer ‘Oakforest-PACS’ from 2016.11.
15t in Japan
9th in the world (Nov, 2017)
8208 nodes x 68 cores (Intel Xeon Phi 7250)
25 PFLOPS

2017.3 We had 3-day machine time to use full nodes.

(a) Macroscopic system
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Strong laser pulses on Silicon nano-structures: Two test cases

 Silicon triangular prisms

EM Energy Excitation Energy
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Optical hot spot at the gap

EM Energy Excitation Energy

E(t) Focus of incident light

We anticipated: dielectric response for weak, and metallic response for strong laser pulses.



Laser pulse (101*W/cm?, 1.55eV, 5fs) on silicon-nanosphere

- 3D Maxwell + 3D TDDFT multiscale calculation
- Si sphere is expressed by 32,752 points

(32,752 electron dynamics calculation in parallel)
- 2.5 hourse by Oakforest-PACS 8188 nodes

Strong incident (/o = 10*? W/cm?)
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Multiscale Maxwell-TDDFT calculation

Macroscopic system (EM field) Microscopic system (Electron dynamics)
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FDTD calculation is inexpensive 1 node calculates 4 electron dynamics.
and carried out redundantly in nodes. (32,752 electron dynamics by 8,188 nodes)

Each electron dynamics calculation uses
- 16x16x16 spatial grids

- 8x8x8 k-points

- 16 orbitals

Total number of variables : 1.1 x 1012
Number of time step : 20,000



Performance in various processors

In-House collaboration with Computer Science group
(Prof. Boku, Ph.D student Hirokawa)

Si1 case

® Hamiltonian GFLOPS ™ Stencil GFLOPS
Max: 3Tflops

Xeon Phi 7250 (KNL) [ ssssss—
Xeon Phi 7110P x2 (KNC x2) |
Xeon E5-2670v2 x2 (IVB x2) [
SPARC64 XIfx (FX100) [

SPARC64 VIIIfx (K computer) [ Max: 128Gflops
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Dynamics time / Iteration [msec]

Weak scaling
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Strong scaling
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Summary

We are developing SALMON

- ab-initio calculation for light-matter interaction
- large-scale computing for Maxwell + TDDFT multiscale simulation

- in-house collaboration between application and computer researchers
- good scaling and performance using many-core processors

- provide numerical experiment platform for forefront optical science
- to be usable by experimental and company researchers

SALMON-TDDFT Code-Project

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

- Open-source, Real-time TDDFT (+Maxwell)

SALMON http://salmon-tddft.jp/
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