Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan

2017/12/7 2017 CCS-EPCC Workshop 1



Outline

Background

Objectives

Six-Step FFT Algorithm

In-Cache FFT Algorithm and Vectorization
Computation-Communication Overlap
Automatic Tuning of Parallel 1-D FFT
Performance Results

Conclusion

2017/12/7 2017 CCS-EPCC Workshop



Background

The fast Fourier transform (FFT) is widely used in
science and engineering.

Parallel FFTs on distributed-memory parallel
computers require intensive all-to-all
communication, which affects their performance.

How to overlap the computation and the all-to-all
communication is an issue that needs to be
addressed for parallel FFTs.

Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.

2017/12/7 2017 CCS-EPCC Workshop



Objectives

Several FFT libraries with automatic tuning have
been proposed.

— FFTW, SPIRAL, and UHFFT

An Implementation of parallel 1-D FFT on Xeon Phi
(Knights Corner) cluster has been presented [Park
et al. 2013].

However, to the best of our knowledge, parallel 1-D
~FT with automatic tuning on Xeon Phi (Knights
_anding) cluster has not yet been reported.

We propose an implementation of a parallel 1-D
FFT with automatic tuning on Xeon Phi cluster.

2017/12/7 2017 CCS-EPCC Workshop 4



Approach

 The parallel 1-D FFT implemented is based on the
six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

e Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the computation-communication
overlap, the radices, and the block size.

2017/12/7 2017 CCS-EPCC Workshop 5



Discrete Fourier Transform (DFT)

e 1-D discrete Fourier transform (DFT) Is

given by
n—1
y(k)=Zx(j)w,flk, 0<k<n-—1,
j=0

where w, = e 2™/" and i = /-1.

2017/12/7 2017 CCS-EPCC Workshop



2-D Formulation

e If n has factors n, and n, (n = n; X n,), then the
iIndices j and k can be expressed as

J=J1+j2n, k=ky+kn,.
e Substituting the indices j and k, we derive the
following equation:

Tll—lnz—l

_ J2Kk> ]1k2 J1k1

y(ko, ki) = z 2 x(Jl»]z)w Wnin,Wn, -
J1=0 j,=0

 An n-point FFT can be decomposed into an n4-
point FFT and an n, -point FFT.

2017/12/7 2017 CCS-EPCC Workshop



Six-Step FFT Algorithm

e This derivation leads to the following six-step
FFT algorithm [Bailey90]:
— Step 1: Transpose
— Step 2: Perform n, individual n,-point
multicolumn FFTs

— Step 3: Perform twiddle factor (w,{;lllffz) multiplication

— Step 4: Transpose

— Step 5: Perform n, individual n,-point
multicolumn FFTs

— Step 6: Transpose

2017/12/7 2017 CCS-EPCC Workshop 8




Parallel 1-D FFT Algorithm Based on
N, Six-Step FFT

N 1 Perform
Global twiddle factor
Transpose J1K2

N (“)1\/11\/2
N, [N 2

multiplication

Global
Transpose

Global
Transpos

2017/12/7 2017 CCS-EPCC Wor



In-Cache FFT Algorithm and

Vectorization

 Forin-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

e Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
processor.

« Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.

2017/12/7 2017 CCS-EPCC Workshop 10



Optimization of Parallel 1-D FFT on
Knights Landing Processor

COMPLEX*16 X(N1,N2),Y(N2,N1)
ISOMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
DO 11=1,N1,NB
DO JJ=1,N2,NB
DO I=I1,MIN(II+NB-1,N1)
DO J=JJ,MIN(JJ+NB-1,N2)

Y (J,)=X(1,9)
END DO
END DO To expand the outermost loop,
ENEDNBODO the double-nested loop can be
SOMP PARALLEL DO collapsed into a single-nested loop.
DO I=1,N1

CALL IN_CACHE_FFT(Y(1,1),N2)
END DO

2017/12/7 2017 CCS-EPCC Workshop 11



Computation-Communication
Overlap [I[domura et al. 2014]

ISOMP PARALLEL
ISOMP MASTER

MPI communication

«— MPI communication is performed

on the master thread

'SOMP END MASTER « No barrier synchronization
I3OMP DO SCHEDULE(DYNAMIC)

DO I=1,N
Computation «— Computation is performed
END DO by a thread other than the

somp po < Implicit b_arrlc_er
DO I=1,N Synchronization

Computation using the | < Computation is performed

result of communication after completion of the

END DO MPI communication
I$SOMP END PARALLEL

master thread

2017/12/7 2017 CCS-EPCC Workshop 12



Pipelined Computation-
Communication Overlap

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)

2017/12/7 2017 CCS-EPCC Workshop 13




Automatic Tuning of Parallel 1-D FFT

e The automatic tuning process consists of
three steps:

— Selection of the number of divisions NDIV for the
computation-communication overlap

— Selection of the radices (N, and N,)
— Selection of the block size NB

2017/12/7 2017 CCS-EPCC Workshop 14



Selection of Number of Divisions for
Computation-Communication Overlap

When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.

2017/12/7 2017 CCS-EPCC Workshop 15



Selection of Radices

As long as condition N = N; N, Is satisfied, we
can select N; and N, arbitrarily for N;,N, = P.

We need to select the best combination and
order of N; and N, for computing a parallel 1-D
~FT.

f N and P are a power of two, N, Is varied
pbetween P, 2P, ...,VN, then N, = N/ Nj;.

n this case, the size of search space is

2017/12/7 2017 CCS-EPCC Workshop 16



Selection of Block Size

* The default blocking parameter of the original
FFTE 6.2alpha is NB=32.

« Although the optimal block size may depend
on the problem size, the block size NB can
also be varied.

 In our Implementation, the block size NB Is
varied between 4, 8, 16, 32 and 64.

2017/12/7 2017 CCS-EPCC Workshop 17



Performance Results

« To evaluate the parallel 1-D FFT with automatic tuning (AT),
we compared its performance with that of the FFTW 3.3.6-
pll, the FFTE 6.2alpha (http://www.ffte.jp/) and the FFTE
6.2alpha with AT.

 The performance was measured on the Oakforest-PACS at
Joint Center for Advanced HPC (JCAHPC).
— 8208 nodes, Peak 25.008 PFlops
— CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
— Interconnect: Intel Omni-Path Architecture
— Compiler: Intel Fortran compiler 17.0.1.132
— Compiler option: “mpiifort -O3 -xMIC-AVX512 -gopenmp”
— MPI library: Intel MPI 2017.1.132
— flat/quadrant, MCDRAM only, KMP_AFFINITY=compact
— Each MPI process has 64 cores and 64 threads.

2017/12/7 2017 CCS-EPCC Workshop 18


http://www.ffte.jp/

Results of automatic tuning of parallel 1-D FFTs
(Oakforest-PACS, 128 nodes)

FFTE 6.2alpha FFTE 6.2alpha with AT
N N1 N2 | NB |NDIV|GFlops| N1 N2 | NB | NDIV | GFlops
16M 4K 4K | 32 4 57.8 4K 4K | 32 1 109.4
64M | 8K | 8K [32| 4 | 1169 | 8K | 8K | 16| 2 | 154.8
256M | 16K | 16K (32| 4 | 733 | 8K | 32K | 16| 1 | 5138
1G | 32K | 32K | 32| 4 | 541.7 | 32K | 32K | 64| 4 | 554.9
AG | 64K | 64K | 32| 4 | 217.0 | 64K | 64K | 32 | 16 | 516.5

2017/12/7

2017 CCS-EPCC Workshop

19




Performance of parallel 1-D FFTs

(Oakforest-PACS, 128 nodes)

o0 FFTE
600 A\ L 6.2alpha (no
,» 500 ﬁ-———— e P
=3 6.2alph
2 300 AVl
L 300 ' : FFTE
O / \/‘r 6.2alpha with
200 | 62

100 , XW

—¥—FFTW 3.3.6-
pll

O . I I I I I I I I I I
D S T
Length of transform (log_2 N)

2017/12/7 2017 CCS-EPCC Workshop

20




Performance of all-to-all communication
(Oakforest-PACS, 128 nodes)

MPI1_Alltoall

500 -

Bandwidth (MB/sec)

O-lL'_'__!_iIIIIIIIIIIIII

SERO RS (ob“k'%,{}k' S

Message size (bytes)

2017/12/7 2017 CCS-EPCC Workshop 21



Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2"26xnumber of nodes)

N
o1 W

N

Time (sec)
H
o1

&)
ol

EH Communication

B Computation

il

8 16 32 64 128
Number of nodes

2017/12/7 2017 CCS-EPCC Workshop

22




Conclusion

We proposed an implementation of parallel 1-D FFT
with automatic tuning on Xeon Phi cluster.

We used a computation-communication overlap
method that introduces a communication thread with
OpenMP.

An automatic tuning facility for selecting the optimal
parameters of the computation-communication overlap,
the radices, and the block size was implemented.

The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on Xeon Phi cluster.

2017/12/7 2017 CCS-EPCC Workshop 23



	Implementation of Parallel FFTs on Cluster of Intel Xeon Phi Processors
	Outline
	Background
	Objectives
	Approach
	Discrete Fourier Transform (DFT)
	2-D Formulation
	Six-Step FFT Algorithm
	Parallel 1-D FFT Algorithm Based on Six-Step FFT
	In-Cache FFT Algorithm and Vectorization
	Optimization of Parallel 1-D FFT on Knights Landing Processor
	Computation-Communication Overlap [Idomura et al. 2014]
	Pipelined Computation-Communication Overlap
	Automatic Tuning of Parallel 1-D FFT
	Selection of Number of Divisions for Computation-Communication Overlap
	Selection of Radices
	Selection of Block Size
	Performance Results
	Results of automatic tuning of parallel 1-D FFTs (Oakforest-PACS, 128 nodes)
	スライド番号 20
	スライド番号 21
	スライド番号 22
	Conclusion

