
Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan

2017/12/7 2017 CCS-EPCC Workshop 1

Outline
• Background
• Objectives
• Six-Step FFT Algorithm
• In-Cache FFT Algorithm and Vectorization
• Computation-Communication Overlap
• Automatic Tuning of Parallel 1-D FFT
• Performance Results
• Conclusion

2017/12/7 2017 CCS-EPCC Workshop 2

Background
• The fast Fourier transform (FFT) is widely used in

science and engineering.
• Parallel FFTs on distributed-memory parallel

computers require intensive all-to-all
communication, which affects their performance.

• How to overlap the computation and the all-to-all
communication is an issue that needs to be
addressed for parallel FFTs.

• Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.

2017/12/7 2017 CCS-EPCC Workshop 3

Objectives
• Several FFT libraries with automatic tuning have

been proposed.
– FFTW, SPIRAL, and UHFFT

• An Implementation of parallel 1-D FFT on Xeon Phi
(Knights Corner) cluster has been presented [Park
et al. 2013].

• However, to the best of our knowledge, parallel 1-D
FFT with automatic tuning on Xeon Phi (Knights
Landing) cluster has not yet been reported.

• We propose an implementation of a parallel 1-D
FFT with automatic tuning on Xeon Phi cluster.

2017/12/7 2017 CCS-EPCC Workshop 4

Approach
• The parallel 1-D FFT implemented is based on the

six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

• Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the computation-communication
overlap, the radices, and the block size.

2017/12/7 2017 CCS-EPCC Workshop 5

Discrete Fourier Transform (DFT)

• 1-D discrete Fourier transform (DFT) is
given by

𝑦𝑦 𝑘𝑘 = �𝑥𝑥(𝑗𝑗)𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗 , 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1

𝑛𝑛−1

𝑗𝑗=0

,

where 𝜔𝜔𝑛𝑛 = 𝑒𝑒−2𝜋𝜋𝑖𝑖/𝑛𝑛 and 𝑖𝑖 = −1.

6 2017/12/7 2017 CCS-EPCC Workshop

2-D Formulation
• If 𝑛𝑛 has factors 𝑛𝑛1 and 𝑛𝑛2 (𝑛𝑛 = 𝑛𝑛1 × 𝑛𝑛2), then the

indices 𝑗𝑗 and 𝑘𝑘 can be expressed as

• Substituting the indices 𝑗𝑗 and 𝑘𝑘, we derive the
following equation:

• An 𝑛𝑛-point FFT can be decomposed into an 𝑛𝑛1-

point FFT and an 𝑛𝑛2 -point FFT.

𝑗𝑗 = 𝑗𝑗1 + 𝑗𝑗2𝑛𝑛1, 𝑘𝑘 = 𝑘𝑘2 + 𝑘𝑘1𝑛𝑛2 .

𝑦𝑦 𝑘𝑘2, 𝑘𝑘1 = � � 𝑥𝑥 𝑗𝑗1, 𝑗𝑗2

𝑛𝑛2−1

𝑗𝑗2=0

𝜔𝜔𝑛𝑛2
𝑗𝑗2𝑘𝑘2

𝑛𝑛1−1

𝑗𝑗1=0

𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 𝜔𝜔𝑛𝑛1

𝑗𝑗1𝑘𝑘1 .

7 2017/12/7 2017 CCS-EPCC Workshop

Six-Step FFT Algorithm
• This derivation leads to the following six-step

FFT algorithm [Bailey90]:
– Step 1: Transpose
– Step 2: Perform 𝑛𝑛1 individual 𝑛𝑛2-point

 multicolumn FFTs

– Step 3: Perform twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2) multiplication

– Step 4: Transpose
– Step 5: Perform 𝑛𝑛2 individual 𝑛𝑛1-point

 multicolumn FFTs
– Step 6: Transpose

8 2017/12/7 2017 CCS-EPCC Workshop

2017/12/7 2017 CCS-EPCC Workshop 9

Parallel 1-D FFT Algorithm Based on
Six-Step FFT

Global
Transpose

Global
Transpose

Global
Transpose

𝑁𝑁1

𝑁𝑁2

𝑁𝑁2

𝑁𝑁1

𝑁𝑁1

𝑁𝑁2
𝑁𝑁1

𝑁𝑁2

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

Perform
twiddle factor
(𝜔𝜔𝑁𝑁1𝑁𝑁2

𝐽𝐽1𝐾𝐾2)
multiplication

In-Cache FFT Algorithm and
Vectorization

• For in-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

• Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
processor.

• Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.

2017/12/7 2017 CCS-EPCC Workshop 10

 COMPLEX*16 X(N1,N2),Y(N2,N1)
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
 DO II=1,N1,NB
 DO JJ=1,N2,NB
 DO I=II,MIN(II+NB-1,N1)
 DO J=JJ,MIN(JJ+NB-1,N2)
 Y(J,I)=X(I,J)
 END DO
 END DO
 END DO
 END DO
!$OMP PARALLEL DO
 DO I=1,N1
 CALL IN_CACHE_FFT(Y(1,I),N2)
 END DO
 …

To expand the outermost loop,
the double-nested loop can be
collapsed into a single-nested loop.

11 2017/12/7 2017 CCS-EPCC Workshop

Optimization of Parallel 1-D FFT on
Knights Landing Processor

Computation-Communication
Overlap [Idomura et al. 2014]

!$OMP PARALLEL
!$OMP MASTER

!$OMP END MASTER
!$OMP DO SCHEDULE(DYNAMIC)
 DO I=1,N

 END DO
!$OMP DO
 DO I=1,N

 END DO
!$OMP END PARALLEL

MPI communication

Computation

Computation using the
result of communication

← MPI communication is performed
 on the master thread

← Implicit barrier
 synchronization

← Computation is performed
 by a thread other than the
 master thread

← No barrier synchronization

12 2017/12/7 2017 CCS-EPCC Workshop

← Computation is performed
 after completion of the
 MPI communication

Pipelined Computation-
Communication Overlap

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)

Computation Communication

Comp. Comm.

13 2017/12/7 2017 CCS-EPCC Workshop

Comp. Comm.

Automatic Tuning of Parallel 1-D FFT

• The automatic tuning process consists of
three steps:
– Selection of the number of divisions NDIV for the

computation-communication overlap
– Selection of the radices (𝑁𝑁1 and 𝑁𝑁2)
– Selection of the block size NB

2017/12/7 2017 CCS-EPCC Workshop 14

Selection of Number of Divisions for
Computation-Communication Overlap

• When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

• On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

• Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

• The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

• In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.

2017/12/7 2017 CCS-EPCC Workshop 15

Selection of Radices
• As long as condition 𝑁𝑁 = 𝑁𝑁1𝑁𝑁2 is satisfied, we

can select 𝑁𝑁1 and 𝑁𝑁2 arbitrarily for 𝑁𝑁1,𝑁𝑁2 ≥ 𝑃𝑃.
• We need to select the best combination and

order of 𝑁𝑁1 and 𝑁𝑁2 for computing a parallel 1-D
FFT.

• If 𝑁𝑁 and 𝑃𝑃 are a power of two, 𝑁𝑁1 is varied
between 𝑃𝑃, 2𝑃𝑃, … , 𝑁𝑁, then 𝑁𝑁2 = 𝑁𝑁/ 𝑁𝑁1.

• In this case, the size of search space is
log2(𝑁𝑁/𝑃𝑃).

16 2017/12/7 2017 CCS-EPCC Workshop

Selection of Block Size
• The default blocking parameter of the original

FFTE 6.2alpha is NB=32.
• Although the optimal block size may depend

on the problem size, the block size NB can
also be varied.

• In our implementation, the block size NB is
varied between 4, 8, 16, 32 and 64.

17 2017/12/7 2017 CCS-EPCC Workshop

Performance Results
• To evaluate the parallel 1-D FFT with automatic tuning (AT),

we compared its performance with that of the FFTW 3.3.6-
pl1, the FFTE 6.2alpha (http://www.ffte.jp/) and the FFTE
6.2alpha with AT.

• The performance was measured on the Oakforest-PACS at
Joint Center for Advanced HPC (JCAHPC).
– 8208 nodes, Peak 25.008 PFlops
– CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
– Interconnect: Intel Omni-Path Architecture
– Compiler: Intel Fortran compiler 17.0.1.132
– Compiler option: “mpiifort -O3 -xMIC-AVX512 -qopenmp”
– MPI library: Intel MPI 2017.1.132
– flat/quadrant, MCDRAM only, KMP_AFFINITY=compact
– Each MPI process has 64 cores and 64 threads.

2017/12/7 2017 CCS-EPCC Workshop 18

http://www.ffte.jp/

Results of automatic tuning of parallel 1-D FFTs
(Oakforest-PACS, 128 nodes)

N N1 N2 NB NDIV GFlops N1 N2 NB NDIV GFlops

16M 4K 4K 32 4 57.8 4K 4K 32 1 109.4

64M 8K 8K 32 4 116.9 8K 8K 16 2 154.8

256M 16K 16K 32 4 73.3 8K 32K 16 1 513.8

1G 32K 32K 32 4 541.7 32K 32K 64 4 554.9

4G 64K 64K 32 4 217.0 64K 64K 32 16 516.5

FFTE 6.2alpha FFTE 6.2alpha with AT

19 2017/12/7 2017 CCS-EPCC Workshop

Performance of parallel 1-D FFTs
（Oakforest-PACS，128 nodes）

0
100
200
300
400
500
600
700

20 22 24 26 28 30 32

Length of transform (log_2 N)

G
Fl

op
s

FFTE
6.2alpha (no
overlap)
FFTE
6.2alpha
(NDIV=4)
FFTE
6.2alpha with
AT
FFTW 3.3.6-
pl1

20 2017/12/7 2017 CCS-EPCC Workshop

Performance of all-to-all communication
（Oakforest-PACS，128 nodes）

0

500

1000

1500

2000

2500

16 12
8 1K 8K 64

K
51

2K 4M

Message size (bytes)

B
an

dw
id

th
 (M

B
/s

ec
)

MPI_Alltoall

21 2017/12/7 2017 CCS-EPCC Workshop

Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2^26×number of nodes)

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128
Number of nodes

Ti
m

e
(s

ec
)

Communication

Computation

2017/12/7 2017 CCS-EPCC Workshop 22

Conclusion
• We proposed an implementation of parallel 1-D FFT

with automatic tuning on Xeon Phi cluster.
• We used a computation-communication overlap

method that introduces a communication thread with
OpenMP.

• An automatic tuning facility for selecting the optimal
parameters of the computation-communication overlap,
the radices, and the block size was implemented.

• The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on Xeon Phi cluster.

2017/12/7 2017 CCS-EPCC Workshop 23

	Implementation of Parallel FFTs on Cluster of Intel Xeon Phi Processors
	Outline
	Background
	Objectives
	Approach
	Discrete Fourier Transform (DFT)
	2-D Formulation
	Six-Step FFT Algorithm
	Parallel 1-D FFT Algorithm Based on Six-Step FFT
	In-Cache FFT Algorithm and Vectorization
	Optimization of Parallel 1-D FFT on Knights Landing Processor
	Computation-Communication Overlap [Idomura et al. 2014]
	Pipelined Computation-Communication Overlap
	Automatic Tuning of Parallel 1-D FFT
	Selection of Number of Divisions for Computation-Communication Overlap
	Selection of Radices
	Selection of Block Size
	Performance Results
	Results of automatic tuning of parallel 1-D FFTs (Oakforest-PACS, 128 nodes)
	スライド番号 20
	スライド番号 21
	スライド番号 22
	Conclusion

