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Background 
• The fast Fourier transform (FFT) is widely used in 

science and engineering. 
• Parallel FFTs on distributed-memory parallel 

computers require intensive all-to-all 
communication, which affects their performance. 

• How to overlap the computation and the all-to-all 
communication is an issue that needs to be 
addressed for parallel FFTs. 

• Moreover, we need to select the optimal 
parameters according to the computational 
environment and the problem size. 
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Objectives 
• Several FFT libraries with automatic tuning have 

been proposed. 
– FFTW, SPIRAL, and UHFFT 

• An Implementation of parallel 1-D FFT on Xeon Phi 
(Knights Corner) cluster has been presented [Park 
et al. 2013]. 

• However, to the best of our knowledge, parallel 1-D 
FFT with automatic tuning on Xeon Phi (Knights 
Landing) cluster has not yet been reported. 

• We propose an implementation of a parallel 1-D 
FFT with automatic tuning on Xeon Phi cluster. 
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Approach 
• The parallel 1-D FFT implemented is based on the 

six-step FFT algorithm [Bailey 90], which requires 
two multicolumn FFTs and three data 
transpositions. 

• Using this method, we have implemented an 
automatic tuning facility for selecting the optimal 
parameters of the computation-communication 
overlap, the radices, and the block size. 
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Discrete Fourier Transform (DFT) 

• 1-D discrete Fourier transform (DFT) is 
given by 

𝑦𝑦 𝑘𝑘 = �𝑥𝑥(𝑗𝑗)𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗 , 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1

𝑛𝑛−1

𝑗𝑗=0

, 

where  𝜔𝜔𝑛𝑛 = 𝑒𝑒−2𝜋𝜋𝑖𝑖/𝑛𝑛 and  𝑖𝑖 = −1. 
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2-D Formulation 
• If 𝑛𝑛 has factors 𝑛𝑛1 and 𝑛𝑛2 (𝑛𝑛 =  𝑛𝑛1 × 𝑛𝑛2), then the 

indices 𝑗𝑗 and 𝑘𝑘 can be expressed as 
 

• Substituting the indices 𝑗𝑗 and 𝑘𝑘, we derive the 
following equation: 
 
 

 
• An 𝑛𝑛-point FFT can be decomposed into an 𝑛𝑛1-

point FFT and an 𝑛𝑛2 -point FFT. 

𝑗𝑗 =  𝑗𝑗1 + 𝑗𝑗2𝑛𝑛1,  𝑘𝑘 = 𝑘𝑘2 + 𝑘𝑘1𝑛𝑛2 . 

𝑦𝑦 𝑘𝑘2, 𝑘𝑘1 = � � 𝑥𝑥 𝑗𝑗1, 𝑗𝑗2

𝑛𝑛2−1

𝑗𝑗2=0

𝜔𝜔𝑛𝑛2
𝑗𝑗2𝑘𝑘2

𝑛𝑛1−1

𝑗𝑗1=0

𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 𝜔𝜔𝑛𝑛1

𝑗𝑗1𝑘𝑘1 . 
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Six-Step FFT Algorithm 
• This derivation leads to the following six-step 

FFT algorithm [Bailey90]: 
– Step 1: Transpose 
– Step 2: Perform 𝑛𝑛1 individual 𝑛𝑛2-point  

            multicolumn FFTs 

– Step 3: Perform twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 ) multiplication 

– Step 4: Transpose 
– Step 5: Perform  𝑛𝑛2 individual 𝑛𝑛1-point  

            multicolumn FFTs 
– Step 6: Transpose 
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Parallel 1-D FFT Algorithm Based on 
Six-Step FFT 

Global 
Transpose 

Global 
Transpose 

Global 
Transpose 

𝑁𝑁1 

𝑁𝑁2 
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𝑁𝑁1 

𝑁𝑁1 

𝑁𝑁2 
𝑁𝑁1 
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𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 

Perform 
twiddle factor 
(𝜔𝜔𝑁𝑁1𝑁𝑁2

𝐽𝐽1𝐾𝐾2 ) 
multiplication 



In-Cache FFT Algorithm and 
Vectorization 

• For in-cache FFT, we used radix-2, 3, 4, 5, 8, 9, 
and 16 FFT algorithms based on the mixed-radix 
FFT algorithms [Temperton 83]. 

• Automatic vectorization was used to access the 
Intel AVX-512 instructions on the Knights Landing 
processor. 

• Although higher radix FFTs require more floating-
point registers to hold intermediate results, the 
Knights Landing processor has 32 ZMM 512-bit 
registers. 

2017/12/7 2017 CCS-EPCC Workshop 10 



       COMPLEX*16 X(N1,N2),Y(N2,N1) 
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ) 
      DO II=1,N1,NB 
          DO JJ=1,N2,NB 
              DO I=II,MIN(II+NB-1,N1) 
                  DO J=JJ,MIN(JJ+NB-1,N2) 
                      Y(J,I)=X(I,J) 
                  END DO 
              END DO 
          END DO 
      END DO 
!$OMP PARALLEL DO 
      DO I=1,N1 
          CALL IN_CACHE_FFT(Y(1,I),N2) 
      END DO 
      … 

To expand the outermost loop, 
the double-nested loop can be 
collapsed into a single-nested loop. 
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Optimization of Parallel 1-D FFT on 
Knights Landing Processor 



Computation-Communication 
Overlap [Idomura et al. 2014] 

 
!$OMP PARALLEL 
!$OMP MASTER 
 
 
!$OMP END MASTER 
!$OMP DO SCHEDULE(DYNAMIC) 
       DO I=1,N 
 
 
       END DO 
!$OMP DO 
       DO I=1,N 
 
 
 
       END DO 
!$OMP END PARALLEL 

MPI communication 

Computation 

Computation using the 
result of communication 

← MPI communication is performed 
     on the master thread 

← Implicit barrier 
    synchronization  

← Computation is performed 
     by a thread other than the 
     master thread 

← No barrier synchronization  
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← Computation is performed 
     after completion of the 
     MPI communication 



Pipelined Computation-
Communication Overlap 

Without 
overlap 

Overlap 
(NDIV=2) 

Overlap 
(NDIV=4) 

Computation Communication 

Comp. Comm. 
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Automatic Tuning of Parallel 1-D FFT 

• The automatic tuning process consists of 
three steps: 
– Selection of the number of divisions NDIV for the 

computation-communication overlap 
– Selection of the radices (𝑁𝑁1 and 𝑁𝑁2) 
– Selection of the block size NB 
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Selection of Number of Divisions for 
Computation-Communication Overlap 

• When the number of divisions for computation-
communication overlap is increased, the overlap ratio 
also increases. 

• On the other hand, the performance of all-to-all 
communication decreases due to reducing the 
message size. 

• Thus, a tradeoff exists between the overlap ratio and 
the performance of all-to-all communication. 

• The default overlapping parameter of the original FFTE 
6.2alpha is NDIV=4. 

• In our implementation, the overlapping parameter 
NDIV is varied between 1, 2, 4, 8 and 16. 
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Selection of Radices 
• As long as condition 𝑁𝑁 = 𝑁𝑁1𝑁𝑁2 is satisfied, we 

can select 𝑁𝑁1 and 𝑁𝑁2 arbitrarily for 𝑁𝑁1,𝑁𝑁2 ≥ 𝑃𝑃. 
• We need to select the best combination and 

order of 𝑁𝑁1 and 𝑁𝑁2 for computing  a parallel 1-D 
FFT. 

• If 𝑁𝑁 and 𝑃𝑃 are a power of two, 𝑁𝑁1 is varied 
between 𝑃𝑃, 2𝑃𝑃, … , 𝑁𝑁, then 𝑁𝑁2 = 𝑁𝑁/ 𝑁𝑁1. 

• In this case, the size of search space is 
log2( 𝑁𝑁/𝑃𝑃). 
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Selection of Block Size 
• The default blocking parameter of the original 

FFTE 6.2alpha is NB=32. 
• Although the optimal block size may depend 

on the problem size, the block size NB can 
also be varied. 

• In our implementation, the block size NB is 
varied between 4, 8, 16, 32 and 64. 
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Performance Results 
• To evaluate the parallel 1-D FFT with automatic tuning (AT), 

we compared its performance with that of the FFTW 3.3.6-
pl1, the FFTE 6.2alpha (http://www.ffte.jp/) and  the FFTE 
6.2alpha with AT. 

• The performance was measured on the Oakforest-PACS at 
Joint Center for Advanced HPC (JCAHPC). 
– 8208 nodes, Peak 25.008 PFlops 
– CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz) 
– Interconnect: Intel Omni-Path Architecture 
– Compiler: Intel Fortran compiler 17.0.1.132 
– Compiler option: “mpiifort -O3 -xMIC-AVX512 -qopenmp” 
– MPI library: Intel MPI 2017.1.132 
– flat/quadrant, MCDRAM only, KMP_AFFINITY=compact 
– Each MPI process has 64 cores and 64 threads. 
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Results of automatic tuning of parallel 1-D FFTs 
(Oakforest-PACS, 128 nodes) 

N N1 N2 NB NDIV GFlops N1 N2 NB NDIV GFlops 

16M 4K 4K 32 4 57.8 4K 4K 32 1 109.4 

64M 8K 8K 32 4 116.9 8K 8K 16 2 154.8 

256M 16K 16K 32 4 73.3 8K 32K 16 1 513.8 

1G 32K 32K 32 4 541.7 32K 32K 64 4 554.9 

4G 64K 64K 32 4 217.0 64K 64K 32 16 516.5 

FFTE 6.2alpha FFTE 6.2alpha with AT 
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Performance of parallel 1-D FFTs
（Oakforest-PACS，128 nodes）
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Performance of all-to-all communication
（Oakforest-PACS，128 nodes）
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Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2^26×number of nodes)

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128
Number of nodes

Ti
m

e 
(s

ec
)

Communication

Computation

2017/12/7 2017 CCS-EPCC Workshop 22 



Conclusion 
• We proposed an implementation of parallel 1-D FFT 

with automatic tuning on Xeon Phi cluster. 
• We used a computation-communication overlap 

method that introduces a communication thread with 
OpenMP. 

• An automatic tuning facility for selecting the optimal 
parameters of the computation-communication overlap, 
the radices, and the block size was implemented. 

• The performance results demonstrate that the 
proposed implementation of a parallel 1-D FFT with 
automatic tuning is efficient for improving the 
performance on Xeon Phi cluster. 
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