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LB prehistory - lattice gas cellular 
automata (1980’s)

T�� ������� B�������� ������

�
�is chapter will discuss the historical development of the LBM and outline its derivation from the

Boltzmann equation, including forcing terms. �en I will discuss how to include singular forces and

show the results of tests which validate the approach.

�.� T�� LBE ���� ������� �����

Historically, the LBM developed from lattice gas cellular automata (LGCA), a highly simpli�ed class of

molecular dynamics models [��], which restricts particles to a lattice of points. Each grid point has

links to its neighbours along which the particles stream without interaction during one discrete time

step, each link being either occupied or vacant. �e particles then collide moving to di�erent links at

their new site.

Figure �.� �e FHP hexagonal lattice from Frisch et al. [��]. Shown is one collision, where the upper and
lower �nal states (right) are chosen between randomly with equal probability.

�e update rules for the occupation numbers ni(�x , t) (where i indexes the list of discrete velocities
{�ci}) can be written as

∆ i ni = Ci(�n) (�.�)

where ∆ i ni ≡ ni(�x + �ci∆t, t + ∆t) − ni(�x , t) represents the free propagation operator and C(�n) the
collision operator which obeys conservation of mass and momentum. At the microscopic level, this

model has extremely simple dynamics, yet when coarse grained it asymptotically goes over to the

Navier-Stokes equations. �at this can display the complexities shown by the much more complicated

interactions at themolecular scale of a real �uid is somewhat surprising. As withmany other simulation

methods � themessage of universality [��] from statistical mechanics applies here: when coarse-grained

the detail does not matter. However, determining what is “mere detail” is not in general straightforward.

�Notably molecular dynamics, but other coarse-grained methods such as multi-particle collision dynamics, dissipative
particle dynamics, cosmological simulation methods, etc. [��].

�
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One collision rule – choose randomly between two output states
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Boltzmann BGK Equation

appropriately chosen by matching coe�cients of an expansion in terms of the Mach number Ma. From

this procedure one can calculate the kinematic viscosity:

ν = τ − ∆t�2
c2s

(�.�)

�is development reduced computational cost and increased �exibility compared to LGCA

methods. However it lacks a rigorous theoretical foundation since its connection to the Navier-

Stokes equations rests on the Chapman-Enskog analysis of LGCA. It is this requirement of reducing

to Navier-Stokes that allows one to determine the equilibrium distribution f (0) rather than using

knowledge of basic kinetic theory. Further, the origin of half timestep correction to the viscosity is not

obvious.

�.� T�� LBE ���� ��� B�������� ��������

�e development of the LBE was independent of the continuum Boltzmann equation (BE) but since it

has been shown that an a priori derivation from the BE (more accurately the BGK equation) is possible

[�, ��, ��, ��]. �is derivation also make clear how extensions beyond a simple �uid can be included;

for example, how to include arbitrary, smooth force distributions, with second-order accuracy. I will

outline this below.

In continuum kinetic theory, the BE describes the evolution of the density function f (�x , �v , t) in
one-particle phase space,

[∂t + �v ⋅ ∇�x + �g ⋅ ∇�c] f = Ĉ f , (�.��)

where �g is the acceleration due to any forces acting on the particles in the volume and Ĉ is an operator

describing the collisions between particles. �e Bhatnagar-Gross-Krook equation model replaces

this complicated, nonlinear, integral term with relaxation on a characteristic time τ towards the local

equilibrium f (0), parametrized by the local density ρ, velocity �u and temperature T , giving the BGK

equation [��, ��]:

[∂t + �v ⋅ ∇�x + �g ⋅ ∇�c] f = −1τ ( f − f (0)), (�.��)

f (0) = ρ � m
2πkBT

�
D�2

exp�− m
2kBT

��c − �u�2� . (�.��)

�e hydrodynamic variables at a point are the (microscopic) velocity moments of the distribution

function:

��
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��

ρ = ∫ f d3�c, (�.��a)

ρuα = ∫ f cα d3�c, (�.��b)

Sαβ = ∫ f (cαcβ − c2s δαβ)d3�c; (�.��c)

respectively the density, momentum density and deviatoric stress tensor. Note that the Navier-Stokes

equations need only these moments of the distribution function.

Grad was a proponent of using a reduced velocity space for kinetic theory: he introduced his

“��moment” system [��], which expands the distribution function in terms of multivariate Hermite

polynomialsHn�i [��]:
f (�x , �c, t) = ω(�c)

∞
�
n=0

1
n!
a(n)�i (�x , t)Hn�i (�c) (�.��)

contracting over all n indices (bothH(n) and a(n) are rank-n symmetric tensors, the subscript �i is an
abbreviation for the indices {i1, . . . , in}). �e weight function ω(�c) is given by

ω(�c) = 1
(2πθc2s )D�2

exp�− c2

2θc2s
� (�.��)

(θ ≡ kBT�mc2s being the dimensionless temperature and cs the speed of sound) and the H are

orthonormal with respect to this, i.e.

∫ ωHm�i Hn�j d3�c = δmnδ�i�j , (�.��)

forming a complete basis for any function �(�c) for which the integral ∫ ω�� d�c converges. Noting
these properties, it is clear that the moment of a given order depends only on the Hermite coe�cients

of up to that order, therefore truncating the series will not a�ect these hydrodynamic modes directly

(the neglected terms however do a�ect the dynamics of lower order moments). We denote the Nth

order approximation by f (N):

f (N)(�x , �c, t) = ω(�c)
N
�
n=0

1
n!
a(n)�i (�x , t)Hn�i (�c). (�.��)

One must have N ≥ 2 to obtain the momentum conservation equation

∂t(ρ�u) +∇ ⋅ S = 0. (�.��)

��



Discretise in velocity space
• Reduce continuous three dimensional space to discrete 

set of velocities

• DVBE:
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�e moment integrals (�.��) may be evaluated using a Gauss-Hermite quadrature [��]

∫ ω(�c)�(�c)d�c =�
i
wi�(�ci) (�.��)

which, for a quadrature of order N , is exact if � is a polynomial of degree 2N or less. �e choice

of nodes �ci and weights wi for the Boltzmann equation is explained by He and Luo [��] for several

important cases. SinceHn f (N)�ω is such a polynomial if n ≤ N , the Hermite coe�cients and hence

the hydrodynamic moments may be calculated exactly with knowledge of of f at the nodes of the

quadrature �ci . We de�ne

fi ≡ fi(�x , t) ≡
wi f (�x , �ci , t)

ω(�ci)
(�.��)

casting the moments integrals (�.��) into a simple form

ρ =�
i
fi , (�.��a)

ρuα =�
i
fi ciα , (�.��b)

Sαβ =�
i
fiQiαβ . (�.��c)

We now turn to the equilibrium distribution (�.��). Its Hermite expansion has terms at all orders

so that if we substitute f (0)(�ci) into Equation �.�� the equalities are merely approximate. To enforce

mass and momentum conservation, we truncate the series at order N (i.e. we project the Maxwellian

into the subspace spanned by the low-order polynomials). Using scaled variables as in Equation �.��,

the �nd order approximation is:

f (0)i = ρwi �1 +
ciαuα

c2s
+
Qiαβuαuβ

2c4s
� . (�.��)

We now must consider the external acceleration term from Equation �.��, �g ⋅ ∇�c . Martys et al.

[��] showed how this term can be expressed by an Hermite expansion, the nth coe�cient of which is

n�g ⊗ a(n−1). To the same order as the Maxwellian, we have

Φ i(�x , t) ≡ [�g ⋅ ∇�c]i = −ρwi �
gαciα
c2s
+
(uα gβ + gαuβ)Qiαβ

2c4s
� (�.��)

Combining all these results gives the discrete velocity Boltzmann equation

∂t fi + �ci ⋅ ∇ fi + [�g ⋅ ∇�c f ]i = −( fi − f (0)i )
τ

. (�.��)

One can promote the single relaxation time operator on the right-hand side of Equation �.�� to a

��

Force term too long 
for slides!



Everyone uses simple velocity sets
• Usually D3Q19 (or D3Q15 or D3Q27)

6

ρ and ρ�u but for the stress is given by

Sαβ =
n
�
i=0 f̄ iQiαβ+

∆t�2
τs + ∆t�2

�
n
�
i=0 f̄ iQiαβ − ρvαvβ + τ(uαFβ + Fαuβ)�+

� ∆t�2
τb + ∆t�2

− ∆t�2
τs + ∆t�2

��
n
�
i=0 f̄ iQiγγ − ρv2 + 2(τb − τs)uγFγ�

δαβ
d

.

(�.��)

�e bulk and shear viscosities may be obtained with a Chapman-Enskog expansion as set out clearly

by Ladd and Verberg [��]:

ηs = ρc2s τs (�.��a)

ηb =
2
3
ρc2s τb . (�.��b)

�e LBM can be extended to incorporate thermal �uctuations. An algorithm due to Ladd [��] as

extended by Adhikari et al. [�] will be used here. For the simulations in this work, the three dimensional,

��een velocity (D�Q��) velocity set, shown in Figure �.�, will be used, in the implementation described

in Appendix A, unless otherwise noted.

Figure �.� �e D�Q�� velocity set is based on a simple cubic mesh of points. �e velocities are: one zero vector;
six with ��c�2 ≡ 1 along the unit vectors, and eight with ��c�2 = 3 along the [1, 1, 1] type directions.

�.� S������� ������ �� �������� �����

Singular distributions of forces are widely used in theoretical models of �uid immersed boundaries;

for example an interface between gas and liquid phases can be described as a two-dimensional surface,

a polymer as a one-dimensional curve [��] or a moving particle at distances large compared to its

radius as a point [��]. In particular, at low Reynolds number the velocity �eld around a body can be

expressed as a sum of point forces, point sources and the derivative singularities thereof, known as a

multipole expansion [��, ��, ��].

��

• OK as long as symmetric “enough”
• Introduces more errors but still second order in Δx
• Except sometimes for turbulence?

• White & Chong, J. Comput. Physics (2011); S. K. Kang and Y. A. 
Hassan, J. Comput. Phys. 232, 100 (2012).



DVBE ⇒ LBE
7

f̄i(~x+ ~ci�t, t+�t)� f̄i(~x, t) = � �t

⌧ +�t/2
(f̄i(~x, t)� f̄

0
i (~x, t))

• Integrate along each velocity with the trapezium rule for 
one timestep

• Make simple substitution get explicit equations



LB vs. CFD

Boltzmann 
Eqn

Navier-Stokes 
Equations FD/FEM/FVM

Scheme 
recovers NS 

as dx ->0

Discrete 
velocity BE LBE

Scheme 
recovers NS 

as dx->0
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LB is strong
• Possible to introduce more physics rigorously*
- Particles
-Multicomponent, multiphase fluids
- Liquid crystals

• Meshing is much simpler than FEM (only 1 grid resolution 
to set)

• Parallel implementation (P<1000) easy!
• Parallel implementation (P<=250,000, efficiency >90%) 

possible!
• No global communications required (unlike e.g. Poisson 

solver)

9



LB is weak
• Speed of sound fixed
- Need to carefully chose params such that Mach number <<1 
-Mach number important because it is the parameter in the 

Chapman Enskog expansion
- Sound takes many time steps to cross domain
- Pressure takes many time steps to converge
- Is there really an advantage over just solving the Poisson equation 

as in most NSE based codes?

10

cs =
1p
3

�x

�t



LB is horrible
• It struggles to get to high velocities (positivity of 

distribution functions)
• It struggles to get to low viscosity as has poor stability
• Hence high Reynolds number requires advances 

techniques: cascaded LB

11



HemeLB applications



CFD (Colour for doctors)
13

point where it meets areas of less well-established vessel identity
close to the sprouting front (see e.g. B regions). Areas with unde-
fined vessel identity are correlated with homogeneous velocity
distributions (see e.g. C). There exists evidence of a considerable
number of vessels having recently regressed along the path of
the artery (see e.g. D branches) and the more developed first-
order branches (see e.g. E). The two veins (top and bottom of
the images) present fewer regressing profiles.

For a plane with normal n̂, we define the traction vector

t ¼ Tn̂, (4:5)

i.e. the force per unit area acting on that plane. Figure 8b plots
traction magnitude jjtjj on the model surface (often referred to
as WSS magnitude). We observe that areas of preferential flow
correlate well with the areas experiencing larger WSS. By

contrast, vessels in the sprouting front are under lower magni-
tudes of WSS. The model predicts values of WSS larger than 20
Pa, which can be deemed unphysiological based on the micro-
vasculature WSS measurements reported in the literature:
14 Pa [54], approximately 20 Pa [35] or approximately 13 Pa
computed from the values reported by Wright et al. [23]
(under the assumption of Poiseuille flow). We believe that
the WSS overestimation (mainly occurring at the central
artery and some first-order branches) is due to the vessel
shrinkage discussed earlier or other modelling errors.

Figure 9 presents results of a simulation with the P6A
flow model and the inlet/outlet boundary conditions and
rheological properties surveyed in §2.2. Figure 9a plots vel-
ocity magnitude on the intersection of the model and the
z ¼ 0 plane. First of all, it can be appreciated how velocities
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Figure 8. P5B simulation results: (a) velocity magnitude plotted on a cross section along the z ¼ 0 plane. Velocity shows the expected parabolic profile across the
vessel diameter. Velocity is higher in the artery located at the centre of the domain, in particular close to the optic disc. Velocity magnitude quickly decreases as the
artery progresses towards the sprouting front and it stops being a preferential flow path at the points where its identity stops being clearly defined. (b) WSS
magnitude plotted on the model surface. Areas of preferential flow tend to experience highest WSS magnitudes. WSS is generally low across the domain
except for the arterial segment close to the optic disc and some first-order branches. WSS values higher than 20 Pa are considered unphysiological and the regions
experiencing them are coloured in black. Black circles indicate regions of interest referenced in the manuscript.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140543
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Angiogenesis

network of arteries, arterioles, capillaries and venules (figure 1).
In recent years, the main molecular mechanisms regulating
endothelial cell behaviour during vessel formation have been
elucidated using experimental techniques [1,2]. However,
important challenges remain: (i) understanding how cell-level
mechanisms integrate to give rise to systems-level behaviour
and (ii) understanding the impact in vascular patterning
of the interplay between cellular molecular regulation and
haemodynamic forces (i.e. vascular mechanotransduction).
These problems are hard to address due to the multiscale
and multiphysics nature of the processes involved. Systems-
level behaviour arises from highly nonlinear, tightly coupled
interactions between subprocesses at different spatial and tem-
poral scales. Furthermore, it has been recently proposed [3] that
a tighter integration between experimental and computational
work is required in order to tackle these questions. Working
in a feedback loop, computational models should be capable
of generating new hypotheses, rather than merely reproducing
experimental data. In turn, experiments should provide new
biological insights based on these hypotheses and help to
further refine computational models.

Multiple animal models have been proposed for the study
of vascular development. Examples include the mouse retinal
and embryonic vasculature [4], zebrafish vasculature [5,6]
and hyaloid vasculature [7]. In recent years, there has been
increasing interest in the development of in silico models for
the close inspection of certain vascular developmental aspects.
To date, most work concerning simulation of retinal haemody-
namics for the study of vascular mechanotransduction (see §2.3
for a review) has suffered from a number of limitations includ-
ing: (i) limited availability of spatial information due to the
use of low-resolution imaging modalities, (ii) oversimplifica-
tion of the haemodynamics by considering the retinal plexus
to be a network of one-dimensional vessel segments and
(iii) unavailability of the computer code developed. We believe
that the model simplifications cited, although appropriate in
some applications, may fail to capture complex flow patterns
important for understanding the interplay between molecular
regulation and haemodynamics during development. Hence,
in this work, we introduce a computational workflow—and
make the source code available—aimed at generating in silico
estimates of the haemodynamic forces acting on samples of
mouse retinal vasculature imaged during development, typi-
cally within the first postnatal week. The workflow involves
the following steps. First, high-resolution scanning confocal
microscope images are obtained and segmented in order to
generate a binary mask of the vessel lumen. Second, luminal
centrelines and radii are computed in a process known as

skeletonization. Next, three-dimensional models of the luminal
surface are reconstructed based on the computed skeleton.
Finally, blood flow simulations are run in order to obtain esti-
mates of blood velocity and wall shear stress (WSS) with an
open-source highly parallel computational fluid dynamics
(CFD) solver, known as HemeLB [8].

The purpose of this paper is therefore threefold. First,
to describe the computational methods developed and to
survey the literature for data not accessible in our experiments
but necessary for model set-up. Second, to validate our
methods in simplified scenarios where analytical solutions
are known. Third, to present and to analyse simulations in
order to gain insight into the dynamics of retinal blood flow
during development. The paper is structured as follows. In
§2, we survey the literature for previously proposed models
of retinal flow and for the experimental data necessary to set
up our simulations. Next, in §3, we present the methods used
for image processing and three-dimensional model reconstruc-
tion as well as the validation methodology adopted. Section 4
presents the main results on model reconstruction, validation
and a set of simulations on the reconstructed three-dimensional
models. Finally, §5 summarizes the main contributions of
the work and outlines the areas where we plan to apply the
computational pipeline developed.

2. Retinal vascular structure and flow
2.1. Vascular structure and its development
Angiogenesis defines the formation of new blood vessels from
pre-existing ones and can be split into two distinct phases:
sprouting and remodelling. During sprouting, new vessels
form and invade avascular ischaemic areas, where tissues
experience hypoxia and nutrient deprivation. This process is
modulated by the secretion of various growth factors, includ-
ing vascular endothelial growth factor (VEGF), through a
cascade of signalling events. The endpoint of this phase is the
formation of a highly branched and poorly perfused network
of capillary connections. Remodelling is responsible for the cre-
ation of a hierarchically branched and efficient vascular tree,
containing defined arteries and veins and an optimized vascu-
lar capillary network. A vital step during vascular remodelling
is the removal of redundant vessel segments: vessel pruning.
Importantly, angiogenesis is a very dynamic process occurr-
ing not only during development but also in adulthood
(e.g. wound healing and tumour formation).

The neonatal mouse retina has become one of the main
experimental models for the study of the mechanisms invol-
ved in blood vessel development and patterning [9–11]. The
mouse retina is avascular at birth and develops through a
consistent series of events. Astrocytice (a type of glial cell)
and neuron-derived vascular endothelial growth factor A
(VEGFA) stimulates sprouting angiogenesis from pre-existing
blood vessels at the optic nerve. Under a gradient of VEGFA,
vessels expand radially in the superficial layer of the retina,
in a very characteristic pattern [2]. It takes this process
around 8 days to cover the entire surface of the mouse retina.
Vascularization of the superficial layer is followed by a
second phase of sprouting, where endothelial cells from the
superficial venous plexus sprout and penetrate the deeper
layers of retina to form, firstly, a deep and, secondly, an inter-
mediate capillary bed [12]. The vascular plexus finally matures
about 20 days after birth.

(a) (b)

Figure 1. Murine retinal vascular plexus 6 and 21 days postnatal (panel (a)
and (b), respectively). Within days, the primitive vessel network remodels into
mature vasculature. Samples were collected, mounted and imaged as
described in §3.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140543
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Mouse retinal networks (a) 6 days and (b) 21 days from birth
(Mice did not survive)The next step is pruning – removal of redundant pathways – does 
hemodynamics play a role? 



Pruning in action?

a decrease in WSS with increasing vessel order. WSS peaks are
distributed throughout the domain in agreement with the
observations by Ganesan et al. [35]. We also observe a complex
distribution of WSS along individual vessel segments, with
changes following local variation in vessel diameter.

Figure 10 plots t on the surface of a subset of the domain
(marked with a circle in figure 9b). Given the redundancy of a
loop-like structure of this type and the distribution of diam-
eters present, it can be assumed that the upper half of the
loop is undergoing regression. This fact is in good agreement
with the distribution of WSS, of much larger magnitude on
the bottom section of the loop and vessel segments upstream
and downstream from it.

In summary, the results presented in this section support
the idea that vessel segments undergoing pruning tend to
occur in regions of low flow (and hence low shear stress).
We hypothesize that this process gradually reduces network
density and as a consequence flow increases in the surviving
vessel segments. This in turn prevents further pruning and
contributes to vessel maturation.

4.4. Limitations of the study
The main limitations of this study are as follows. First, blood
was modelled as a homogeneous fluid rather than a particle
suspension. This is likely to have an impact on the WSS
computed in small calibre capillaries. Xiong & Zhang [60]
studied the changes in haemodynamics induced by the pres-
ence of RBCs flowing in a simplified model of a microvessel
and found up to a 20% increase in the shear stress experi-
enced by the luminal wall. Second, although blood was
modelled as a shear-thinning fluid, other rheological proper-
ties such as the Fåhræus–Lindqvist effect (see §2.2) were not
accounted for. Third, vessel cross section was assumed to be
circular throughout the domain due to the lack of spatial
information in the z-axis. As previously mentioned, there
exists experimental evidence supporting this assumption in
retinal arteries but not in veins [15]. This will have an
impact on the haemodynamics recovered. Also, despite all
our efforts when processing retina samples, we cannot be
fully certain that no distortions in the vascular plexus were
introduced. Next, due to the difficulty of measuring pressure
or flow profiles at the model inlets/outlets in vivo and the
absence of suitable data in the literature, only steady-state
simulations were performed. We expect flow to be nearly in
phase with pressure given the typical values of Womersley
number (defined as the ratio between oscillatory inertial
forces and viscous forces) encountered in retinal circulation

(approx. 0.1 according to Liu et al. [37]). This makes us confi-
dent that flow has time to fully develop in each cardiac cycle
and hence will be well approximated by an instantaneous
pressure gradient. Nevertheless, there will still be substantial
variations in WSS within any given cardiac cycle. Furthermore,
the values of MAP and IOP used as inlet and outlet boundary
conditions were obtained from adult animals. In appendix C,
we perform a sensitivity analysis of these parameters. Finally,
another source of variation in the predicted haemodynamics
are the active and passive mechanical properties of retinal
vessels. At the analysed stage, retinal arteries are already cov-
ered with a smooth muscle layer, which might contract/relax
to control local flow (i.e. autoregulation) and therefore have an
impact in flow patterns in downstream vessels.

5. Conclusion
In this work, we have presented a software pipeline for
the creation of computational blood flow models based on con-
focal microscope images of the microvasculature. The pipeline
has been applied to the development of flow models of the
neonatal mouse retinal vasculature (a common animal model
for the study of vascular development). The different software
components used are released under open-source licences.

Using simplified benchmark problems, we have demon-
strated the suitability of the lattice-Boltzmann (LB) algorithm
for the simulation of blood flow in sparse and highly complex
vascular networks. Our results indicate that a careful choice of
the LB configuration parameters leads to accurate flow estimates
in channels as narrow as three lattice sites across. Furthermore,
we also showed that the implementation of the no-slip boundary
condition proposed by Bouzidi et al. [50] produces acceptable
estimates of WSS. We measured errors of approximately 10%
and approximately 7% in channels 7 and 15 lattice sites wide,
respectively. Being able to recover correct haemodynamics
even at moderately coarse discretizations is fundamental to
keep the problems under study computationally tractable.

In the study reported here, we investigated changes in
haemodynamics during vascular remodelling. Blood flow
models were generated from samples of retinal plexuses
obtained at postnatal day (P) 5 and 6. Our simulations show
that, in both cases, velocity and WSS are higher in arteries,
veins and first-order capillaries closer to the optic disc. How-
ever, important differences in the distribution of velocity and
WSS across the domain are observed when comparing both
days (e.g. figures 8b and 9b). On the one hand, P5 simulations
show a very homogeneous distribution of velocity and WSS
across the capillary network with moderately high values only
in the vicinity of the optic disc. On the other hand, simulations
with the P6 flow model show a consistently higher and much
more spatially complex distribution of velocity and WSS.
Higher values are primarily located in regions in a more
advanced state of remodelling (note, for example, the number
of disconnected vessels undergoing regression). In the P6 case,
branches of predominant flow can be also identified in the
sprouting front.

We also analysed WSS in segments undergoing regression
(e.g. figure 10) and observed vessel pruning occurring in
regions of low shear stress. This process gradually reduces net-
work density (through the removal of redundant segments)
and is likely to lead to an increase in flow in the surviving
vessel segments. We hypothesize that this will contribute

0
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20
WSS (Pa)

Figure 10. Traction vectors (of constant length and coloured according to
magnitude) on the luminal surface of the region of interest highlighted in
figure 9b. The loop branch undergoing regression (upper branch) experiences
a much lower traction magnitude.
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Download HemeLB if you want a go
• Started at UCL
• Developers now at UCL, Edinburgh, Brunel, Clemson
• C++, object oriented, heavy use of templates
• Source code on GitHub:
- https://github.com/UCL/hemelb

• Docker image available too:
- https://hub.docker.com/hemelb/hemelb
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Performance – Site updates per second
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Parallel in Time



Parallelism in Time
• Parallel-in-time integration can allow the use of even more 

concurrency to reduce wall clock time
- Note: will always increase CPU time

• Parareal is the most commonly used PinT method
• Has has been used with LB [Randles 2014, J Comp Phys]
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Parareal
• Treat your simulation as an initial value problem
• Have a fine operator (F) and coarse one (G).
- Cost of applying G must be << F
-G can be less accurate
-G can be on a coarser grid

• Apply G several time to advance to target time
• From intermediate points start multiple F simulations in 

parallel
• Correct and iterate
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Parareal
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Parareal for HemeLB
• Collaboration with Derek Groen (Computer Science, UoB

London) and Daniel Ruprecht (Mathematics, UoLeeds)
• Project began October
• Will implement the fine and coarse operators with existing 

simulation
• Are working on coarsening and refinement operations
- Requires mapping between two grids in parallel with different 

decompositions
• Unclear how well this will work for lattice-Boltzmann
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Public cloud for HPC?
Experience with HemeLB on AWS and Azure



Comparison: policy

Public cloud

• Pay provider through 
grant

• On demand (minutes-
months)

• User defines security
- You have root on VM

• Many services (Web, DB, 
serverless, ML, analytics)

HPC centre

• Apply for time through 
grant process

• Batch system (minutes-
days)

• Centre defines security
- You do NOT have root

• Limited services 
(filesystem, batch, pre-
/post-processing)
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Comparison: hardware

Public cloud

• Many node types
• New servers constantly 

being added
• Network:
- Ethernet
- (Some Azure nodes have 

Infiniband)

HPC centre

• 1-3 node types
• New hardware every 2-5 

years
• Network:
- Specialised low-latency high-

bandwidth
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Comparison: storage

Public cloud

• Nodes usually have some 
local

• Object storage 
• Various databases
- Relational
- Columnar
- NoSQL
-Graph

HPC centre

• Nodes might have local 
storage (NVRAM?)

• Shared parallel POSIX 
filesystem
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Comparison: build

Cloud (Azure)

• yum install ...
• Configure NFS and MPI
• Compile dependencies
• cmake
• make install
• Save image
• Start pool of nodes
• Submit job
• Stop pool

HPC (Archer)

• module load ...
• cmake
• make 
• qsub
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HemeLB performance
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Simulation cost
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AWS Performance
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