Hemodynamics with
lattice Boltzmann

Rupert Nash
r.nash@epcc.ed.ac.uk
@rupe _nash

cpcc

The lattice Boltzmann
method

A lightning summary

cpcc

LB prehistory - lattice gas cellular
automata (1980’s)

O O
—O—

O O
O
ni(.?_C)-FCf_)iACg,/Ot@W,B: 8z(ﬁ)
Cf O \ o O

O\Q\O
N M

One collision rule — choose randomly between two output states

CSPCC

Boltzmann BGK Equation

[at_l_{;.v’?_l_g.vg]f:_i(f—f(()))

D/2
-r () el
! p(zﬂkBT Pk,

Discretise In velocity space

- Reduce continuous three dimensional space to discrete
set of velocities

- DVBE:

(fi - 1)

T

Oufi + 6 Vfi+[§ Vefli = -

Force term too long
for slides!

CPCC

Everyone uses simple velocity sets

- Usually D3Q19 (or D3Q15 or D3Q27)

- OK as long as symmetric “enough”
- Introduces more errors but still second order in Ax

- Except sometimes for turbulence?
- White & Chong, J. Comput. Physics (2011); S. K. Kang and Y. A

|eﬁéé |Comput Phys 232, 100 (2012).

DVBE = LBE

Integrate along each velocity with the trapezium rule for
one timestep

Make simple substitution get explicit equations

At o
) = A & D — R@E0)

fi(Z+ ALt + At) — fi(Z,t

CSPCC

LB vs. CFD

Boltzmann
Eqgn

CSPCC

Navier-Stokes
Equations

Discrete
velocity BE

FD/FEM/FVM

Scheme
recovers NS
as dx ->0

Scheme
recovers NS
as dx->0

LB Is strong

Possible to introduce more physics rigorously*
Particles
Multicomponent, multiphase fluids
Liquid crystals
Meshing is much simpler than FEM (only 1 grid resolution
to set)
Parallel implementation (P<1000) easy!

Parallel implementation (P<=250,000, efficiency >90%)
possible!

No global communications required (unlike e.g. Poisson
solver)

CSPCC

10

LB I1s weak A

Speed of sound fixed s = V3 At

Need to carefully chose params such that Mach number <<1

Mach number important because it is the parameter in the
Chapman Enskog expansion

Sound takes many time steps to cross domain
Pressure takes many time steps to converge

Is there really an advantage over just solving the Poisson equation
as in most NSE based codes?

CSPCC

11

LB Is horrible

- It struggles to get to high velocities (positivity of
distribution functions)

- It struggles to get to low viscosity as has poor stability

- Hence high Reynolds number requires advances
techniques: cascaded LB

CSPCC

HemelB applications

cpcc

13

parachutes

slippers

VS

‘C
iscocytes

b

a'
di

CFD (Colour for doctors)

\

‘a

epCe|

14

Angiogenesis

15

Pruning in action?

cpcc

16

Download HemelLB if you want a go

- Started at UCL
- Developers now at UCL, Edinburgh, Brunel, Clemson
- C++, object oriented, heavy use of templates

- Source code on GitHub:
- https://github.com/UCL/hemelb

- Docker image available too:
- https://hub.docker.com/hemelb/hemelb

CSPCC

17

Performance — Site updates per second

107 ' T T ' —] 1
wn
>
=
—~—
n
Original —
7, NBC _ = _ - - —
5 DMAPP ...
Immediate o o L
106 . e . el . el .
102 103 104 10° 108
Nsites/N ccccc

CSPCC

Parallel in Time

cpcc

Parallelism in Time

- Parallel-in-time integration can allow the use of even more
concurrency to reduce wall clock time
- Note: will always increase CPU time

- Parareal is the most commonly used PinT method
- Has has been used with LB [Randles 2014, J Comp Phys]

epcc .

Parareal

Treat your simulation as an initial value problem

Have a fine operator (F) and coarse one (G).
Cost of applying G must be << F
G can be less accurate
G can be on a coarser grid

Apply G several time to advance to target time

From intermediate points start multiple F simulations in
parallel

Correct and iterate

epcc .

Solution

Pararaal

1.4

1.3

1.2

1.1

cpcc

Parallel-in-time iteration

-

‘ Ukl
= p(UL))
e (U]
—— Direct

0.2

0.8 0.9

Parareal for HemelLB

Collaboration with Derek Groen (Computer Science, UoB
London) and Daniel Ruprecht (Mathematics, UolLeeds)
Project began October

Will implement the fine and coarse operators with existing
simulation

Are working on coarsening and refinement operations

Requires mapping between two grids in parallel with different
decompositions

Unclear how well this will work for lattice-Boltzmann

epcc .

Public cloud for HPC?

Experience with HemelLB on AWS and Azure

cpcc

Comparison: policy

Public cloud

- Pay provider through
grant

- On demand (minutes-
months)

- User defines security
- You have root on VM

- Many services (Web, DB,
serverless, ML, analytics)

CSPCC

HPC centre

- Apply for time through

grant process

- Batch system (minutes-

days)

- Centre defines security

- You do NOT have root

- Limited services

(filesystem, batch, pre-
/post-processing)

Comparison:

Public cloud

- Many node types

- New servers constantly
being added

- Network:
- Ethernet

- (Some Azure nodes have
Infiniband)

epcc L

hardware

HPC centre

- 1-3 node types
- New hardware every 2-5

years

- Network:

- Specialised low-latency high-
bandwidth

Comparison: storage

Public cloud

- Nodes usually have some
local

- Object storage

- Various databases
- Relational
- Columnar
- NoSQL
- Graph

CSPCC

HPC centre

- Nodes might have local

storage (NVRAM?)

- Shared parallel POSIX

filesystem

Comparison: build

Cloud (Azure)

- yum install ...
- Configure NFS and MPI
- Compile dependencies
- cmake
- make install
- Save image
- Start pool of nodes
- Submit job

epec

HPC (Archer)

- module load ...
- cmake

- make

- qsub

HemelB performance

X Azure-NOIO X
® Azure-10 v v
10° {1 w Cirrus X
v
x ®
v &
= oV
X
&
A 4
X
103*: oV
&
1074 103
Cores

epcc .

Simulation cost

16 1 X Azure-NOIO
® Azure-lO
14 4 w Cirrus
]_2 -
o -
E 10
2 8-
P »
&
4 *
" X , X X
2 - v
 J v
1074 103
Cores
cSOCC 2

AWS Performance

100

10

Time /S

10

100
Cores

¢ Cirrus
BAWS-EC2
AARCHER

;

AWS Cost

¢ Cirrus
BAWS-EC2
3 - A ARCHER (partner)

Simulation cost / GBP
N
-

. A A A A A A

64 128 256 512 1024

| e16p Cé I Cores

Acknowledgements

- HemelLB was started at UCL (Peter Coveney)

- Major code contributors:

- RWN, Miguel Bernabeu, Derek Groen, Sebastian Schmieschek,
Hywel Carver, Jens Nielsen, Mayeul d’'Avezac, James
Hetherington, Marco Mazzeo, Steven Manos

- AWS study by Steven Steven
- Azure credit provided by MS Research
- All errors are mine

CSPCC

