
(SOME) EUROPEAN EXASCALE PROJECTS

Adrian Jackson

@adrianjhpc

a.jackson@epcc.ed.ac.uk

Exascale I/O with Storage
Class Memory

Warning!

• Terminology will be annoying:
• NVDIMM

• NVRAM

• SCM

• ……

• My fault, but people argue which is the most
appropriate

• So using them all to annoy as many people as
possible 

NEXTGenIO summary

Project

• Research & Innovation
Action

• 36 month duration

• €8.1 million

• Approx. 50% committed
to hardware development

Partners

• EPCC

• INTEL

• FUJITSU

• BSC

• TUD

• ALLINEA

• ECMWF

• ARCTUR

New Memory Hierarchies

• High bandwidth, on processor memory
• Large, high bandwidth cache
• Latency cost for individual access may be an

issue

• Main memory
• DRAM
• Costly in terms of energy, potential for lower

latencies than high bandwidth memory

• Storage class memory
• High capacity, ultra fast storage
• Low energy (when at rest) but still slower

than DRAM
• Available through same memory controller

as main memory, programs have access to
memory address space

Memory

Storage

Cache

HBW Memory

Slow Storage

Cache

NVRAM

Fast Storage

Memory

HBW Memory

Slow Storage

Cache

NVRAM

HBW Memory

Slow Storage

NVRAM

NVRAM

Non-volatile memory

• Non-volatile RAM
• 3D XPoint technology
• STT-RAM

• Much larger capacity than DRAM
• Hosted in the DRAM slots, controlled by a standard

memory controller

• Slower than DRAM by a small factor, but
significantly faster than SSDs

• STT-RAM
• Read fast and low energy
• Write slow and high energy

• Trade off between durability and performance

• Can sacrifice data persistence for faster writes

SRAM vs NVRAM

• SRAM used for cache

• High performance but costly
• Die area

• Energy leakage

• DRAM lower cost but lower performance
• Higher power/refresh requirement

• NVRAM technologies offer
• Much smaller implementation area

• No refresh/ no/low energy leakage

• Independent read/write cycles

• NVDIMM offers
• Persistency

• Direct access (DAX)

NVDIMMs

• Non-volatile memory already exists
• NVDIMM-N:

• DRAM with NAND Flash on board
• External power source (i.e super capacitors)
• Data automatically moved to flash on power failure with capacitor support, moved

back when power restored
• Persistence functionality with memory performance (and capacity)

• NVDIMM-F:
• NAND Flash in memory form
• No DRAM
• Accessed through block mode (like SSD)

• NVDIMM-P:
• Combination of N and F
• Direct mapped DRAM and NAND Flash
• Both block and direct memory access possible

• 3D Xpoint, when it comes
• NVDIMM-P like (i.e. direct memory access and block)
• But no DRAM on board
• Likely to be paired with DRAM in the memory channel
• Real differentiator (from NVDIMM-N) likely to be capacity and cost

Memory levels

• SCM in general is likely to have different
memory modes* (like MCDRAM on KNL):

• Two-level memory (2LM)

• One-level memory (1LM)

9

Cache
Memory

Regions
Processor

DRAM

O
S

 M
a

in
 M

e
m

o
ry

SCM

DRAM

Memory

Processor

SCM

Application
Direct

Regions

O
S

 M
a

in
 M

e
m

o
ry

*https://www.google.com/patents/US20150178204

Storage Class Memory

• The “memory” usage model allows for the
extension of the main memory

• The data is volatile like normal DRAM based main
memory

• The “storage” usage model which supports the
use of NVRAM like a classic block device

• E.g. like a very fast SSD

• The “application direct” (DAX) usage model
maps persistent storage from the NVRAM
directly into the main memory address space

• Direct CPU load/store instructions for persistent
main memory regions

I/O

I/O Performance

• https://www.archer.ac.uk/documentation/white-papers/parallelIO-
benchmarking/ARCHER-Parallel-IO-1.0.pdf

ARCHER workload

Burst Buffer

• Non-volatile already becoming part of HPC hardware
stack

• SSDs offer high I/O performance but at a cost
• How to utilise in large scale systems?

• Burst-buffer hardware accelerating parallel filesystem
• Cray DataWarp

• DDN IME (Infinite Memory Engine)

Burst buffer

high performance network

external filesystem

compute nodes

high performance network

external filesystem

compute nodes

burst

filesystem

Moving beyond burst buffer
• Non-volatile is coming to the node rather than the

filesystem

• Argonne Theta machine has 128GB SSD in each
compute node

• And lustre

high performance network

external filesystem

compute nodes

I/O application patterns

Individual I/O

Operation

I/O Runtime

Contribution

Enabling new I/O

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lustre End Lustre Every

Iteration

Optane End Optane

Every

Iteration

SSD End SSD Every

Iteration

Mem End Mem Every

Iteration

F
ra

ct
io

n
 o

f
ru

n
ti

m
e

 s
p

e
n

t
o

n
 I

/O

I/O time

Exploiting distributed storage

Programming SCM

• Block memory mode
• Standard filesystem api’s

• Will incur block mode overheads (not byte
granularity, kernel interrupts, etc…)

• App Direct/DAX mode
• Volatile memory access can use standard

load/store
• NVM library

• pmem.io
• Persistent

load/store
• memory

mapped file
like
functionality

Using distributed storage

• Without changing applications
• Large memory space/in-memory database etc…
• Local filesystem

• Users manage data themselves

• No global data access/namespace, large number of files

• Still require global filesystem for persistence

Using distributed storage

• Without changing applications
• Filesystem buffer

• Pre-load data into NVRAM from filesystem

• Use NVRAM for I/O and write data back to filesystem at
the end

• Requires systemware to preload and postmove data

• Uses filesystem as namespace manager

Using distributed storage

• Without changing applications
• Global filesystem

• Requires functionality to create and tear down global
filesystems for individual jobs

• Requires filesystem that works across nodes
• Requires functionality to preload and postmove filesystems
• Need to be able to support multiple filesystems across

system

Using distributed storage

• With changes to applications
• Object store

• Needs same functionality as global filesystem

• Removes need for POSIX, or POSIX-like functionality

Using distributed storage

• New usage models
• Resident data sets

• Sharing preloaded data across a range of jobs

• Data analytic workflows

• How to control access/authorisation/security/etc….?

• Workflows
• Producer-consumer model

• Remove filesystem from intermediate stages

Using distributed storage

• Workflows
• How to enable different sized applications?

• How to schedule these jobs fairly?

• How to enable secure access?

The challenge of distributed
storage

• Enabling all the use cases in multi-user, multi-job
environment is the real challenge

• Heterogeneous scheduling mix

• Different requirements on the SCM

• Scheduling across these resources

• Enabling sharing of nodes

• Not impacting on node compute performance

• etc….

• Enabling applications to do more I/O
• Large numbers of our applications don’t heavily use

I/O at the moment

• What can we enable if I/O is significantly cheaper

Potential solutions

• Large memory space

• Burst buffer

• Filesystem across NVRAM in nodes

• HSM functionality

• Object store across nodes

• Checkpointing and I/O libraries

NEXTGenIO Systemware

Compute node systemware

User node systemware

Summary

• Storage class memory is coming
• Price and capacity remains to be seen, but initial

indications are interesting (large, cheaper than DRAM
on a per GB)

• In-node persistent storage likely to come to (maybe
some) HPC and HPDA systems shortly

• Applications can program directly but….
• …potentially systemware can handle functionality for

applications, at least in transition period

• Interesting times
• Convergence of HPC and HPDA (maybe)
• Different data usage/memory access models may

become more interesting
• Certainly benefits for single usage machines, i.e.

bioinformatics, weather and climate, etc…

DEEP-EST

DEEP-EST: Extreme Scale
Projects

DEEP-EST

• EU Horion2020
funded: 754304

• €15M 3 year project

• Create a first
version of the
Modular
Supercomputer
Architecture (MSA)
defined in DEEP
and DEEP-ER

• 15 partners

DEEP-EST

Software integration

• Schedule across heterogeneous hardware
setup

• Monitor power, energy, and performance

• Support single filesystem and storage
target from different modules

• Develop/extend programming
environments to use new modules

– Data analytics modules

DEEP-EST

Network Attached

Memory

• NAM is a physical circuit board with memory/storage, network
interfaces, and an FPGA

• A NAM is treated as regular node
– Attaches to the same network

(as any other node)

• Every process in the system can
• Write to it
• Read from it
• Use application specific functions

• Access rights and security managed by a
central instance: NAM Manager

DEEP-EST

DEEP-ER NAM

• Xilinx Virtex 7 FPGA

• Hybrid Memory Cube (HMC)

– DRAM based

– 2 GB capacity

– 40 GB/s read/write

• 2* Network 12x connections

– ~20GB/s read/write in DEEP-ER

DEEP-EST

Checkpoint Restart

DEEP-EST NAM

Characteristics

• Memory/Storage directly connected
to network through FPGA

• NAM is integrated in the Fabri³

• Per NAM:
– 16 GB/s write + 16 GB/s read
– Up to 64 TByte persistent storage

(NAND, 3DXpoint)
– (up to 32 GB DDR4)

• Fabri³
– Maximum 8 NAMs per Fabri³
– 128 GB/s write + 128 GB/s read
– 512 TByte persistent storage

• Lower latency and higher bandwidth
than writing to or reading from a
regular remote node memory or the
PFS

DEEP-EST

Potential DEEP-EST
NAM Use cases

• Checkpointing target
– Use existing libNAM functions (e.g. with SIONlib)

• Parallel File System
– Use file operations (fopen, fwrite, …) as if the

NAM was the PFS
– Use as intermediate file-system as BeeOND

extension

• Burst buffer alternative

• Fast, global shared memory

• MPI one-sided shared

DEEP-EST

Global Collective

Engine

• Accelerate collective
calls inside the
network

• Use the same
physical board as
the NAM

• Use FPGA to
implement
collectives

DEEP-EST

GCE

• Jobs register groups of participants for a
collective group
– In MPI context this reflects generation of a

communicator

• Jobs de-register groups of participants
– In MPI context this reflects destroying a

communicator

• Registering a collective group will trigger
allocation of resources on the GCE
– E.g. State & scratchpad memory allocation

DEEP-EST

GCE

• Jobs send request messages describing
the collective and their parameters

– Source & destination buffers, size, operand

type, collective operation, compute operation

in case of reduce,…

• GCE performs the actual work completely
asychronously to the actual compute job

• GCE distributes data back to the
participating processes and notifies them

DEEP-EST

GCE Benefits

• Fully concurrent to actual compute code

• Supports the idea of non-blocking
collectives ideally

• Optimize bandwidth requirements in the
network

• Reduces latency, since no synchronous
intermediate full stack send & receive
messages to be processed by compute
nodes

DEEP-EST

